mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
06a14fe8b8
After Pavel Kryukov pointed out that I have to put _something_ in the 'ssh_key' structure, I thought of an actually useful thing to put there: why not make it store a pointer to the ssh_keyalg structure? Then ssh_key becomes a classoid - or perhaps 'traitoid' is a closer analogy - in the same style as Socket and Plug. And just like Socket and Plug, I've also arranged a system of wrapper macros that avoid the need to mention the 'object' whose method you're invoking twice at each call site. The new vtable pointer directly replaces an existing field of struct ec_key (which was usable by several different ssh_keyalgs, so it already had to store a pointer to the currently active one), and also replaces the 'alg' field of the ssh2_userkey structure that wraps up a cryptographic key with its comment field. I've also taken the opportunity to clean things up a bit in general: most of the methods now have new and clearer names (e.g. you'd never know that 'newkey' made a public-only key while 'createkey' made a public+private key pair unless you went and looked it up, but now they're called 'new_pub' and 'new_priv' you might be in with a chance), and I've completely removed the openssh_private_npieces field after realising that it was duplicating information that is actually _more_ conveniently obtained by calling the new_priv_openssh method (formerly openssh_createkey) and throwing away the result.
921 lines
24 KiB
C
921 lines
24 KiB
C
/*
|
|
* RSA implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "misc.h"
|
|
|
|
void BinarySource_get_rsa_ssh1_pub(
|
|
BinarySource *src, struct RSAKey *rsa, RsaSsh1Order order)
|
|
{
|
|
unsigned bits;
|
|
Bignum e, m;
|
|
|
|
bits = get_uint32(src);
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
e = get_mp_ssh1(src);
|
|
m = get_mp_ssh1(src);
|
|
} else {
|
|
m = get_mp_ssh1(src);
|
|
e = get_mp_ssh1(src);
|
|
}
|
|
|
|
if (rsa) {
|
|
rsa->bits = bits;
|
|
rsa->exponent = e;
|
|
rsa->modulus = m;
|
|
rsa->bytes = (bignum_bitcount(m) + 7) / 8;
|
|
} else {
|
|
freebn(e);
|
|
freebn(m);
|
|
}
|
|
}
|
|
|
|
void BinarySource_get_rsa_ssh1_priv(
|
|
BinarySource *src, struct RSAKey *rsa)
|
|
{
|
|
rsa->private_exponent = get_mp_ssh1(src);
|
|
}
|
|
|
|
int rsa_ssh1_encrypt(unsigned char *data, int length, struct RSAKey *key)
|
|
{
|
|
Bignum b1, b2;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (key->bytes < length + 4)
|
|
return 0; /* RSA key too short! */
|
|
|
|
memmove(data + key->bytes - length, data, length);
|
|
data[0] = 0;
|
|
data[1] = 2;
|
|
|
|
for (i = 2; i < key->bytes - length - 1; i++) {
|
|
do {
|
|
data[i] = random_byte();
|
|
} while (data[i] == 0);
|
|
}
|
|
data[key->bytes - length - 1] = 0;
|
|
|
|
b1 = bignum_from_bytes(data, key->bytes);
|
|
|
|
b2 = modpow(b1, key->exponent, key->modulus);
|
|
|
|
p = data;
|
|
for (i = key->bytes; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
|
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
|
* Uses Chinese Remainder Theorem to speed computation up over the
|
|
* obvious implementation of a single big modpow.
|
|
*/
|
|
Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
|
|
Bignum p, Bignum q, Bignum iqmp)
|
|
{
|
|
Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
|
|
|
|
/*
|
|
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
|
* exponentiating mod p and mod q respectively. Of course, since p
|
|
* and q are prime, phi(p) == p-1 and similarly for q.
|
|
*/
|
|
pm1 = copybn(p);
|
|
decbn(pm1);
|
|
qm1 = copybn(q);
|
|
decbn(qm1);
|
|
pexp = bigmod(exp, pm1);
|
|
qexp = bigmod(exp, qm1);
|
|
|
|
/*
|
|
* Do the two modpows.
|
|
*/
|
|
presult = modpow(base, pexp, p);
|
|
qresult = modpow(base, qexp, q);
|
|
|
|
/*
|
|
* Recombine the results. We want a value which is congruent to
|
|
* qresult mod q, and to presult mod p.
|
|
*
|
|
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
|
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
|
* (which is congruent to qresult mod both primes), and add on
|
|
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
|
* to presult mod p without affecting its value mod q.
|
|
*/
|
|
if (bignum_cmp(presult, qresult) < 0) {
|
|
/*
|
|
* Can't subtract presult from qresult without first adding on
|
|
* p.
|
|
*/
|
|
Bignum tmp = presult;
|
|
presult = bigadd(presult, p);
|
|
freebn(tmp);
|
|
}
|
|
diff = bigsub(presult, qresult);
|
|
multiplier = bigmul(iqmp, q);
|
|
ret0 = bigmuladd(multiplier, diff, qresult);
|
|
|
|
/*
|
|
* Finally, reduce the result mod n.
|
|
*/
|
|
ret = bigmod(ret0, mod);
|
|
|
|
/*
|
|
* Free all the intermediate results before returning.
|
|
*/
|
|
freebn(pm1);
|
|
freebn(qm1);
|
|
freebn(pexp);
|
|
freebn(qexp);
|
|
freebn(presult);
|
|
freebn(qresult);
|
|
freebn(diff);
|
|
freebn(multiplier);
|
|
freebn(ret0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is a wrapper on modpow(). It has the same effect as
|
|
* modpow(), but employs RSA blinding to protect against timing
|
|
* attacks and also uses the Chinese Remainder Theorem (implemented
|
|
* above, in crt_modpow()) to speed up the main operation.
|
|
*/
|
|
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
|
|
{
|
|
Bignum random, random_encrypted, random_inverse;
|
|
Bignum input_blinded, ret_blinded;
|
|
Bignum ret;
|
|
|
|
SHA512_State ss;
|
|
unsigned char digest512[64];
|
|
int digestused = lenof(digest512);
|
|
int hashseq = 0;
|
|
|
|
/*
|
|
* Start by inventing a random number chosen uniformly from the
|
|
* range 2..modulus-1. (We do this by preparing a random number
|
|
* of the right length and retrying if it's greater than the
|
|
* modulus, to prevent any potential Bleichenbacher-like
|
|
* attacks making use of the uneven distribution within the
|
|
* range that would arise from just reducing our number mod n.
|
|
* There are timing implications to the potential retries, of
|
|
* course, but all they tell you is the modulus, which you
|
|
* already knew.)
|
|
*
|
|
* To preserve determinism and avoid Pageant needing to share
|
|
* the random number pool, we actually generate this `random'
|
|
* number by hashing stuff with the private key.
|
|
*/
|
|
while (1) {
|
|
int bits, byte, bitsleft, v;
|
|
random = copybn(key->modulus);
|
|
/*
|
|
* Find the topmost set bit. (This function will return its
|
|
* index plus one.) Then we'll set all bits from that one
|
|
* downwards randomly.
|
|
*/
|
|
bits = bignum_bitcount(random);
|
|
byte = 0;
|
|
bitsleft = 0;
|
|
while (bits--) {
|
|
if (bitsleft <= 0) {
|
|
bitsleft = 8;
|
|
/*
|
|
* Conceptually the following few lines are equivalent to
|
|
* byte = random_byte();
|
|
*/
|
|
if (digestused >= lenof(digest512)) {
|
|
SHA512_Init(&ss);
|
|
put_data(&ss, "RSA deterministic blinding", 26);
|
|
put_uint32(&ss, hashseq);
|
|
put_mp_ssh2(&ss, key->private_exponent);
|
|
SHA512_Final(&ss, digest512);
|
|
hashseq++;
|
|
|
|
/*
|
|
* Now hash that digest plus the signature
|
|
* input.
|
|
*/
|
|
SHA512_Init(&ss);
|
|
put_data(&ss, digest512, sizeof(digest512));
|
|
put_mp_ssh2(&ss, input);
|
|
SHA512_Final(&ss, digest512);
|
|
|
|
digestused = 0;
|
|
}
|
|
byte = digest512[digestused++];
|
|
}
|
|
v = byte & 1;
|
|
byte >>= 1;
|
|
bitsleft--;
|
|
bignum_set_bit(random, bits, v);
|
|
}
|
|
bn_restore_invariant(random);
|
|
|
|
/*
|
|
* Now check that this number is strictly greater than
|
|
* zero, and strictly less than modulus.
|
|
*/
|
|
if (bignum_cmp(random, Zero) <= 0 ||
|
|
bignum_cmp(random, key->modulus) >= 0) {
|
|
freebn(random);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Also, make sure it has an inverse mod modulus.
|
|
*/
|
|
random_inverse = modinv(random, key->modulus);
|
|
if (!random_inverse) {
|
|
freebn(random);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* RSA blinding relies on the fact that (xy)^d mod n is equal
|
|
* to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
|
|
* y and y^d; then we multiply x by y, raise to the power d mod
|
|
* n as usual, and divide by y^d to recover x^d. Thus an
|
|
* attacker can't correlate the timing of the modpow with the
|
|
* input, because they don't know anything about the number
|
|
* that was input to the actual modpow.
|
|
*
|
|
* The clever bit is that we don't have to do a huge modpow to
|
|
* get y and y^d; we will use the number we just invented as
|
|
* _y^d_, and use the _public_ exponent to compute (y^d)^e = y
|
|
* from it, which is much faster to do.
|
|
*/
|
|
random_encrypted = crt_modpow(random, key->exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
input_blinded = modmul(input, random_encrypted, key->modulus);
|
|
ret_blinded = crt_modpow(input_blinded, key->private_exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
ret = modmul(ret_blinded, random_inverse, key->modulus);
|
|
|
|
freebn(ret_blinded);
|
|
freebn(input_blinded);
|
|
freebn(random_inverse);
|
|
freebn(random_encrypted);
|
|
freebn(random);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Bignum rsa_ssh1_decrypt(Bignum input, struct RSAKey *key)
|
|
{
|
|
return rsa_privkey_op(input, key);
|
|
}
|
|
|
|
int rsastr_len(struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int mdlen, exlen;
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
mdlen = (bignum_bitcount(md) + 15) / 16;
|
|
exlen = (bignum_bitcount(ex) + 15) / 16;
|
|
return 4 * (mdlen + exlen) + 20;
|
|
}
|
|
|
|
void rsastr_fmt(char *str, struct RSAKey *key)
|
|
{
|
|
Bignum md, ex;
|
|
int len = 0, i, nibbles;
|
|
static const char hex[] = "0123456789abcdef";
|
|
|
|
md = key->modulus;
|
|
ex = key->exponent;
|
|
|
|
len += sprintf(str + len, "0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(ex)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
len += sprintf(str + len, ",0x");
|
|
|
|
nibbles = (3 + bignum_bitcount(md)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
for (i = nibbles; i--;)
|
|
str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
|
|
|
|
str[len] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Generate a fingerprint string for the key. Compatible with the
|
|
* OpenSSH fingerprint code.
|
|
*/
|
|
char *rsa_ssh1_fingerprint(struct RSAKey *key)
|
|
{
|
|
struct MD5Context md5c;
|
|
unsigned char digest[16];
|
|
strbuf *out;
|
|
int i;
|
|
|
|
MD5Init(&md5c);
|
|
put_mp_ssh1(&md5c, key->modulus);
|
|
put_mp_ssh1(&md5c, key->exponent);
|
|
MD5Final(digest, &md5c);
|
|
|
|
out = strbuf_new();
|
|
strbuf_catf(out, "%d ", bignum_bitcount(key->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
|
|
if (key->comment)
|
|
strbuf_catf(out, " %s", key->comment);
|
|
return strbuf_to_str(out);
|
|
}
|
|
|
|
/*
|
|
* Verify that the public data in an RSA key matches the private
|
|
* data. We also check the private data itself: we ensure that p >
|
|
* q and that iqmp really is the inverse of q mod p.
|
|
*/
|
|
int rsa_verify(struct RSAKey *key)
|
|
{
|
|
Bignum n, ed, pm1, qm1;
|
|
int cmp;
|
|
|
|
/* n must equal pq. */
|
|
n = bigmul(key->p, key->q);
|
|
cmp = bignum_cmp(n, key->modulus);
|
|
freebn(n);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
|
pm1 = copybn(key->p);
|
|
decbn(pm1);
|
|
ed = modmul(key->exponent, key->private_exponent, pm1);
|
|
freebn(pm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
freebn(ed);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
qm1 = copybn(key->q);
|
|
decbn(qm1);
|
|
ed = modmul(key->exponent, key->private_exponent, qm1);
|
|
freebn(qm1);
|
|
cmp = bignum_cmp(ed, One);
|
|
freebn(ed);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Ensure p > q.
|
|
*
|
|
* I have seen key blobs in the wild which were generated with
|
|
* p < q, so instead of rejecting the key in this case we
|
|
* should instead flip them round into the canonical order of
|
|
* p > q. This also involves regenerating iqmp.
|
|
*/
|
|
if (bignum_cmp(key->p, key->q) <= 0) {
|
|
Bignum tmp = key->p;
|
|
key->p = key->q;
|
|
key->q = tmp;
|
|
|
|
freebn(key->iqmp);
|
|
key->iqmp = modinv(key->q, key->p);
|
|
if (!key->iqmp)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Ensure iqmp * q is congruent to 1, modulo p.
|
|
*/
|
|
n = modmul(key->iqmp, key->q, key->p);
|
|
cmp = bignum_cmp(n, One);
|
|
freebn(n);
|
|
if (cmp != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void rsa_ssh1_public_blob(BinarySink *bs, struct RSAKey *key,
|
|
RsaSsh1Order order)
|
|
{
|
|
put_uint32(bs, bignum_bitcount(key->modulus));
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
put_mp_ssh1(bs, key->exponent);
|
|
put_mp_ssh1(bs, key->modulus);
|
|
} else {
|
|
put_mp_ssh1(bs, key->modulus);
|
|
put_mp_ssh1(bs, key->exponent);
|
|
}
|
|
}
|
|
|
|
/* Given an SSH-1 public key blob, determine its length. */
|
|
int rsa_ssh1_public_blob_len(void *data, int maxlen)
|
|
{
|
|
BinarySource src[1];
|
|
|
|
BinarySource_BARE_INIT(src, data, maxlen);
|
|
|
|
/* Expect a length word, then exponent and modulus. (It doesn't
|
|
* even matter which order.) */
|
|
get_uint32(src);
|
|
freebn(get_mp_ssh1(src));
|
|
freebn(get_mp_ssh1(src));
|
|
|
|
if (get_err(src))
|
|
return -1;
|
|
|
|
/* Return the number of bytes consumed. */
|
|
return src->pos;
|
|
}
|
|
|
|
void freersakey(struct RSAKey *key)
|
|
{
|
|
if (key->modulus)
|
|
freebn(key->modulus);
|
|
if (key->exponent)
|
|
freebn(key->exponent);
|
|
if (key->private_exponent)
|
|
freebn(key->private_exponent);
|
|
if (key->p)
|
|
freebn(key->p);
|
|
if (key->q)
|
|
freebn(key->q);
|
|
if (key->iqmp)
|
|
freebn(key->iqmp);
|
|
if (key->comment)
|
|
sfree(key->comment);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Implementation of the ssh-rsa signing key type.
|
|
*/
|
|
|
|
static void rsa2_freekey(ssh_key *key); /* forward reference */
|
|
|
|
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
struct RSAKey *rsa;
|
|
|
|
BinarySource_BARE_INIT(src, data.ptr, data.len);
|
|
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
|
|
return NULL;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
rsa->sshk = &ssh_rsa;
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->private_exponent = NULL;
|
|
rsa->p = rsa->q = rsa->iqmp = NULL;
|
|
rsa->comment = NULL;
|
|
|
|
if (get_err(src)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_freekey(ssh_key *key)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static char *rsa2_cache_str(ssh_key *key)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
char *p;
|
|
int len;
|
|
|
|
len = rsastr_len(rsa);
|
|
p = snewn(len, char);
|
|
rsastr_fmt(p, rsa);
|
|
return p;
|
|
}
|
|
|
|
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
|
|
put_stringz(bs, "ssh-rsa");
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
}
|
|
|
|
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
|
|
ptrlen pub, ptrlen priv)
|
|
{
|
|
BinarySource src[1];
|
|
ssh_key *sshk;
|
|
struct RSAKey *rsa;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
|
|
rsa = FROMFIELD(sshk, struct RSAKey, sshk);
|
|
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
|
|
BinarySource *src)
|
|
{
|
|
struct RSAKey *rsa;
|
|
|
|
rsa = snew(struct RSAKey);
|
|
rsa->sshk = &ssh_rsa;
|
|
rsa->comment = NULL;
|
|
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
}
|
|
|
|
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
|
|
{
|
|
ssh_key *sshk;
|
|
struct RSAKey *rsa;
|
|
int ret;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return -1;
|
|
|
|
rsa = FROMFIELD(sshk, struct RSAKey, sshk);
|
|
ret = bignum_bitcount(rsa->modulus);
|
|
rsa2_freekey(&rsa->sshk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the magic ASN.1/DER prefix that goes in the decoded
|
|
* signature, between the string of FFs and the actual SHA hash
|
|
* value. The meaning of it is:
|
|
*
|
|
* 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
|
|
*
|
|
* 30 21 -- a constructed SEQUENCE of length 0x21
|
|
* 30 09 -- a constructed sub-SEQUENCE of length 9
|
|
* 06 05 -- an object identifier, length 5
|
|
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
|
|
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
|
|
* 05 00 -- NULL
|
|
* 04 14 -- a primitive OCTET STRING of length 0x14
|
|
* [0x14 bytes of hash data follows]
|
|
*
|
|
* The object id in the middle there is listed as `id-sha1' in
|
|
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
|
|
* ASN module for PKCS #1) and its expanded form is as follows:
|
|
*
|
|
* id-sha1 OBJECT IDENTIFIER ::= {
|
|
* iso(1) identified-organization(3) oiw(14) secsig(3)
|
|
* algorithms(2) 26 }
|
|
*/
|
|
static const unsigned char asn1_weird_stuff[] = {
|
|
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
|
|
};
|
|
|
|
#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
|
|
|
|
static int rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
BinarySource src[1];
|
|
ptrlen type, in_pl;
|
|
Bignum in, out;
|
|
int bytes, i, j, ret;
|
|
unsigned char hash[20];
|
|
|
|
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
|
|
type = get_string(src);
|
|
/*
|
|
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
|
|
* signature is 'without lengths or padding'. That is, we _don't_
|
|
* expect the usual leading zero byte if the topmost bit of the
|
|
* first byte is set. (However, because of the possibility of
|
|
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
|
|
* there.) So we can't use get_mp_ssh2, which enforces that
|
|
* leading-byte scheme; instead we use get_string and
|
|
* bignum_from_bytes, which will tolerate anything.
|
|
*/
|
|
in_pl = get_string(src);
|
|
if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
|
|
return 0;
|
|
|
|
in = bignum_from_bytes(in_pl.ptr, in_pl.len);
|
|
out = modpow(in, rsa->exponent, rsa->modulus);
|
|
freebn(in);
|
|
|
|
ret = 1;
|
|
|
|
bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
|
|
/* Top (partial) byte should be zero. */
|
|
if (bignum_byte(out, bytes - 1) != 0)
|
|
ret = 0;
|
|
/* First whole byte should be 1. */
|
|
if (bignum_byte(out, bytes - 2) != 1)
|
|
ret = 0;
|
|
/* Most of the rest should be FF. */
|
|
for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
|
|
if (bignum_byte(out, i) != 0xFF)
|
|
ret = 0;
|
|
}
|
|
/* Then we expect to see the asn1_weird_stuff. */
|
|
for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
|
|
if (bignum_byte(out, i) != asn1_weird_stuff[j])
|
|
ret = 0;
|
|
}
|
|
/* Finally, we expect to see the SHA-1 hash of the signed data. */
|
|
SHA_Simple(data.ptr, data.len, hash);
|
|
for (i = 19, j = 0; i >= 0; i--, j++) {
|
|
if (bignum_byte(out, i) != hash[j])
|
|
ret = 0;
|
|
}
|
|
freebn(out);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rsa2_sign(ssh_key *key, const void *data, int datalen,
|
|
BinarySink *bs)
|
|
{
|
|
struct RSAKey *rsa = FROMFIELD(key, struct RSAKey, sshk);
|
|
unsigned char *bytes;
|
|
int nbytes;
|
|
unsigned char hash[20];
|
|
Bignum in, out;
|
|
int i, j;
|
|
|
|
SHA_Simple(data, datalen, hash);
|
|
|
|
nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
|
|
assert(1 <= nbytes - 20 - ASN1_LEN);
|
|
bytes = snewn(nbytes, unsigned char);
|
|
|
|
bytes[0] = 1;
|
|
for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
|
|
bytes[i] = 0xFF;
|
|
for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
|
|
bytes[i] = asn1_weird_stuff[j];
|
|
for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
|
|
bytes[i] = hash[j];
|
|
|
|
in = bignum_from_bytes(bytes, nbytes);
|
|
sfree(bytes);
|
|
|
|
out = rsa_privkey_op(in, rsa);
|
|
freebn(in);
|
|
|
|
put_stringz(bs, "ssh-rsa");
|
|
nbytes = (bignum_bitcount(out) + 7) / 8;
|
|
put_uint32(bs, nbytes);
|
|
for (i = 0; i < nbytes; i++)
|
|
put_byte(bs, bignum_byte(out, nbytes - 1 - i));
|
|
|
|
freebn(out);
|
|
}
|
|
|
|
const ssh_keyalg ssh_rsa = {
|
|
rsa2_new_pub,
|
|
rsa2_new_priv,
|
|
rsa2_new_priv_openssh,
|
|
|
|
rsa2_freekey,
|
|
rsa2_sign,
|
|
rsa2_verify,
|
|
rsa2_public_blob,
|
|
rsa2_private_blob,
|
|
rsa2_openssh_blob,
|
|
rsa2_cache_str,
|
|
|
|
rsa2_pubkey_bits,
|
|
|
|
"ssh-rsa",
|
|
"rsa2",
|
|
NULL,
|
|
};
|
|
|
|
struct RSAKey *ssh_rsakex_newkey(const void *data, int len)
|
|
{
|
|
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, make_ptrlen(data, len));
|
|
if (!sshk)
|
|
return NULL;
|
|
return FROMFIELD(sshk, struct RSAKey, sshk);
|
|
}
|
|
|
|
void ssh_rsakex_freekey(struct RSAKey *key)
|
|
{
|
|
rsa2_freekey(&key->sshk);
|
|
}
|
|
|
|
int ssh_rsakex_klen(struct RSAKey *rsa)
|
|
{
|
|
return bignum_bitcount(rsa->modulus);
|
|
}
|
|
|
|
static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
|
|
void *vdata, int datalen)
|
|
{
|
|
unsigned char *data = (unsigned char *)vdata;
|
|
unsigned count = 0;
|
|
|
|
while (datalen > 0) {
|
|
int i, max = (datalen > h->hlen ? h->hlen : datalen);
|
|
void *s;
|
|
BinarySink *bs;
|
|
unsigned char hash[SSH2_KEX_MAX_HASH_LEN];
|
|
|
|
assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
|
|
s = h->init();
|
|
bs = h->sink(s);
|
|
put_data(bs, seed, seedlen);
|
|
put_uint32(bs, count);
|
|
h->final(s, hash);
|
|
count++;
|
|
|
|
for (i = 0; i < max; i++)
|
|
data[i] ^= hash[i];
|
|
|
|
data += max;
|
|
datalen -= max;
|
|
}
|
|
}
|
|
|
|
void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
|
|
unsigned char *out, int outlen, struct RSAKey *rsa)
|
|
{
|
|
Bignum b1, b2;
|
|
int k, i;
|
|
char *p;
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Here we encrypt using RSAES-OAEP. Essentially this means:
|
|
*
|
|
* - we have a SHA-based `mask generation function' which
|
|
* creates a pseudo-random stream of mask data
|
|
* deterministically from an input chunk of data.
|
|
*
|
|
* - we have a random chunk of data called a seed.
|
|
*
|
|
* - we use the seed to generate a mask which we XOR with our
|
|
* plaintext.
|
|
*
|
|
* - then we use _the masked plaintext_ to generate a mask
|
|
* which we XOR with the seed.
|
|
*
|
|
* - then we concatenate the masked seed and the masked
|
|
* plaintext, and RSA-encrypt that lot.
|
|
*
|
|
* The result is that the data input to the encryption function
|
|
* is random-looking and (hopefully) contains no exploitable
|
|
* structure such as PKCS1-v1_5 does.
|
|
*
|
|
* For a precise specification, see RFC 3447, section 7.1.1.
|
|
* Some of the variable names below are derived from that, so
|
|
* it'd probably help to read it anyway.
|
|
*/
|
|
|
|
/* k denotes the length in octets of the RSA modulus. */
|
|
k = (7 + bignum_bitcount(rsa->modulus)) / 8;
|
|
|
|
/* The length of the input data must be at most k - 2hLen - 2. */
|
|
assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
|
|
|
|
/* The length of the output data wants to be precisely k. */
|
|
assert(outlen == k);
|
|
|
|
/*
|
|
* Now perform EME-OAEP encoding. First set up all the unmasked
|
|
* output data.
|
|
*/
|
|
/* Leading byte zero. */
|
|
out[0] = 0;
|
|
/* At position 1, the seed: HLEN bytes of random data. */
|
|
for (i = 0; i < HLEN; i++)
|
|
out[i + 1] = random_byte();
|
|
/* At position 1+HLEN, the data block DB, consisting of: */
|
|
/* The hash of the label (we only support an empty label here) */
|
|
h->final(h->init(), out + HLEN + 1);
|
|
/* A bunch of zero octets */
|
|
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
|
|
/* A single 1 octet, followed by the input message data. */
|
|
out[outlen - inlen - 1] = 1;
|
|
memcpy(out + outlen - inlen, in, inlen);
|
|
|
|
/*
|
|
* Now use the seed data to mask the block DB.
|
|
*/
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/*
|
|
* And now use the masked DB to mask the seed itself.
|
|
*/
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
|
|
/*
|
|
* Now `out' contains precisely the data we want to
|
|
* RSA-encrypt.
|
|
*/
|
|
b1 = bignum_from_bytes(out, outlen);
|
|
b2 = modpow(b1, rsa->exponent, rsa->modulus);
|
|
p = (char *)out;
|
|
for (i = outlen; i--;) {
|
|
*p++ = bignum_byte(b2, i);
|
|
}
|
|
freebn(b1);
|
|
freebn(b2);
|
|
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
}
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha1 = {
|
|
"rsa1024-sha1", NULL, KEXTYPE_RSA, &ssh_sha1, NULL,
|
|
};
|
|
|
|
static const struct ssh_kex ssh_rsa_kex_sha256 = {
|
|
"rsa2048-sha256", NULL, KEXTYPE_RSA, &ssh_sha256, NULL,
|
|
};
|
|
|
|
static const struct ssh_kex *const rsa_kex_list[] = {
|
|
&ssh_rsa_kex_sha256,
|
|
&ssh_rsa_kex_sha1
|
|
};
|
|
|
|
const struct ssh_kexes ssh_rsa_kex = {
|
|
sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
|
|
rsa_kex_list
|
|
};
|