1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshrsa.c
Simon Tatham f133abe521 Give a sensible error when using a too-short RSA key.
The ssh_signkey vtable has grown a new method ssh_key_invalid(), which
checks whether the key is going to be usable for constructing a
signature at all. Currently the only way this can fail is if it's an
RSA key so short that there isn't room to put all the PKCS#1
formatting in the signature preimage integer, but the return value is
an arbitrary error message just in case more reasons are needed later.

This is tested separately rather than at key-creation time because of
the signature flags system: an RSA key of intermediate length could be
valid for SHA-1 signing but not for SHA-512. So really this method
should be called at the point where you've decided what sig flags you
want to use, and you're checking if _those flags_ are OK.

On the verification side, there's no need for a separate check. If
someone presents us with an RSA key so short that it's impossible to
encode a valid signature using it, then we simply regard all
signatures as invalid.
2019-02-10 09:05:47 +00:00

1017 lines
28 KiB
C

/*
* RSA implementation for PuTTY.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "misc.h"
void BinarySource_get_rsa_ssh1_pub(
BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
{
unsigned bits;
mp_int *e, *m;
bits = get_uint32(src);
if (order == RSA_SSH1_EXPONENT_FIRST) {
e = get_mp_ssh1(src);
m = get_mp_ssh1(src);
} else {
m = get_mp_ssh1(src);
e = get_mp_ssh1(src);
}
if (rsa) {
rsa->bits = bits;
rsa->exponent = e;
rsa->modulus = m;
rsa->bytes = (mp_get_nbits(m) + 7) / 8;
} else {
mp_free(e);
mp_free(m);
}
}
void BinarySource_get_rsa_ssh1_priv(
BinarySource *src, RSAKey *rsa)
{
rsa->private_exponent = get_mp_ssh1(src);
}
bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
{
mp_int *b1, *b2;
int i;
unsigned char *p;
if (key->bytes < length + 4)
return false; /* RSA key too short! */
memmove(data + key->bytes - length, data, length);
data[0] = 0;
data[1] = 2;
size_t npad = key->bytes - length - 3;
/*
* Generate a sequence of nonzero padding bytes. We do this in a
* reasonably uniform way and without having to loop round
* retrying the random number generation, by first generating an
* integer in [0,2^n) for an appropriately large n; then we
* repeatedly multiply by 255 to give an integer in [0,255*2^n),
* extract the top 8 bits to give an integer in [0,255), and mask
* those bits off before multiplying up again for the next digit.
* This gives us a sequence of numbers in [0,255), and of course
* adding 1 to each of them gives numbers in [1,256) as we wanted.
*
* (You could imagine this being a sort of fixed-point operation:
* given a uniformly random binary _fraction_, multiplying it by k
* and subtracting off the integer part will yield you a sequence
* of integers each in [0,k). I'm just doing that scaled up by a
* power of 2 to avoid the fractions.)
*/
size_t random_bits = (npad + 16) * 8;
mp_int *randval = mp_new(random_bits + 8);
mp_int *tmp = mp_random_bits(random_bits);
mp_copy_into(randval, tmp);
mp_free(tmp);
for (i = 2; i < key->bytes - length - 1; i++) {
mp_mul_integer_into(randval, randval, 255);
uint8_t byte = mp_get_byte(randval, random_bits / 8);
assert(byte != 255);
data[i] = byte + 1;
mp_reduce_mod_2to(randval, random_bits);
}
mp_free(randval);
data[key->bytes - length - 1] = 0;
b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
b2 = mp_modpow(b1, key->exponent, key->modulus);
p = data;
for (i = key->bytes; i--;) {
*p++ = mp_get_byte(b2, i);
}
mp_free(b1);
mp_free(b2);
return true;
}
/*
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
* Uses Chinese Remainder Theorem to speed computation up over the
* obvious implementation of a single big modpow.
*/
mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
mp_int *p, mp_int *q, mp_int *iqmp)
{
mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
mp_int *diff, *multiplier, *ret0, *ret;
/*
* Reduce the exponent mod phi(p) and phi(q), to save time when
* exponentiating mod p and mod q respectively. Of course, since p
* and q are prime, phi(p) == p-1 and similarly for q.
*/
pm1 = mp_copy(p);
mp_sub_integer_into(pm1, pm1, 1);
qm1 = mp_copy(q);
mp_sub_integer_into(qm1, qm1, 1);
pexp = mp_mod(exp, pm1);
qexp = mp_mod(exp, qm1);
/*
* Do the two modpows.
*/
mp_int *base_mod_p = mp_mod(base, p);
presult = mp_modpow(base_mod_p, pexp, p);
mp_free(base_mod_p);
mp_int *base_mod_q = mp_mod(base, q);
qresult = mp_modpow(base_mod_q, qexp, q);
mp_free(base_mod_q);
/*
* Recombine the results. We want a value which is congruent to
* qresult mod q, and to presult mod p.
*
* We know that iqmp * q is congruent to 1 * mod p (by definition
* of iqmp) and to 0 mod q (obviously). So we start with qresult
* (which is congruent to qresult mod both primes), and add on
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
* to presult mod p without affecting its value mod q.
*
* (If presult-qresult < 0, we add p to it to keep it positive.)
*/
unsigned presult_too_small = mp_cmp_hs(qresult, presult);
mp_cond_add_into(presult, presult, p, presult_too_small);
diff = mp_sub(presult, qresult);
multiplier = mp_mul(iqmp, q);
ret0 = mp_mul(multiplier, diff);
mp_add_into(ret0, ret0, qresult);
/*
* Finally, reduce the result mod n.
*/
ret = mp_mod(ret0, mod);
/*
* Free all the intermediate results before returning.
*/
mp_free(pm1);
mp_free(qm1);
mp_free(pexp);
mp_free(qexp);
mp_free(presult);
mp_free(qresult);
mp_free(diff);
mp_free(multiplier);
mp_free(ret0);
return ret;
}
/*
* Wrapper on crt_modpow that looks up all the right values from an
* RSAKey.
*/
static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
{
return crt_modpow(input, key->private_exponent,
key->modulus, key->p, key->q, key->iqmp);
}
mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
{
return rsa_privkey_op(input, key);
}
bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
strbuf *outbuf)
{
strbuf *data = strbuf_new();
bool success = false;
BinarySource src[1];
{
mp_int *b = rsa_ssh1_decrypt(input, key);
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
put_byte(data, mp_get_byte(b, i));
}
mp_free(b);
}
BinarySource_BARE_INIT(src, data->u, data->len);
/* Check PKCS#1 formatting prefix */
if (get_byte(src) != 0) goto out;
if (get_byte(src) != 2) goto out;
while (1) {
unsigned char byte = get_byte(src);
if (get_err(src)) goto out;
if (byte == 0)
break;
}
/* Everything else is the payload */
success = true;
put_data(outbuf, get_ptr(src), get_avail(src));
out:
strbuf_free(data);
return success;
}
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
{
if (sb->len > 0)
put_byte(sb, ',');
put_data(sb, "0x", 2);
char *hex = mp_get_hex(x);
size_t hexlen = strlen(hex);
put_data(sb, hex, hexlen);
smemclr(hex, hexlen);
sfree(hex);
}
char *rsastr_fmt(RSAKey *key)
{
strbuf *sb = strbuf_new();
append_hex_to_strbuf(sb, key->exponent);
append_hex_to_strbuf(sb, key->modulus);
return strbuf_to_str(sb);
}
/*
* Generate a fingerprint string for the key. Compatible with the
* OpenSSH fingerprint code.
*/
char *rsa_ssh1_fingerprint(RSAKey *key)
{
unsigned char digest[16];
strbuf *out;
int i;
/*
* The hash preimage for SSH-1 key fingerprinting consists of the
* modulus and exponent _without_ any preceding length field -
* just the minimum number of bytes to represent each integer,
* stored big-endian, concatenated with no marker at the division
* between them.
*/
ssh_hash *hash = ssh_hash_new(&ssh_md5);
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
put_byte(hash, mp_get_byte(key->modulus, i));
for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
put_byte(hash, mp_get_byte(key->exponent, i));
ssh_hash_final(hash, digest);
out = strbuf_new();
strbuf_catf(out, "%d ", mp_get_nbits(key->modulus));
for (i = 0; i < 16; i++)
strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
if (key->comment)
strbuf_catf(out, " %s", key->comment);
return strbuf_to_str(out);
}
/*
* Verify that the public data in an RSA key matches the private
* data. We also check the private data itself: we ensure that p >
* q and that iqmp really is the inverse of q mod p.
*/
bool rsa_verify(RSAKey *key)
{
mp_int *n, *ed, *pm1, *qm1;
unsigned ok = 1;
/* Preliminary checks: p,q must actually be nonzero. */
if (mp_eq_integer(key->p, 0) | mp_eq_integer(key->q, 0))
return false;
/* n must equal pq. */
n = mp_mul(key->p, key->q);
ok &= mp_cmp_eq(n, key->modulus);
mp_free(n);
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
pm1 = mp_copy(key->p);
mp_sub_integer_into(pm1, pm1, 1);
ed = mp_modmul(key->exponent, key->private_exponent, pm1);
mp_free(pm1);
ok &= mp_eq_integer(ed, 1);
mp_free(ed);
qm1 = mp_copy(key->q);
mp_sub_integer_into(qm1, qm1, 1);
ed = mp_modmul(key->exponent, key->private_exponent, qm1);
mp_free(qm1);
ok &= mp_eq_integer(ed, 1);
mp_free(ed);
/*
* Ensure p > q.
*
* I have seen key blobs in the wild which were generated with
* p < q, so instead of rejecting the key in this case we
* should instead flip them round into the canonical order of
* p > q. This also involves regenerating iqmp.
*/
mp_int *p_new = mp_max(key->p, key->q);
mp_int *q_new = mp_min(key->p, key->q);
mp_free(key->p);
mp_free(key->q);
key->p = p_new;
key->q = q_new;
key->iqmp = mp_invert(key->q, key->p);
return ok;
}
void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
RsaSsh1Order order)
{
put_uint32(bs, mp_get_nbits(key->modulus));
if (order == RSA_SSH1_EXPONENT_FIRST) {
put_mp_ssh1(bs, key->exponent);
put_mp_ssh1(bs, key->modulus);
} else {
put_mp_ssh1(bs, key->modulus);
put_mp_ssh1(bs, key->exponent);
}
}
/* Given an SSH-1 public key blob, determine its length. */
int rsa_ssh1_public_blob_len(ptrlen data)
{
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, data);
/* Expect a length word, then exponent and modulus. (It doesn't
* even matter which order.) */
get_uint32(src);
mp_free(get_mp_ssh1(src));
mp_free(get_mp_ssh1(src));
if (get_err(src))
return -1;
/* Return the number of bytes consumed. */
return src->pos;
}
void freersapriv(RSAKey *key)
{
if (key->private_exponent) {
mp_free(key->private_exponent);
key->private_exponent = NULL;
}
if (key->p) {
mp_free(key->p);
key->p = NULL;
}
if (key->q) {
mp_free(key->q);
key->q = NULL;
}
if (key->iqmp) {
mp_free(key->iqmp);
key->iqmp = NULL;
}
}
void freersakey(RSAKey *key)
{
freersapriv(key);
if (key->modulus) {
mp_free(key->modulus);
key->modulus = NULL;
}
if (key->exponent) {
mp_free(key->exponent);
key->exponent = NULL;
}
if (key->comment) {
sfree(key->comment);
key->comment = NULL;
}
}
/* ----------------------------------------------------------------------
* Implementation of the ssh-rsa signing key type.
*/
static void rsa2_freekey(ssh_key *key); /* forward reference */
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
{
BinarySource src[1];
RSAKey *rsa;
BinarySource_BARE_INIT_PL(src, data);
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
return NULL;
rsa = snew(RSAKey);
rsa->sshk.vt = &ssh_rsa;
rsa->exponent = get_mp_ssh2(src);
rsa->modulus = get_mp_ssh2(src);
rsa->private_exponent = NULL;
rsa->p = rsa->q = rsa->iqmp = NULL;
rsa->comment = NULL;
if (get_err(src)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static void rsa2_freekey(ssh_key *key)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
freersakey(rsa);
sfree(rsa);
}
static char *rsa2_cache_str(ssh_key *key)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
return rsastr_fmt(rsa);
}
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
put_stringz(bs, "ssh-rsa");
put_mp_ssh2(bs, rsa->exponent);
put_mp_ssh2(bs, rsa->modulus);
}
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
put_mp_ssh2(bs, rsa->private_exponent);
put_mp_ssh2(bs, rsa->p);
put_mp_ssh2(bs, rsa->q);
put_mp_ssh2(bs, rsa->iqmp);
}
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
ptrlen pub, ptrlen priv)
{
BinarySource src[1];
ssh_key *sshk;
RSAKey *rsa;
sshk = rsa2_new_pub(self, pub);
if (!sshk)
return NULL;
rsa = container_of(sshk, RSAKey, sshk);
BinarySource_BARE_INIT_PL(src, priv);
rsa->private_exponent = get_mp_ssh2(src);
rsa->p = get_mp_ssh2(src);
rsa->q = get_mp_ssh2(src);
rsa->iqmp = get_mp_ssh2(src);
if (get_err(src) || !rsa_verify(rsa)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
BinarySource *src)
{
RSAKey *rsa;
rsa = snew(RSAKey);
rsa->sshk.vt = &ssh_rsa;
rsa->comment = NULL;
rsa->modulus = get_mp_ssh2(src);
rsa->exponent = get_mp_ssh2(src);
rsa->private_exponent = get_mp_ssh2(src);
rsa->iqmp = get_mp_ssh2(src);
rsa->p = get_mp_ssh2(src);
rsa->q = get_mp_ssh2(src);
if (get_err(src) || !rsa_verify(rsa)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
put_mp_ssh2(bs, rsa->modulus);
put_mp_ssh2(bs, rsa->exponent);
put_mp_ssh2(bs, rsa->private_exponent);
put_mp_ssh2(bs, rsa->iqmp);
put_mp_ssh2(bs, rsa->p);
put_mp_ssh2(bs, rsa->q);
}
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
{
ssh_key *sshk;
RSAKey *rsa;
int ret;
sshk = rsa2_new_pub(self, pub);
if (!sshk)
return -1;
rsa = container_of(sshk, RSAKey, sshk);
ret = mp_get_nbits(rsa->modulus);
rsa2_freekey(&rsa->sshk);
return ret;
}
static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
unsigned flags, const char **protocol_id_out)
{
const ssh_hashalg *halg;
const char *protocol_id;
if (flags & SSH_AGENT_RSA_SHA2_256) {
halg = &ssh_sha256;
protocol_id = "rsa-sha2-256";
} else if (flags & SSH_AGENT_RSA_SHA2_512) {
halg = &ssh_sha512;
protocol_id = "rsa-sha2-512";
} else {
halg = &ssh_sha1;
protocol_id = "ssh-rsa";
}
if (protocol_id_out)
*protocol_id_out = protocol_id;
return halg;
}
static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
{
if (halg == &ssh_sha1) {
/*
* This is the magic ASN.1/DER prefix that goes in the decoded
* signature, between the string of FFs and the actual SHA-1
* hash value. The meaning of it is:
*
* 00 -- this marks the end of the FFs; not part of the ASN.1
* bit itself
*
* 30 21 -- a constructed SEQUENCE of length 0x21
* 30 09 -- a constructed sub-SEQUENCE of length 9
* 06 05 -- an object identifier, length 5
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
* 05 00 -- NULL
* 04 14 -- a primitive OCTET STRING of length 0x14
* [0x14 bytes of hash data follows]
*
* The object id in the middle there is listed as `id-sha1' in
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
* (the ASN module for PKCS #1) and its expanded form is as
* follows:
*
* id-sha1 OBJECT IDENTIFIER ::= {
* iso(1) identified-organization(3) oiw(14) secsig(3)
* algorithms(2) 26 }
*/
static const unsigned char sha1_asn1_prefix[] = {
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
};
return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
}
if (halg == &ssh_sha256) {
/*
* A similar piece of ASN.1 used for signatures using SHA-256,
* in the same format but differing only in various length
* fields and OID.
*/
static const unsigned char sha256_asn1_prefix[] = {
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20,
};
return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
}
if (halg == &ssh_sha512) {
/*
* And one more for SHA-512.
*/
static const unsigned char sha512_asn1_prefix[] = {
0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
0x05, 0x00, 0x04, 0x40,
};
return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
}
unreachable("bad hash algorithm for RSA PKCS#1");
}
static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
{
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
return halg->hlen + asn1_prefix.len + 2;
}
static unsigned char *rsa_pkcs1_signature_string(
size_t nbytes, const ssh_hashalg *halg, ptrlen data)
{
size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
assert(nbytes >= fixed_parts);
size_t padding = nbytes - fixed_parts;
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
unsigned char *bytes = snewn(nbytes, unsigned char);
bytes[0] = 0;
bytes[1] = 1;
memset(bytes + 2, 0xFF, padding);
memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);
ssh_hash *h = ssh_hash_new(halg);
put_datapl(h, data);
ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);
return bytes;
}
static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
BinarySource src[1];
ptrlen type, in_pl;
mp_int *in, *out;
/* If we need to support variable flags on verify, this is where they go */
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(0, NULL);
/* Start by making sure the key is even long enough to encode a
* signature. If not, everything fails to verify. */
size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
return false;
BinarySource_BARE_INIT_PL(src, sig);
type = get_string(src);
/*
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
* signature is 'without lengths or padding'. That is, we _don't_
* expect the usual leading zero byte if the topmost bit of the
* first byte is set. (However, because of the possibility of
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
* there.) So we can't use get_mp_ssh2, which enforces that
* leading-byte scheme; instead we use get_string and
* mp_from_bytes_be, which will tolerate anything.
*/
in_pl = get_string(src);
if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
return false;
in = mp_from_bytes_be(in_pl);
out = mp_modpow(in, rsa->exponent, rsa->modulus);
mp_free(in);
unsigned diff = 0;
unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
for (size_t i = 0; i < nbytes; i++)
diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
smemclr(bytes, nbytes);
sfree(bytes);
mp_free(out);
return diff == 0;
}
static void rsa2_sign(ssh_key *key, ptrlen data,
unsigned flags, BinarySink *bs)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
unsigned char *bytes;
size_t nbytes;
mp_int *in, *out;
const ssh_hashalg *halg;
const char *sign_alg_name;
halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
smemclr(bytes, nbytes);
sfree(bytes);
out = rsa_privkey_op(in, rsa);
mp_free(in);
put_stringz(bs, sign_alg_name);
nbytes = (mp_get_nbits(out) + 7) / 8;
put_uint32(bs, nbytes);
for (size_t i = 0; i < nbytes; i++)
put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
mp_free(out);
}
char *rsa2_invalid(ssh_key *key, unsigned flags)
{
RSAKey *rsa = container_of(key, RSAKey, sshk);
size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
const char *sign_alg_name;
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
return dupprintf(
"%zu-bit RSA key is too short to generate %s signatures",
bits, sign_alg_name);
}
return NULL;
}
const ssh_keyalg ssh_rsa = {
rsa2_new_pub,
rsa2_new_priv,
rsa2_new_priv_openssh,
rsa2_freekey,
rsa2_invalid,
rsa2_sign,
rsa2_verify,
rsa2_public_blob,
rsa2_private_blob,
rsa2_openssh_blob,
rsa2_cache_str,
rsa2_pubkey_bits,
"ssh-rsa",
"rsa2",
NULL,
SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
};
RSAKey *ssh_rsakex_newkey(ptrlen data)
{
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
if (!sshk)
return NULL;
return container_of(sshk, RSAKey, sshk);
}
void ssh_rsakex_freekey(RSAKey *key)
{
rsa2_freekey(&key->sshk);
}
int ssh_rsakex_klen(RSAKey *rsa)
{
return mp_get_nbits(rsa->modulus);
}
static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
void *vdata, int datalen)
{
unsigned char *data = (unsigned char *)vdata;
unsigned count = 0;
while (datalen > 0) {
int i, max = (datalen > h->hlen ? h->hlen : datalen);
ssh_hash *s;
unsigned char hash[MAX_HASH_LEN];
assert(h->hlen <= MAX_HASH_LEN);
s = ssh_hash_new(h);
put_data(s, seed, seedlen);
put_uint32(s, count);
ssh_hash_final(s, hash);
count++;
for (i = 0; i < max; i++)
data[i] ^= hash[i];
data += max;
datalen -= max;
}
}
strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
{
mp_int *b1, *b2;
int k, i;
char *p;
const int HLEN = h->hlen;
/*
* Here we encrypt using RSAES-OAEP. Essentially this means:
*
* - we have a SHA-based `mask generation function' which
* creates a pseudo-random stream of mask data
* deterministically from an input chunk of data.
*
* - we have a random chunk of data called a seed.
*
* - we use the seed to generate a mask which we XOR with our
* plaintext.
*
* - then we use _the masked plaintext_ to generate a mask
* which we XOR with the seed.
*
* - then we concatenate the masked seed and the masked
* plaintext, and RSA-encrypt that lot.
*
* The result is that the data input to the encryption function
* is random-looking and (hopefully) contains no exploitable
* structure such as PKCS1-v1_5 does.
*
* For a precise specification, see RFC 3447, section 7.1.1.
* Some of the variable names below are derived from that, so
* it'd probably help to read it anyway.
*/
/* k denotes the length in octets of the RSA modulus. */
k = (7 + mp_get_nbits(rsa->modulus)) / 8;
/* The length of the input data must be at most k - 2hLen - 2. */
assert(in.len > 0 && in.len <= k - 2*HLEN - 2);
/* The length of the output data wants to be precisely k. */
strbuf *toret = strbuf_new();
int outlen = k;
unsigned char *out = strbuf_append(toret, outlen);
/*
* Now perform EME-OAEP encoding. First set up all the unmasked
* output data.
*/
/* Leading byte zero. */
out[0] = 0;
/* At position 1, the seed: HLEN bytes of random data. */
random_read(out + 1, HLEN);
/* At position 1+HLEN, the data block DB, consisting of: */
/* The hash of the label (we only support an empty label here) */
{
ssh_hash *s = ssh_hash_new(h);
ssh_hash_final(s, out + HLEN + 1);
}
/* A bunch of zero octets */
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
/* A single 1 octet, followed by the input message data. */
out[outlen - in.len - 1] = 1;
memcpy(out + outlen - in.len, in.ptr, in.len);
/*
* Now use the seed data to mask the block DB.
*/
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
/*
* And now use the masked DB to mask the seed itself.
*/
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
/*
* Now `out' contains precisely the data we want to
* RSA-encrypt.
*/
b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
p = (char *)out;
for (i = outlen; i--;) {
*p++ = mp_get_byte(b2, i);
}
mp_free(b1);
mp_free(b2);
/*
* And we're done.
*/
return toret;
}
mp_int *ssh_rsakex_decrypt(
RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
{
mp_int *b1, *b2;
int outlen, i;
unsigned char *out;
unsigned char labelhash[64];
ssh_hash *hash;
BinarySource src[1];
const int HLEN = h->hlen;
/*
* Decryption side of the RSA key exchange operation.
*/
/* The length of the encrypted data should be exactly the length
* in octets of the RSA modulus.. */
outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
if (ciphertext.len != outlen)
return NULL;
/* Do the RSA decryption, and extract the result into a byte array. */
b1 = mp_from_bytes_be(ciphertext);
b2 = rsa_privkey_op(b1, rsa);
out = snewn(outlen, unsigned char);
for (i = 0; i < outlen; i++)
out[i] = mp_get_byte(b2, outlen-1-i);
mp_free(b1);
mp_free(b2);
/* Do the OAEP masking operations, in the reverse order from encryption */
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
/* Check the leading byte is zero. */
if (out[0] != 0) {
sfree(out);
return NULL;
}
/* Check the label hash at position 1+HLEN */
assert(HLEN <= lenof(labelhash));
hash = ssh_hash_new(h);
ssh_hash_final(hash, labelhash);
if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
sfree(out);
return NULL;
}
/* Expect zero bytes followed by a 1 byte */
for (i = 1 + 2 * HLEN; i < outlen; i++) {
if (out[i] == 1) {
i++; /* skip over the 1 byte */
break;
} else if (out[i] != 1) {
sfree(out);
return NULL;
}
}
/* And what's left is the input message data, which should be
* encoded as an ordinary SSH-2 mpint. */
BinarySource_BARE_INIT(src, out + i, outlen - i);
b1 = get_mp_ssh2(src);
sfree(out);
if (get_err(src) || get_avail(src) != 0) {
mp_free(b1);
return NULL;
}
/* Success! */
return b1;
}
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
static const ssh_kex ssh_rsa_kex_sha1 = {
"rsa1024-sha1", NULL, KEXTYPE_RSA,
&ssh_sha1, &ssh_rsa_kex_extra_sha1,
};
static const ssh_kex ssh_rsa_kex_sha256 = {
"rsa2048-sha256", NULL, KEXTYPE_RSA,
&ssh_sha256, &ssh_rsa_kex_extra_sha256,
};
static const ssh_kex *const rsa_kex_list[] = {
&ssh_rsa_kex_sha256,
&ssh_rsa_kex_sha1
};
const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };