mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
3214563d8e
My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
369 lines
11 KiB
C
369 lines
11 KiB
C
/*
|
|
* Binary packet protocol for SSH-1.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "putty.h"
|
|
#include "ssh.h"
|
|
#include "sshbpp.h"
|
|
#include "sshcr.h"
|
|
|
|
struct ssh1_bpp_state {
|
|
int crState;
|
|
long len, pad, biglen, length, maxlen;
|
|
unsigned char *data;
|
|
unsigned long realcrc, gotcrc;
|
|
int chunk;
|
|
PktIn *pktin;
|
|
|
|
ssh1_cipher *cipher;
|
|
|
|
struct crcda_ctx *crcda_ctx;
|
|
|
|
bool pending_compression_request;
|
|
ssh_compressor *compctx;
|
|
ssh_decompressor *decompctx;
|
|
|
|
BinaryPacketProtocol bpp;
|
|
};
|
|
|
|
static void ssh1_bpp_free(BinaryPacketProtocol *bpp);
|
|
static void ssh1_bpp_handle_input(BinaryPacketProtocol *bpp);
|
|
static void ssh1_bpp_handle_output(BinaryPacketProtocol *bpp);
|
|
static void ssh1_bpp_queue_disconnect(BinaryPacketProtocol *bpp,
|
|
const char *msg, int category);
|
|
static PktOut *ssh1_bpp_new_pktout(int type);
|
|
|
|
static const struct BinaryPacketProtocolVtable ssh1_bpp_vtable = {
|
|
ssh1_bpp_free,
|
|
ssh1_bpp_handle_input,
|
|
ssh1_bpp_handle_output,
|
|
ssh1_bpp_new_pktout,
|
|
ssh1_bpp_queue_disconnect,
|
|
};
|
|
|
|
BinaryPacketProtocol *ssh1_bpp_new(LogContext *logctx)
|
|
{
|
|
struct ssh1_bpp_state *s = snew(struct ssh1_bpp_state);
|
|
memset(s, 0, sizeof(*s));
|
|
s->bpp.vt = &ssh1_bpp_vtable;
|
|
s->bpp.logctx = logctx;
|
|
ssh_bpp_common_setup(&s->bpp);
|
|
return &s->bpp;
|
|
}
|
|
|
|
static void ssh1_bpp_free(BinaryPacketProtocol *bpp)
|
|
{
|
|
struct ssh1_bpp_state *s = container_of(bpp, struct ssh1_bpp_state, bpp);
|
|
if (s->cipher)
|
|
ssh1_cipher_free(s->cipher);
|
|
if (s->compctx)
|
|
ssh_compressor_free(s->compctx);
|
|
if (s->decompctx)
|
|
ssh_decompressor_free(s->decompctx);
|
|
if (s->crcda_ctx)
|
|
crcda_free_context(s->crcda_ctx);
|
|
sfree(s->pktin);
|
|
sfree(s);
|
|
}
|
|
|
|
void ssh1_bpp_new_cipher(BinaryPacketProtocol *bpp,
|
|
const struct ssh1_cipheralg *cipher,
|
|
const void *session_key)
|
|
{
|
|
struct ssh1_bpp_state *s;
|
|
assert(bpp->vt == &ssh1_bpp_vtable);
|
|
s = container_of(bpp, struct ssh1_bpp_state, bpp);
|
|
|
|
assert(!s->cipher);
|
|
|
|
if (cipher) {
|
|
s->cipher = ssh1_cipher_new(cipher);
|
|
ssh1_cipher_sesskey(s->cipher, session_key);
|
|
|
|
assert(!s->crcda_ctx);
|
|
s->crcda_ctx = crcda_make_context();
|
|
|
|
bpp_logevent(("Initialised %s encryption", cipher->text_name));
|
|
}
|
|
}
|
|
|
|
void ssh1_bpp_start_compression(BinaryPacketProtocol *bpp)
|
|
{
|
|
struct ssh1_bpp_state *s;
|
|
assert(bpp->vt == &ssh1_bpp_vtable);
|
|
s = container_of(bpp, struct ssh1_bpp_state, bpp);
|
|
|
|
assert(!s->compctx);
|
|
assert(!s->decompctx);
|
|
|
|
s->compctx = ssh_compressor_new(&ssh_zlib);
|
|
s->decompctx = ssh_decompressor_new(&ssh_zlib);
|
|
|
|
bpp_logevent(("Started zlib (RFC1950) compression"));
|
|
}
|
|
|
|
#define BPP_READ(ptr, len) do \
|
|
{ \
|
|
crMaybeWaitUntilV(s->bpp.input_eof || \
|
|
bufchain_try_fetch_consume( \
|
|
s->bpp.in_raw, ptr, len)); \
|
|
if (s->bpp.input_eof) \
|
|
goto eof; \
|
|
} while (0)
|
|
|
|
static void ssh1_bpp_handle_input(BinaryPacketProtocol *bpp)
|
|
{
|
|
struct ssh1_bpp_state *s = container_of(bpp, struct ssh1_bpp_state, bpp);
|
|
|
|
crBegin(s->crState);
|
|
|
|
while (1) {
|
|
s->maxlen = 0;
|
|
s->length = 0;
|
|
|
|
{
|
|
unsigned char lenbuf[4];
|
|
BPP_READ(lenbuf, 4);
|
|
s->len = toint(GET_32BIT_MSB_FIRST(lenbuf));
|
|
}
|
|
|
|
if (s->len < 0 || s->len > 262144) { /* SSH1.5-mandated max size */
|
|
ssh_sw_abort(s->bpp.ssh,
|
|
"Extremely large packet length from remote suggests"
|
|
" data stream corruption");
|
|
crStopV;
|
|
}
|
|
|
|
s->pad = 8 - (s->len % 8);
|
|
s->biglen = s->len + s->pad;
|
|
s->length = s->len - 5;
|
|
|
|
/*
|
|
* Allocate the packet to return, now we know its length.
|
|
*/
|
|
s->pktin = snew_plus(PktIn, s->biglen);
|
|
s->pktin->qnode.prev = s->pktin->qnode.next = NULL;
|
|
s->pktin->qnode.on_free_queue = false;
|
|
s->pktin->type = 0;
|
|
|
|
s->maxlen = s->biglen;
|
|
s->data = snew_plus_get_aux(s->pktin);
|
|
|
|
BPP_READ(s->data, s->biglen);
|
|
|
|
if (s->cipher && detect_attack(s->crcda_ctx,
|
|
s->data, s->biglen, NULL)) {
|
|
ssh_sw_abort(s->bpp.ssh,
|
|
"Network attack (CRC compensation) detected!");
|
|
crStopV;
|
|
}
|
|
|
|
if (s->cipher)
|
|
ssh1_cipher_decrypt(s->cipher, s->data, s->biglen);
|
|
|
|
s->realcrc = crc32_compute(s->data, s->biglen - 4);
|
|
s->gotcrc = GET_32BIT(s->data + s->biglen - 4);
|
|
if (s->gotcrc != s->realcrc) {
|
|
ssh_sw_abort(s->bpp.ssh, "Incorrect CRC received on packet");
|
|
crStopV;
|
|
}
|
|
|
|
if (s->decompctx) {
|
|
unsigned char *decompblk;
|
|
int decomplen;
|
|
if (!ssh_decompressor_decompress(
|
|
s->decompctx, s->data + s->pad, s->length + 1,
|
|
&decompblk, &decomplen)) {
|
|
ssh_sw_abort(s->bpp.ssh,
|
|
"Zlib decompression encountered invalid data");
|
|
crStopV;
|
|
}
|
|
|
|
if (s->maxlen < s->pad + decomplen) {
|
|
PktIn *old_pktin = s->pktin;
|
|
|
|
s->maxlen = s->pad + decomplen;
|
|
s->pktin = snew_plus(PktIn, s->maxlen);
|
|
*s->pktin = *old_pktin; /* structure copy */
|
|
s->data = snew_plus_get_aux(s->pktin);
|
|
|
|
smemclr(old_pktin, s->biglen);
|
|
sfree(old_pktin);
|
|
}
|
|
|
|
memcpy(s->data + s->pad, decompblk, decomplen);
|
|
sfree(decompblk);
|
|
s->length = decomplen - 1;
|
|
}
|
|
|
|
/*
|
|
* Now we can find the bounds of the semantic content of the
|
|
* packet, and the initial type byte.
|
|
*/
|
|
s->data += s->pad;
|
|
s->pktin->type = *s->data++;
|
|
BinarySource_INIT(s->pktin, s->data, s->length);
|
|
|
|
if (s->bpp.logctx) {
|
|
logblank_t blanks[MAX_BLANKS];
|
|
int nblanks = ssh1_censor_packet(
|
|
s->bpp.pls, s->pktin->type, false,
|
|
make_ptrlen(s->data, s->length), blanks);
|
|
log_packet(s->bpp.logctx, PKT_INCOMING, s->pktin->type,
|
|
ssh1_pkt_type(s->pktin->type),
|
|
get_ptr(s->pktin), get_avail(s->pktin), nblanks, blanks,
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
pq_push(&s->bpp.in_pq, s->pktin);
|
|
|
|
{
|
|
int type = s->pktin->type;
|
|
s->pktin = NULL;
|
|
|
|
switch (type) {
|
|
case SSH1_SMSG_SUCCESS:
|
|
case SSH1_SMSG_FAILURE:
|
|
if (s->pending_compression_request) {
|
|
/*
|
|
* This is the response to
|
|
* SSH1_CMSG_REQUEST_COMPRESSION.
|
|
*/
|
|
if (type == SSH1_SMSG_SUCCESS) {
|
|
/*
|
|
* If the response was positive, start
|
|
* compression.
|
|
*/
|
|
ssh1_bpp_start_compression(&s->bpp);
|
|
}
|
|
|
|
/*
|
|
* Either way, cancel the pending flag, and
|
|
* schedule a run of our output side in case we
|
|
* had any packets queued up in the meantime.
|
|
*/
|
|
s->pending_compression_request = false;
|
|
queue_idempotent_callback(&s->bpp.ic_out_pq);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
eof:
|
|
if (!s->bpp.expect_close) {
|
|
ssh_remote_error(s->bpp.ssh,
|
|
"Remote side unexpectedly closed network connection");
|
|
} else {
|
|
ssh_remote_eof(s->bpp.ssh, "Remote side closed network connection");
|
|
}
|
|
return; /* avoid touching s now it's been freed */
|
|
|
|
crFinishV;
|
|
}
|
|
|
|
static PktOut *ssh1_bpp_new_pktout(int pkt_type)
|
|
{
|
|
PktOut *pkt = ssh_new_packet();
|
|
pkt->length = 4 + 8; /* space for length + max padding */
|
|
put_byte(pkt, pkt_type);
|
|
pkt->prefix = pkt->length;
|
|
pkt->type = pkt_type;
|
|
pkt->downstream_id = 0;
|
|
pkt->additional_log_text = NULL;
|
|
return pkt;
|
|
}
|
|
|
|
static void ssh1_bpp_format_packet(struct ssh1_bpp_state *s, PktOut *pkt)
|
|
{
|
|
int pad, biglen, i, pktoffs;
|
|
unsigned long crc;
|
|
int len;
|
|
|
|
if (s->bpp.logctx) {
|
|
ptrlen pktdata = make_ptrlen(pkt->data + pkt->prefix,
|
|
pkt->length - pkt->prefix);
|
|
logblank_t blanks[MAX_BLANKS];
|
|
int nblanks = ssh1_censor_packet(
|
|
s->bpp.pls, pkt->type, true, pktdata, blanks);
|
|
log_packet(s->bpp.logctx, PKT_OUTGOING, pkt->type,
|
|
ssh1_pkt_type(pkt->type),
|
|
pktdata.ptr, pktdata.len, nblanks, blanks,
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
if (s->compctx) {
|
|
unsigned char *compblk;
|
|
int complen;
|
|
ssh_compressor_compress(s->compctx, pkt->data + 12, pkt->length - 12,
|
|
&compblk, &complen, 0);
|
|
/* Replace the uncompressed packet data with the compressed
|
|
* version. */
|
|
pkt->length = 12;
|
|
put_data(pkt, compblk, complen);
|
|
sfree(compblk);
|
|
}
|
|
|
|
put_uint32(pkt, 0); /* space for CRC */
|
|
len = pkt->length - 4 - 8; /* len(type+data+CRC) */
|
|
pad = 8 - (len % 8);
|
|
pktoffs = 8 - pad;
|
|
biglen = len + pad; /* len(padding+type+data+CRC) */
|
|
|
|
for (i = pktoffs; i < 4+8; i++)
|
|
pkt->data[i] = random_byte();
|
|
crc = crc32_compute(pkt->data + pktoffs + 4,
|
|
biglen - 4); /* all ex len */
|
|
PUT_32BIT(pkt->data + pktoffs + 4 + biglen - 4, crc);
|
|
PUT_32BIT(pkt->data + pktoffs, len);
|
|
|
|
if (s->cipher)
|
|
ssh1_cipher_encrypt(s->cipher, pkt->data + pktoffs + 4, biglen);
|
|
|
|
bufchain_add(s->bpp.out_raw, pkt->data + pktoffs,
|
|
biglen + 4); /* len(length+padding+type+data+CRC) */
|
|
}
|
|
|
|
static void ssh1_bpp_handle_output(BinaryPacketProtocol *bpp)
|
|
{
|
|
struct ssh1_bpp_state *s = container_of(bpp, struct ssh1_bpp_state, bpp);
|
|
PktOut *pkt;
|
|
|
|
if (s->pending_compression_request) {
|
|
/*
|
|
* Don't send any output packets while we're awaiting a
|
|
* response to SSH1_CMSG_REQUEST_COMPRESSION, because if they
|
|
* cross over in transit with the responding SSH1_CMSG_SUCCESS
|
|
* then the other end could decode them with the wrong
|
|
* compression settings.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
while ((pkt = pq_pop(&s->bpp.out_pq)) != NULL) {
|
|
int type = pkt->type;
|
|
ssh1_bpp_format_packet(s, pkt);
|
|
ssh_free_pktout(pkt);
|
|
|
|
if (type == SSH1_CMSG_REQUEST_COMPRESSION) {
|
|
/*
|
|
* When we see the actual compression request go past, set
|
|
* the pending flag, and stop processing packets this
|
|
* time.
|
|
*/
|
|
s->pending_compression_request = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ssh1_bpp_queue_disconnect(BinaryPacketProtocol *bpp,
|
|
const char *msg, int category)
|
|
{
|
|
PktOut *pkt = ssh_bpp_new_pktout(bpp, SSH1_MSG_DISCONNECT);
|
|
put_stringz(pkt, msg);
|
|
pq_push(&bpp->out_pq, pkt);
|
|
}
|