mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
dc7ba12253
As distinct from the type of signature generated by the SSH server itself from the host key, this lets you exclude (and by default does exclude) the old "ssh-rsa" SHA-1 signature type from the signature of the CA on the certificate.
1710 lines
53 KiB
C
1710 lines
53 KiB
C
/*
|
|
* testcrypt: a standalone test program that provides direct access to
|
|
* PuTTY's cryptography and mp_int code.
|
|
*/
|
|
|
|
/*
|
|
* This program speaks a line-oriented protocol on standard input and
|
|
* standard output. It's a half-duplex protocol: it expects to read
|
|
* one line of command, and then produce a fixed amount of output
|
|
* (namely a line containing a decimal integer, followed by that many
|
|
* lines each containing one return value).
|
|
*
|
|
* The protocol is human-readable enough to make it debuggable, but
|
|
* verbose enough that you probably wouldn't want to speak it by hand
|
|
* at any great length. The Python program test/testcrypt.py wraps it
|
|
* to give a more useful user-facing API, by invoking this binary as a
|
|
* subprocess.
|
|
*
|
|
* (I decided that was a better idea than making this program an
|
|
* actual Python module, partly because you can rewrap the same binary
|
|
* in another scripting language if you prefer, but mostly because
|
|
* it's easy to attach a debugger to testcrypt or to run it under
|
|
* sanitisers or valgrind or what have you.)
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include "defs.h"
|
|
#include "ssh.h"
|
|
#include "sshkeygen.h"
|
|
#include "misc.h"
|
|
#include "mpint.h"
|
|
#include "crypto/ecc.h"
|
|
#include "crypto/ntru.h"
|
|
#include "proxy/cproxy.h"
|
|
|
|
static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
|
|
{
|
|
va_list ap;
|
|
fprintf(stderr, "testcrypt: ");
|
|
va_start(ap, p);
|
|
vfprintf(stderr, p, ap);
|
|
va_end(ap);
|
|
fputc('\n', stderr);
|
|
exit(1);
|
|
}
|
|
|
|
void out_of_memory(void) { fatal_error("out of memory"); }
|
|
|
|
static bool old_keyfile_warning_given;
|
|
void old_keyfile_warning(void) { old_keyfile_warning_given = true; }
|
|
|
|
static bufchain random_data_queue;
|
|
static prng *test_prng;
|
|
void random_read(void *buf, size_t size)
|
|
{
|
|
if (test_prng) {
|
|
prng_read(test_prng, buf, size);
|
|
} else {
|
|
if (!bufchain_try_fetch_consume(&random_data_queue, buf, size))
|
|
fatal_error("No random data in queue");
|
|
}
|
|
}
|
|
|
|
uint64_t prng_reseed_time_ms(void)
|
|
{
|
|
static uint64_t previous_time = 0;
|
|
return previous_time += 200;
|
|
}
|
|
|
|
#define VALUE_TYPES(X) \
|
|
X(string, strbuf *, strbuf_free(v)) \
|
|
X(mpint, mp_int *, mp_free(v)) \
|
|
X(modsqrt, ModsqrtContext *, modsqrt_free(v)) \
|
|
X(monty, MontyContext *, monty_free(v)) \
|
|
X(wcurve, WeierstrassCurve *, ecc_weierstrass_curve_free(v)) \
|
|
X(wpoint, WeierstrassPoint *, ecc_weierstrass_point_free(v)) \
|
|
X(mcurve, MontgomeryCurve *, ecc_montgomery_curve_free(v)) \
|
|
X(mpoint, MontgomeryPoint *, ecc_montgomery_point_free(v)) \
|
|
X(ecurve, EdwardsCurve *, ecc_edwards_curve_free(v)) \
|
|
X(epoint, EdwardsPoint *, ecc_edwards_point_free(v)) \
|
|
X(hash, ssh_hash *, ssh_hash_free(v)) \
|
|
X(key, ssh_key *, ssh_key_free(v)) \
|
|
X(cipher, ssh_cipher *, ssh_cipher_free(v)) \
|
|
X(mac, ssh2_mac *, ssh2_mac_free(v)) \
|
|
X(dh, dh_ctx *, dh_cleanup(v)) \
|
|
X(ecdh, ecdh_key *, ecdh_key_free(v)) \
|
|
X(rsakex, RSAKey *, ssh_rsakex_freekey(v)) \
|
|
X(rsa, RSAKey *, rsa_free(v)) \
|
|
X(prng, prng *, prng_free(v)) \
|
|
X(keycomponents, key_components *, key_components_free(v)) \
|
|
X(pcs, PrimeCandidateSource *, pcs_free(v)) \
|
|
X(pgc, PrimeGenerationContext *, primegen_free_context(v)) \
|
|
X(pockle, Pockle *, pockle_free(v)) \
|
|
X(millerrabin, MillerRabin *, miller_rabin_free(v)) \
|
|
X(ntrukeypair, NTRUKeyPair *, ntru_keypair_free(v)) \
|
|
X(ntruencodeschedule, NTRUEncodeSchedule *, ntru_encode_schedule_free(v)) \
|
|
/* end of list */
|
|
|
|
typedef struct Value Value;
|
|
|
|
enum ValueType {
|
|
#define VALTYPE_ENUM(n,t,f) VT_##n,
|
|
VALUE_TYPES(VALTYPE_ENUM)
|
|
#undef VALTYPE_ENUM
|
|
};
|
|
|
|
typedef enum ValueType ValueType;
|
|
|
|
static const char *const type_names[] = {
|
|
#define VALTYPE_NAME(n,t,f) #n,
|
|
VALUE_TYPES(VALTYPE_NAME)
|
|
#undef VALTYPE_NAME
|
|
};
|
|
|
|
#define VALTYPE_TYPEDEF(n,t,f) \
|
|
typedef t TD_val_##n; \
|
|
typedef t *TD_out_val_##n;
|
|
VALUE_TYPES(VALTYPE_TYPEDEF)
|
|
#undef VALTYPE_TYPEDEF
|
|
|
|
struct Value {
|
|
/*
|
|
* Protocol identifier assigned to this value when it was created.
|
|
* Lives in the same malloced block as this Value object itself.
|
|
*/
|
|
ptrlen id;
|
|
|
|
/*
|
|
* Type of the value.
|
|
*/
|
|
ValueType type;
|
|
|
|
/*
|
|
* Union of all the things it could hold.
|
|
*/
|
|
union {
|
|
#define VALTYPE_UNION(n,t,f) t vu_##n;
|
|
VALUE_TYPES(VALTYPE_UNION)
|
|
#undef VALTYPE_UNION
|
|
|
|
char *bare_string;
|
|
};
|
|
};
|
|
|
|
static int valuecmp(void *av, void *bv)
|
|
{
|
|
Value *a = (Value *)av, *b = (Value *)bv;
|
|
return ptrlen_strcmp(a->id, b->id);
|
|
}
|
|
|
|
static int valuefind(void *av, void *bv)
|
|
{
|
|
ptrlen *a = (ptrlen *)av;
|
|
Value *b = (Value *)bv;
|
|
return ptrlen_strcmp(*a, b->id);
|
|
}
|
|
|
|
static tree234 *values;
|
|
|
|
static Value *value_new(ValueType vt)
|
|
{
|
|
static uint64_t next_index = 0;
|
|
|
|
char *name = dupprintf("%s%"PRIu64, type_names[vt], next_index++);
|
|
size_t namelen = strlen(name);
|
|
|
|
Value *val = snew_plus(Value, namelen+1);
|
|
memcpy(snew_plus_get_aux(val), name, namelen+1);
|
|
val->id.ptr = snew_plus_get_aux(val);
|
|
val->id.len = namelen;
|
|
val->type = vt;
|
|
|
|
Value *added = add234(values, val);
|
|
assert(added == val);
|
|
|
|
sfree(name);
|
|
|
|
return val;
|
|
}
|
|
|
|
#define VALTYPE_RETURNFN(n,t,f) \
|
|
void return_val_##n(strbuf *out, t v) { \
|
|
Value *val = value_new(VT_##n); \
|
|
val->vu_##n = v; \
|
|
put_datapl(out, val->id); \
|
|
put_byte(out, '\n'); \
|
|
}
|
|
VALUE_TYPES(VALTYPE_RETURNFN)
|
|
#undef VALTYPE_RETURNFN
|
|
|
|
static ptrlen get_word(BinarySource *in)
|
|
{
|
|
ptrlen toret;
|
|
toret.ptr = get_ptr(in);
|
|
toret.len = 0;
|
|
while (get_avail(in) && get_byte(in) != ' ')
|
|
toret.len++;
|
|
return toret;
|
|
}
|
|
|
|
typedef uintmax_t TD_uint;
|
|
typedef bool TD_boolean;
|
|
typedef ptrlen TD_val_string_ptrlen;
|
|
typedef char *TD_val_string_asciz;
|
|
typedef BinarySource *TD_val_string_binarysource;
|
|
typedef unsigned *TD_out_uint;
|
|
typedef BinarySink *TD_out_val_string_binarysink;
|
|
typedef const char *TD_opt_val_string_asciz;
|
|
typedef char **TD_out_val_string_asciz;
|
|
typedef char **TD_out_opt_val_string_asciz;
|
|
typedef const char **TD_out_opt_val_string_asciz_const;
|
|
typedef const ssh_hashalg *TD_hashalg;
|
|
typedef const ssh2_macalg *TD_macalg;
|
|
typedef const ssh_keyalg *TD_keyalg;
|
|
typedef const ssh_cipheralg *TD_cipheralg;
|
|
typedef const ssh_kex *TD_dh_group;
|
|
typedef const ssh_kex *TD_ecdh_alg;
|
|
typedef RsaSsh1Order TD_rsaorder;
|
|
typedef key_components *TD_keycomponents;
|
|
typedef const PrimeGenerationPolicy *TD_primegenpolicy;
|
|
typedef struct mpint_list TD_mpint_list;
|
|
typedef struct int16_list *TD_int16_list;
|
|
typedef PockleStatus TD_pocklestatus;
|
|
typedef struct mr_result TD_mr_result;
|
|
typedef Argon2Flavour TD_argon2flavour;
|
|
typedef FingerprintType TD_fptype;
|
|
typedef HttpDigestHash TD_httpdigesthash;
|
|
|
|
#define BEGIN_ENUM_TYPE(name) \
|
|
static bool enum_translate_##name(ptrlen valname, TD_##name *out) { \
|
|
static const struct { \
|
|
const char *key; \
|
|
TD_##name value; \
|
|
} mapping[] = {
|
|
#define ENUM_VALUE(name, value) {name, value},
|
|
#define END_ENUM_TYPE(name) \
|
|
}; \
|
|
for (size_t i = 0; i < lenof(mapping); i++) \
|
|
if (ptrlen_eq_string(valname, mapping[i].key)) { \
|
|
if (out) \
|
|
*out = mapping[i].value; \
|
|
return true; \
|
|
} \
|
|
return false; \
|
|
} \
|
|
\
|
|
static TD_##name get_##name(BinarySource *in) { \
|
|
ptrlen valname = get_word(in); \
|
|
TD_##name out; \
|
|
if (enum_translate_##name(valname, &out)) \
|
|
return out; \
|
|
else \
|
|
fatal_error("%s '%.*s': not found", \
|
|
#name, PTRLEN_PRINTF(valname)); \
|
|
}
|
|
#include "testcrypt-enum.h"
|
|
#undef BEGIN_ENUM_TYPE
|
|
#undef ENUM_VALUE
|
|
#undef END_ENUM_TYPE
|
|
|
|
static uintmax_t get_uint(BinarySource *in)
|
|
{
|
|
ptrlen word = get_word(in);
|
|
char *string = mkstr(word);
|
|
uintmax_t toret = strtoumax(string, NULL, 0);
|
|
sfree(string);
|
|
return toret;
|
|
}
|
|
|
|
static bool get_boolean(BinarySource *in)
|
|
{
|
|
return ptrlen_eq_string(get_word(in), "true");
|
|
}
|
|
|
|
static Value *lookup_value(ptrlen word)
|
|
{
|
|
Value *val = find234(values, &word, valuefind);
|
|
if (!val)
|
|
fatal_error("id '%.*s': not found", PTRLEN_PRINTF(word));
|
|
return val;
|
|
}
|
|
|
|
static Value *get_value(BinarySource *in)
|
|
{
|
|
return lookup_value(get_word(in));
|
|
}
|
|
|
|
typedef void (*finaliser_fn_t)(strbuf *out, void *ctx);
|
|
struct finaliser {
|
|
finaliser_fn_t fn;
|
|
void *ctx;
|
|
};
|
|
|
|
static struct finaliser *finalisers;
|
|
static size_t nfinalisers, finalisersize;
|
|
|
|
static void add_finaliser(finaliser_fn_t fn, void *ctx)
|
|
{
|
|
sgrowarray(finalisers, finalisersize, nfinalisers);
|
|
finalisers[nfinalisers].fn = fn;
|
|
finalisers[nfinalisers].ctx = ctx;
|
|
nfinalisers++;
|
|
}
|
|
|
|
static void run_finalisers(strbuf *out)
|
|
{
|
|
for (size_t i = 0; i < nfinalisers; i++)
|
|
finalisers[i].fn(out, finalisers[i].ctx);
|
|
nfinalisers = 0;
|
|
}
|
|
|
|
static void finaliser_return_value(strbuf *out, void *ctx)
|
|
{
|
|
Value *val = (Value *)ctx;
|
|
put_datapl(out, val->id);
|
|
put_byte(out, '\n');
|
|
}
|
|
|
|
static void finaliser_sfree(strbuf *out, void *ctx)
|
|
{
|
|
sfree(ctx);
|
|
}
|
|
|
|
#define VALTYPE_GETFN(n,t,f) \
|
|
static Value *unwrap_value_##n(Value *val) { \
|
|
ValueType expected = VT_##n; \
|
|
if (expected != val->type) \
|
|
fatal_error("id '%.*s': expected %s, got %s", \
|
|
PTRLEN_PRINTF(val->id), \
|
|
type_names[expected], type_names[val->type]); \
|
|
return val; \
|
|
} \
|
|
static Value *get_value_##n(BinarySource *in) { \
|
|
return unwrap_value_##n(get_value(in)); \
|
|
} \
|
|
static t get_val_##n(BinarySource *in) { \
|
|
return get_value_##n(in)->vu_##n; \
|
|
}
|
|
VALUE_TYPES(VALTYPE_GETFN)
|
|
#undef VALTYPE_GETFN
|
|
|
|
static ptrlen get_val_string_ptrlen(BinarySource *in)
|
|
{
|
|
return ptrlen_from_strbuf(get_val_string(in));
|
|
}
|
|
|
|
static char *get_val_string_asciz(BinarySource *in)
|
|
{
|
|
return get_val_string(in)->s;
|
|
}
|
|
|
|
static strbuf *get_opt_val_string(BinarySource *in);
|
|
|
|
static char *get_opt_val_string_asciz(BinarySource *in)
|
|
{
|
|
strbuf *sb = get_opt_val_string(in);
|
|
return sb ? sb->s : NULL;
|
|
}
|
|
|
|
static mp_int **get_out_val_mpint(BinarySource *in)
|
|
{
|
|
Value *val = value_new(VT_mpint);
|
|
add_finaliser(finaliser_return_value, val);
|
|
return &val->vu_mpint;
|
|
}
|
|
|
|
struct mpint_list {
|
|
size_t n;
|
|
mp_int **integers;
|
|
};
|
|
|
|
static struct mpint_list get_mpint_list(BinarySource *in)
|
|
{
|
|
size_t n = get_uint(in);
|
|
|
|
struct mpint_list mpl;
|
|
mpl.n = n;
|
|
|
|
mpl.integers = snewn(n, mp_int *);
|
|
for (size_t i = 0; i < n; i++)
|
|
mpl.integers[i] = get_val_mpint(in);
|
|
|
|
add_finaliser(finaliser_sfree, mpl.integers);
|
|
return mpl;
|
|
}
|
|
|
|
typedef struct int16_list {
|
|
size_t n;
|
|
uint16_t *integers;
|
|
} int16_list;
|
|
|
|
static void finaliser_int16_list_free(strbuf *out, void *vlist)
|
|
{
|
|
int16_list *list = (int16_list *)vlist;
|
|
sfree(list->integers);
|
|
sfree(list);
|
|
}
|
|
|
|
static int16_list *make_int16_list(size_t n)
|
|
{
|
|
int16_list *list = snew(int16_list);
|
|
list->n = n;
|
|
list->integers = snewn(n, uint16_t);
|
|
add_finaliser(finaliser_int16_list_free, list);
|
|
return list;
|
|
}
|
|
|
|
static int16_list *get_int16_list(BinarySource *in)
|
|
{
|
|
size_t n = get_uint(in);
|
|
int16_list *list = make_int16_list(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
list->integers[i] = get_uint(in);
|
|
return list;
|
|
}
|
|
|
|
static void return_int16_list(strbuf *out, int16_list *list)
|
|
{
|
|
for (size_t i = 0; i < list->n; i++) {
|
|
if (i > 0)
|
|
put_byte(out, ',');
|
|
put_fmt(out, "%d", (int)(int16_t)list->integers[i]);
|
|
}
|
|
put_byte(out, '\n');
|
|
}
|
|
|
|
static void finaliser_return_uint(strbuf *out, void *ctx)
|
|
{
|
|
unsigned *uval = (unsigned *)ctx;
|
|
put_fmt(out, "%u\n", *uval);
|
|
sfree(uval);
|
|
}
|
|
|
|
static unsigned *get_out_uint(BinarySource *in)
|
|
{
|
|
unsigned *uval = snew(unsigned);
|
|
add_finaliser(finaliser_return_uint, uval);
|
|
return uval;
|
|
}
|
|
|
|
static BinarySink *get_out_val_string_binarysink(BinarySource *in)
|
|
{
|
|
Value *val = value_new(VT_string);
|
|
val->vu_string = strbuf_new();
|
|
add_finaliser(finaliser_return_value, val);
|
|
return BinarySink_UPCAST(val->vu_string);
|
|
}
|
|
|
|
static void return_val_string_asciz_const(strbuf *out, const char *s);
|
|
static void return_val_string_asciz(strbuf *out, char *s);
|
|
|
|
static void finaliser_return_opt_string_asciz(strbuf *out, void *ctx)
|
|
{
|
|
char **valp = (char **)ctx;
|
|
char *val = *valp;
|
|
sfree(valp);
|
|
if (!val)
|
|
put_fmt(out, "NULL\n");
|
|
else
|
|
return_val_string_asciz(out, val);
|
|
}
|
|
|
|
static char **get_out_opt_val_string_asciz(BinarySource *in)
|
|
{
|
|
char **valp = snew(char *);
|
|
*valp = NULL;
|
|
add_finaliser(finaliser_return_opt_string_asciz, valp);
|
|
return valp;
|
|
}
|
|
|
|
static void finaliser_return_opt_string_asciz_const(strbuf *out, void *ctx)
|
|
{
|
|
const char **valp = (const char **)ctx;
|
|
const char *val = *valp;
|
|
sfree(valp);
|
|
if (!val)
|
|
put_fmt(out, "NULL\n");
|
|
else
|
|
return_val_string_asciz_const(out, val);
|
|
}
|
|
|
|
static const char **get_out_opt_val_string_asciz_const(BinarySource *in)
|
|
{
|
|
const char **valp = snew(const char *);
|
|
*valp = NULL;
|
|
add_finaliser(finaliser_return_opt_string_asciz_const, valp);
|
|
return valp;
|
|
}
|
|
|
|
static BinarySource *get_val_string_binarysource(BinarySource *in)
|
|
{
|
|
strbuf *sb = get_val_string(in);
|
|
BinarySource *src = snew(BinarySource);
|
|
BinarySource_BARE_INIT(src, sb->u, sb->len);
|
|
add_finaliser(finaliser_sfree, src);
|
|
return src;
|
|
}
|
|
|
|
#define GET_CONSUMED_FN(type) \
|
|
typedef TD_val_##type TD_consumed_val_##type; \
|
|
static TD_val_##type get_consumed_val_##type(BinarySource *in) \
|
|
{ \
|
|
Value *val = get_value_##type(in); \
|
|
TD_val_##type toret = val->vu_##type; \
|
|
del234(values, val); \
|
|
sfree(val); \
|
|
return toret; \
|
|
}
|
|
GET_CONSUMED_FN(hash)
|
|
GET_CONSUMED_FN(pcs)
|
|
|
|
static void return_int(strbuf *out, intmax_t u)
|
|
{
|
|
put_fmt(out, "%"PRIdMAX"\n", u);
|
|
}
|
|
|
|
static void return_uint(strbuf *out, uintmax_t u)
|
|
{
|
|
put_fmt(out, "0x%"PRIXMAX"\n", u);
|
|
}
|
|
|
|
static void return_boolean(strbuf *out, bool b)
|
|
{
|
|
put_fmt(out, "%s\n", b ? "true" : "false");
|
|
}
|
|
|
|
static void return_pocklestatus(strbuf *out, PockleStatus status)
|
|
{
|
|
switch (status) {
|
|
default:
|
|
put_fmt(out, "POCKLE_BAD_STATUS_VALUE\n");
|
|
break;
|
|
|
|
#define STATUS_CASE(id) \
|
|
case id: \
|
|
put_fmt(out, "%s\n", #id); \
|
|
break;
|
|
|
|
POCKLE_STATUSES(STATUS_CASE);
|
|
|
|
#undef STATUS_CASE
|
|
|
|
}
|
|
}
|
|
|
|
static void return_mr_result(strbuf *out, struct mr_result result)
|
|
{
|
|
if (!result.passed)
|
|
put_fmt(out, "failed\n");
|
|
else if (!result.potential_primitive_root)
|
|
put_fmt(out, "passed\n");
|
|
else
|
|
put_fmt(out, "passed+ppr\n");
|
|
}
|
|
|
|
static void return_val_string_asciz_const(strbuf *out, const char *s)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
put_data(sb, s, strlen(s));
|
|
return_val_string(out, sb);
|
|
}
|
|
|
|
static void return_val_string_asciz(strbuf *out, char *s)
|
|
{
|
|
return_val_string_asciz_const(out, s);
|
|
sfree(s);
|
|
}
|
|
|
|
#define NULLABLE_RETURN_WRAPPER(type_name, c_type) \
|
|
static void return_opt_##type_name(strbuf *out, c_type ptr) \
|
|
{ \
|
|
if (!ptr) \
|
|
put_fmt(out, "NULL\n"); \
|
|
else \
|
|
return_##type_name(out, ptr); \
|
|
}
|
|
|
|
NULLABLE_RETURN_WRAPPER(val_string, strbuf *)
|
|
NULLABLE_RETURN_WRAPPER(val_string_asciz, char *)
|
|
NULLABLE_RETURN_WRAPPER(val_string_asciz_const, const char *)
|
|
NULLABLE_RETURN_WRAPPER(val_cipher, ssh_cipher *)
|
|
NULLABLE_RETURN_WRAPPER(val_hash, ssh_hash *)
|
|
NULLABLE_RETURN_WRAPPER(val_key, ssh_key *)
|
|
NULLABLE_RETURN_WRAPPER(val_mpint, mp_int *)
|
|
NULLABLE_RETURN_WRAPPER(int16_list, int16_list *)
|
|
|
|
static void handle_hello(BinarySource *in, strbuf *out)
|
|
{
|
|
put_fmt(out, "hello, world\n");
|
|
}
|
|
|
|
static void rsa_free(RSAKey *rsa)
|
|
{
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static void free_value(Value *val)
|
|
{
|
|
switch (val->type) {
|
|
#define VALTYPE_FREE(n,t,f) case VT_##n: { t v = val->vu_##n; (f); break; }
|
|
VALUE_TYPES(VALTYPE_FREE)
|
|
#undef VALTYPE_FREE
|
|
}
|
|
sfree(val);
|
|
}
|
|
|
|
static void handle_free(BinarySource *in, strbuf *out)
|
|
{
|
|
Value *val = get_value(in);
|
|
del234(values, val);
|
|
free_value(val);
|
|
}
|
|
|
|
static void handle_newstring(BinarySource *in, strbuf *out)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
while (get_avail(in)) {
|
|
char c = get_byte(in);
|
|
if (c == '%') {
|
|
char hex[3];
|
|
hex[0] = get_byte(in);
|
|
if (hex[0] != '%') {
|
|
hex[1] = get_byte(in);
|
|
hex[2] = '\0';
|
|
c = strtoul(hex, NULL, 16);
|
|
}
|
|
}
|
|
put_byte(sb, c);
|
|
}
|
|
return_val_string(out, sb);
|
|
}
|
|
|
|
static void handle_getstring(BinarySource *in, strbuf *out)
|
|
{
|
|
strbuf *sb = get_val_string(in);
|
|
for (size_t i = 0; i < sb->len; i++) {
|
|
char c = sb->s[i];
|
|
if (c > ' ' && c < 0x7F && c != '%') {
|
|
put_byte(out, c);
|
|
} else {
|
|
put_fmt(out, "%%%02X", 0xFFU & (unsigned)c);
|
|
}
|
|
}
|
|
put_byte(out, '\n');
|
|
}
|
|
|
|
static void handle_mp_literal(BinarySource *in, strbuf *out)
|
|
{
|
|
ptrlen pl = get_word(in);
|
|
char *str = mkstr(pl);
|
|
mp_int *mp = mp__from_string_literal(str);
|
|
sfree(str);
|
|
return_val_mpint(out, mp);
|
|
}
|
|
|
|
static void handle_mp_dump(BinarySource *in, strbuf *out)
|
|
{
|
|
mp_int *mp = get_val_mpint(in);
|
|
for (size_t i = mp_max_bytes(mp); i-- > 0 ;)
|
|
put_fmt(out, "%02X", mp_get_byte(mp, i));
|
|
put_byte(out, '\n');
|
|
}
|
|
|
|
static void handle_checkenum(BinarySource *in, strbuf *out)
|
|
{
|
|
ptrlen type = get_word(in);
|
|
ptrlen value = get_word(in);
|
|
bool ok = false;
|
|
|
|
#define BEGIN_ENUM_TYPE(name) \
|
|
if (ptrlen_eq_string(type, #name)) \
|
|
ok = enum_translate_##name(value, NULL);
|
|
#define ENUM_VALUE(name, value)
|
|
#define END_ENUM_TYPE(name)
|
|
#include "testcrypt-enum.h"
|
|
#undef BEGIN_ENUM_TYPE
|
|
#undef ENUM_VALUE
|
|
#undef END_ENUM_TYPE
|
|
|
|
put_dataz(out, ok ? "ok\n" : "bad\n");
|
|
}
|
|
|
|
static void random_queue(ptrlen pl)
|
|
{
|
|
bufchain_add(&random_data_queue, pl.ptr, pl.len);
|
|
}
|
|
|
|
static size_t random_queue_len(void)
|
|
{
|
|
return bufchain_size(&random_data_queue);
|
|
}
|
|
|
|
static void random_clear(void)
|
|
{
|
|
if (test_prng) {
|
|
prng_free(test_prng);
|
|
test_prng = NULL;
|
|
}
|
|
|
|
bufchain_clear(&random_data_queue);
|
|
}
|
|
|
|
static void random_make_prng(const ssh_hashalg *hashalg, ptrlen seed)
|
|
{
|
|
random_clear();
|
|
|
|
test_prng = prng_new(hashalg);
|
|
prng_seed_begin(test_prng);
|
|
put_datapl(test_prng, seed);
|
|
prng_seed_finish(test_prng);
|
|
}
|
|
|
|
mp_int *monty_identity_wrapper(MontyContext *mc)
|
|
{
|
|
return mp_copy(monty_identity(mc));
|
|
}
|
|
|
|
mp_int *monty_modulus_wrapper(MontyContext *mc)
|
|
{
|
|
return mp_copy(monty_modulus(mc));
|
|
}
|
|
|
|
strbuf *ssh_hash_digest_wrapper(ssh_hash *h)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
void *p = strbuf_append(sb, ssh_hash_alg(h)->hlen);
|
|
ssh_hash_digest(h, p);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *ssh_hash_final_wrapper(ssh_hash *h)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
void *p = strbuf_append(sb, ssh_hash_alg(h)->hlen);
|
|
ssh_hash_final(h, p);
|
|
return sb;
|
|
}
|
|
|
|
void ssh_cipher_setiv_wrapper(ssh_cipher *c, ptrlen iv)
|
|
{
|
|
if (iv.len != ssh_cipher_alg(c)->blksize)
|
|
fatal_error("ssh_cipher_setiv: needs exactly %d bytes",
|
|
ssh_cipher_alg(c)->blksize);
|
|
ssh_cipher_setiv(c, iv.ptr);
|
|
}
|
|
|
|
void ssh_cipher_setkey_wrapper(ssh_cipher *c, ptrlen key)
|
|
{
|
|
if (key.len != ssh_cipher_alg(c)->padded_keybytes)
|
|
fatal_error("ssh_cipher_setkey: needs exactly %d bytes",
|
|
ssh_cipher_alg(c)->padded_keybytes);
|
|
ssh_cipher_setkey(c, key.ptr);
|
|
}
|
|
|
|
strbuf *ssh_cipher_encrypt_wrapper(ssh_cipher *c, ptrlen input)
|
|
{
|
|
if (input.len % ssh_cipher_alg(c)->blksize)
|
|
fatal_error("ssh_cipher_encrypt: needs a multiple of %d bytes",
|
|
ssh_cipher_alg(c)->blksize);
|
|
strbuf *sb = strbuf_dup(input);
|
|
ssh_cipher_encrypt(c, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *ssh_cipher_decrypt_wrapper(ssh_cipher *c, ptrlen input)
|
|
{
|
|
if (input.len % ssh_cipher_alg(c)->blksize)
|
|
fatal_error("ssh_cipher_decrypt: needs a multiple of %d bytes",
|
|
ssh_cipher_alg(c)->blksize);
|
|
strbuf *sb = strbuf_dup(input);
|
|
ssh_cipher_decrypt(c, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *ssh_cipher_encrypt_length_wrapper(ssh_cipher *c, ptrlen input,
|
|
unsigned long seq)
|
|
{
|
|
if (input.len != 4)
|
|
fatal_error("ssh_cipher_encrypt_length: needs exactly 4 bytes");
|
|
strbuf *sb = strbuf_dup(input);
|
|
ssh_cipher_encrypt_length(c, sb->u, sb->len, seq);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *ssh_cipher_decrypt_length_wrapper(ssh_cipher *c, ptrlen input,
|
|
unsigned long seq)
|
|
{
|
|
if (input.len % ssh_cipher_alg(c)->blksize)
|
|
fatal_error("ssh_cipher_decrypt_length: needs exactly 4 bytes");
|
|
strbuf *sb = strbuf_dup(input);
|
|
ssh_cipher_decrypt_length(c, sb->u, sb->len, seq);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *ssh2_mac_genresult_wrapper(ssh2_mac *m)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
void *u = strbuf_append(sb, ssh2_mac_alg(m)->len);
|
|
ssh2_mac_genresult(m, u);
|
|
return sb;
|
|
}
|
|
|
|
ssh_key *ssh_key_base_key_wrapper(ssh_key *key)
|
|
{
|
|
/* To avoid having to explain the borrowed reference to Python,
|
|
* just clone the key unconditionally */
|
|
return ssh_key_clone(ssh_key_base_key(key));
|
|
}
|
|
|
|
void ssh_key_ca_public_blob_wrapper(ssh_key *key, BinarySink *out)
|
|
{
|
|
/* Wrap to avoid null-pointer dereference */
|
|
if (!key->vt->is_certificate)
|
|
fatal_error("ssh_key_ca_public_blob: needs a certificate");
|
|
ssh_key_ca_public_blob(key, out);
|
|
}
|
|
|
|
void ssh_key_cert_id_string_wrapper(ssh_key *key, BinarySink *out)
|
|
{
|
|
/* Wrap to avoid null-pointer dereference */
|
|
if (!key->vt->is_certificate)
|
|
fatal_error("ssh_key_cert_id_string: needs a certificate");
|
|
ssh_key_cert_id_string(key, out);
|
|
}
|
|
|
|
static bool ssh_key_check_cert_wrapper(
|
|
ssh_key *key, bool host, ptrlen principal, uint64_t time, ptrlen optstr,
|
|
BinarySink *error)
|
|
{
|
|
/* Wrap to avoid null-pointer dereference */
|
|
if (!key->vt->is_certificate)
|
|
fatal_error("ssh_key_cert_id_string: needs a certificate");
|
|
|
|
ca_options opts;
|
|
opts.permit_rsa_sha1 = true;
|
|
opts.permit_rsa_sha256 = true;
|
|
opts.permit_rsa_sha512 = true;
|
|
|
|
while (optstr.len) {
|
|
ptrlen word = ptrlen_get_word(&optstr, ",");
|
|
ptrlen key = word, value = PTRLEN_LITERAL("");
|
|
const char *comma = memchr(word.ptr, '=', word.len);
|
|
if (comma) {
|
|
key.len = comma - (const char *)word.ptr;
|
|
value.ptr = comma + 1;
|
|
value.len = word.len - key.len - 1;
|
|
}
|
|
|
|
if (ptrlen_eq_string(key, "permit_rsa_sha1"))
|
|
opts.permit_rsa_sha1 = ptrlen_eq_string(value, "true");
|
|
if (ptrlen_eq_string(key, "permit_rsa_sha256"))
|
|
opts.permit_rsa_sha256 = ptrlen_eq_string(value, "true");
|
|
if (ptrlen_eq_string(key, "permit_rsa_sha512"))
|
|
opts.permit_rsa_sha512 = ptrlen_eq_string(value, "true");
|
|
}
|
|
|
|
return ssh_key_check_cert(key, host, principal, time, &opts, error);
|
|
}
|
|
|
|
bool dh_validate_f_wrapper(dh_ctx *dh, mp_int *f)
|
|
{
|
|
return dh_validate_f(dh, f) == NULL;
|
|
}
|
|
|
|
void ssh_hash_update(ssh_hash *h, ptrlen pl)
|
|
{
|
|
put_datapl(h, pl);
|
|
}
|
|
|
|
void ssh2_mac_update(ssh2_mac *m, ptrlen pl)
|
|
{
|
|
put_datapl(m, pl);
|
|
}
|
|
|
|
static RSAKey *rsa_new(void)
|
|
{
|
|
RSAKey *rsa = snew(RSAKey);
|
|
memset(rsa, 0, sizeof(RSAKey));
|
|
return rsa;
|
|
}
|
|
|
|
strbuf *ecdh_key_getkey_wrapper(ecdh_key *ek, ptrlen remoteKey)
|
|
{
|
|
/* Fold the boolean return value in C into the string return value
|
|
* for this purpose, by returning NULL on failure */
|
|
strbuf *sb = strbuf_new();
|
|
if (!ecdh_key_getkey(ek, remoteKey, BinarySink_UPCAST(sb))) {
|
|
strbuf_free(sb);
|
|
return NULL;
|
|
}
|
|
return sb;
|
|
}
|
|
|
|
static void int16_list_resize(int16_list *list, unsigned p)
|
|
{
|
|
list->integers = sresize(list->integers, p, uint16_t);
|
|
for (size_t i = list->n; i < p; i++)
|
|
list->integers[i] = 0;
|
|
}
|
|
|
|
#if 0
|
|
static int16_list ntru_ring_to_list_and_free(uint16_t *out, unsigned p)
|
|
{
|
|
struct mpint_list mpl;
|
|
mpl.n = p;
|
|
mpl->integers = snewn(p, mp_int *);
|
|
for (unsigned i = 0; i < p; i++)
|
|
mpl->integers[i] = mp_from_integer((int16_t)out[i]);
|
|
sfree(out);
|
|
add_finaliser(finaliser_sfree, mpl->integers);
|
|
return mpl;
|
|
}
|
|
#endif
|
|
|
|
int16_list *ntru_ring_multiply_wrapper(
|
|
int16_list *a, int16_list *b, unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(a, p);
|
|
int16_list_resize(b, p);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_ring_multiply(out->integers, a->integers, b->integers, p, q);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_ring_invert_wrapper(int16_list *in, unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(in, p);
|
|
int16_list *out = make_int16_list(p);
|
|
unsigned success = ntru_ring_invert(out->integers, in->integers, p, q);
|
|
if (!success)
|
|
return NULL;
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_mod3_wrapper(int16_list *in, unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(in, p);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_mod3(out->integers, in->integers, p, q);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_round3_wrapper(int16_list *in, unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(in, p);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_round3(out->integers, in->integers, p, q);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_bias_wrapper(int16_list *in, unsigned bias,
|
|
unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(in, p);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_bias(out->integers, in->integers, bias, p, q);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_scale_wrapper(int16_list *in, unsigned scale,
|
|
unsigned p, unsigned q)
|
|
{
|
|
int16_list_resize(in, p);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_scale(out->integers, in->integers, scale, p, q);
|
|
return out;
|
|
}
|
|
|
|
NTRUEncodeSchedule *ntru_encode_schedule_wrapper(int16_list *in)
|
|
{
|
|
return ntru_encode_schedule(in->integers, in->n);
|
|
}
|
|
|
|
void ntru_encode_wrapper(NTRUEncodeSchedule *sched, int16_list *rs,
|
|
BinarySink *bs)
|
|
{
|
|
ntru_encode(sched, rs->integers, bs);
|
|
}
|
|
|
|
int16_list *ntru_decode_wrapper(NTRUEncodeSchedule *sched, ptrlen data)
|
|
{
|
|
int16_list *out = make_int16_list(ntru_encode_schedule_nvals(sched));
|
|
ntru_decode(sched, out->integers, data);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_gen_short_wrapper(unsigned p, unsigned w)
|
|
{
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_gen_short(out->integers, p, w);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_pubkey_wrapper(NTRUKeyPair *keypair)
|
|
{
|
|
unsigned p = ntru_keypair_p(keypair);
|
|
int16_list *out = make_int16_list(p);
|
|
memcpy(out->integers, ntru_pubkey(keypair), p*sizeof(uint16_t));
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_encrypt_wrapper(int16_list *plaintext, int16_list *pubkey,
|
|
unsigned p, unsigned q)
|
|
{
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_encrypt(out->integers, plaintext->integers, pubkey->integers, p, q);
|
|
return out;
|
|
}
|
|
|
|
int16_list *ntru_decrypt_wrapper(int16_list *ciphertext, NTRUKeyPair *keypair)
|
|
{
|
|
unsigned p = ntru_keypair_p(keypair);
|
|
int16_list *out = make_int16_list(p);
|
|
ntru_decrypt(out->integers, ciphertext->integers, keypair);
|
|
return out;
|
|
}
|
|
|
|
strbuf *rsa_ssh1_encrypt_wrapper(ptrlen input, RSAKey *key)
|
|
{
|
|
/* Fold the boolean return value in C into the string return value
|
|
* for this purpose, by returning NULL on failure */
|
|
strbuf *sb = strbuf_new();
|
|
put_datapl(sb, input);
|
|
put_padding(sb, key->bytes - input.len, 0);
|
|
if (!rsa_ssh1_encrypt(sb->u, input.len, key)) {
|
|
strbuf_free(sb);
|
|
return NULL;
|
|
}
|
|
return sb;
|
|
}
|
|
|
|
strbuf *rsa_ssh1_decrypt_pkcs1_wrapper(mp_int *input, RSAKey *key)
|
|
{
|
|
/* Again, return "" on failure */
|
|
strbuf *sb = strbuf_new();
|
|
if (!rsa_ssh1_decrypt_pkcs1(input, key, sb))
|
|
strbuf_clear(sb);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des_encrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
|
|
{
|
|
if (key.len != 7)
|
|
fatal_error("des_encrypt_xdmauth: key must be 7 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des_encrypt_xdmauth: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des_encrypt_xdmauth(key.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des_decrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
|
|
{
|
|
if (key.len != 7)
|
|
fatal_error("des_decrypt_xdmauth: key must be 7 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des_decrypt_xdmauth: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des_decrypt_xdmauth(key.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des3_encrypt_pubkey_wrapper(ptrlen key, ptrlen data)
|
|
{
|
|
if (key.len != 16)
|
|
fatal_error("des3_encrypt_pubkey: key must be 16 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des3_encrypt_pubkey: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des3_encrypt_pubkey(key.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des3_decrypt_pubkey_wrapper(ptrlen key, ptrlen data)
|
|
{
|
|
if (key.len != 16)
|
|
fatal_error("des3_decrypt_pubkey: key must be 16 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des3_decrypt_pubkey: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des3_decrypt_pubkey(key.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des3_encrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
|
|
{
|
|
if (key.len != 24)
|
|
fatal_error("des3_encrypt_pubkey_ossh: key must be 24 bytes long");
|
|
if (iv.len != 8)
|
|
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des3_encrypt_pubkey_ossh: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des3_encrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *des3_decrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
|
|
{
|
|
if (key.len != 24)
|
|
fatal_error("des3_decrypt_pubkey_ossh: key must be 24 bytes long");
|
|
if (iv.len != 8)
|
|
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
|
|
if (data.len % 8 != 0)
|
|
fatal_error("des3_decrypt_pubkey_ossh: data must be a multiple of 8 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
des3_decrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *aes256_encrypt_pubkey_wrapper(ptrlen key, ptrlen iv, ptrlen data)
|
|
{
|
|
if (key.len != 32)
|
|
fatal_error("aes256_encrypt_pubkey: key must be 32 bytes long");
|
|
if (iv.len != 16)
|
|
fatal_error("aes256_encrypt_pubkey: iv must be 16 bytes long");
|
|
if (data.len % 16 != 0)
|
|
fatal_error("aes256_encrypt_pubkey: data must be a multiple of 16 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
aes256_encrypt_pubkey(key.ptr, iv.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *aes256_decrypt_pubkey_wrapper(ptrlen key, ptrlen iv, ptrlen data)
|
|
{
|
|
if (key.len != 32)
|
|
fatal_error("aes256_decrypt_pubkey: key must be 32 bytes long");
|
|
if (iv.len != 16)
|
|
fatal_error("aes256_encrypt_pubkey: iv must be 16 bytes long");
|
|
if (data.len % 16 != 0)
|
|
fatal_error("aes256_decrypt_pubkey: data must be a multiple of 16 bytes");
|
|
strbuf *sb = strbuf_dup(data);
|
|
aes256_decrypt_pubkey(key.ptr, iv.ptr, sb->u, sb->len);
|
|
return sb;
|
|
}
|
|
|
|
strbuf *prng_read_wrapper(prng *pr, size_t size)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
prng_read(pr, strbuf_append(sb, size), size);
|
|
return sb;
|
|
}
|
|
|
|
void prng_seed_update(prng *pr, ptrlen data)
|
|
{
|
|
put_datapl(pr, data);
|
|
}
|
|
|
|
bool crcda_detect(ptrlen packet, ptrlen iv)
|
|
{
|
|
if (iv.len != 0 && iv.len != 8)
|
|
fatal_error("crcda_detect: iv must be empty or 8 bytes long");
|
|
if (packet.len % 8 != 0)
|
|
fatal_error("crcda_detect: packet must be a multiple of 8 bytes");
|
|
struct crcda_ctx *ctx = crcda_make_context();
|
|
bool toret = detect_attack(ctx, packet.ptr, packet.len,
|
|
iv.len ? iv.ptr : NULL);
|
|
crcda_free_context(ctx);
|
|
return toret;
|
|
}
|
|
|
|
ssh_key *ppk_load_s_wrapper(BinarySource *src, char **comment,
|
|
const char *passphrase, const char **errorstr)
|
|
{
|
|
ssh2_userkey *uk = ppk_load_s(src, passphrase, errorstr);
|
|
if (uk == SSH2_WRONG_PASSPHRASE) {
|
|
/* Fudge this special return value */
|
|
*errorstr = "SSH2_WRONG_PASSPHRASE";
|
|
return NULL;
|
|
}
|
|
if (uk == NULL)
|
|
return NULL;
|
|
ssh_key *toret = uk->key;
|
|
*comment = uk->comment;
|
|
sfree(uk);
|
|
return toret;
|
|
}
|
|
|
|
int rsa1_load_s_wrapper(BinarySource *src, RSAKey *rsa, char **comment,
|
|
const char *passphrase, const char **errorstr)
|
|
{
|
|
int toret = rsa1_load_s(src, rsa, passphrase, errorstr);
|
|
*comment = rsa->comment;
|
|
rsa->comment = NULL;
|
|
return toret;
|
|
}
|
|
|
|
strbuf *ppk_save_sb_wrapper(
|
|
ssh_key *key, const char *comment, const char *passphrase,
|
|
unsigned fmt_version, Argon2Flavour flavour,
|
|
uint32_t mem, uint32_t passes, uint32_t parallel)
|
|
{
|
|
/*
|
|
* For repeatable testing purposes, we never want a timing-dependent
|
|
* choice of password hashing parameters, so this is easy.
|
|
*/
|
|
ppk_save_parameters save_params;
|
|
memset(&save_params, 0, sizeof(save_params));
|
|
save_params.fmt_version = fmt_version;
|
|
save_params.argon2_flavour = flavour;
|
|
save_params.argon2_mem = mem;
|
|
save_params.argon2_passes_auto = false;
|
|
save_params.argon2_passes = passes;
|
|
save_params.argon2_parallelism = parallel;
|
|
|
|
ssh2_userkey uk;
|
|
uk.key = key;
|
|
uk.comment = dupstr(comment);
|
|
strbuf *toret = ppk_save_sb(&uk, passphrase, &save_params);
|
|
sfree(uk.comment);
|
|
return toret;
|
|
}
|
|
|
|
strbuf *rsa1_save_sb_wrapper(RSAKey *key, const char *comment,
|
|
const char *passphrase)
|
|
{
|
|
key->comment = dupstr(comment);
|
|
strbuf *toret = rsa1_save_sb(key, passphrase);
|
|
sfree(key->comment);
|
|
key->comment = NULL;
|
|
return toret;
|
|
}
|
|
|
|
#define return_void(out, expression) (expression)
|
|
|
|
static ProgressReceiver null_progress = { .vt = &null_progress_vt };
|
|
|
|
mp_int *primegen_generate_wrapper(
|
|
PrimeGenerationContext *ctx, PrimeCandidateSource *pcs)
|
|
{
|
|
return primegen_generate(ctx, pcs, &null_progress);
|
|
}
|
|
|
|
RSAKey *rsa1_generate(int bits, bool strong, PrimeGenerationContext *pgc)
|
|
{
|
|
RSAKey *rsakey = snew(RSAKey);
|
|
rsa_generate(rsakey, bits, strong, pgc, &null_progress);
|
|
rsakey->comment = NULL;
|
|
return rsakey;
|
|
}
|
|
|
|
ssh_key *rsa_generate_wrapper(int bits, bool strong,
|
|
PrimeGenerationContext *pgc)
|
|
{
|
|
return &rsa1_generate(bits, strong, pgc)->sshk;
|
|
}
|
|
|
|
ssh_key *dsa_generate_wrapper(int bits, PrimeGenerationContext *pgc)
|
|
{
|
|
struct dsa_key *dsakey = snew(struct dsa_key);
|
|
dsa_generate(dsakey, bits, pgc, &null_progress);
|
|
return &dsakey->sshk;
|
|
}
|
|
|
|
ssh_key *ecdsa_generate_wrapper(int bits)
|
|
{
|
|
struct ecdsa_key *ek = snew(struct ecdsa_key);
|
|
if (!ecdsa_generate(ek, bits)) {
|
|
sfree(ek);
|
|
return NULL;
|
|
}
|
|
return &ek->sshk;
|
|
}
|
|
|
|
ssh_key *eddsa_generate_wrapper(int bits)
|
|
{
|
|
struct eddsa_key *ek = snew(struct eddsa_key);
|
|
if (!eddsa_generate(ek, bits)) {
|
|
sfree(ek);
|
|
return NULL;
|
|
}
|
|
return &ek->sshk;
|
|
}
|
|
|
|
size_t key_components_count(key_components *kc) { return kc->ncomponents; }
|
|
const char *key_components_nth_name(key_components *kc, size_t n)
|
|
{
|
|
return (n >= kc->ncomponents ? NULL :
|
|
kc->components[n].name);
|
|
}
|
|
strbuf *key_components_nth_str(key_components *kc, size_t n)
|
|
{
|
|
if (n >= kc->ncomponents)
|
|
return NULL;
|
|
if (kc->components[n].type != KCT_TEXT &&
|
|
kc->components[n].type != KCT_BINARY)
|
|
return NULL;
|
|
return strbuf_dup(ptrlen_from_strbuf(kc->components[n].str));
|
|
}
|
|
mp_int *key_components_nth_mp(key_components *kc, size_t n)
|
|
{
|
|
return (n >= kc->ncomponents ? NULL :
|
|
kc->components[n].type != KCT_MPINT ? NULL :
|
|
mp_copy(kc->components[n].mp));
|
|
}
|
|
|
|
PockleStatus pockle_add_prime_wrapper(Pockle *pockle, mp_int *p,
|
|
struct mpint_list mpl, mp_int *witness)
|
|
{
|
|
return pockle_add_prime(pockle, p, mpl.integers, mpl.n, witness);
|
|
}
|
|
|
|
strbuf *argon2_wrapper(Argon2Flavour flavour, uint32_t mem, uint32_t passes,
|
|
uint32_t parallel, uint32_t taglen,
|
|
ptrlen P, ptrlen S, ptrlen K, ptrlen X)
|
|
{
|
|
strbuf *out = strbuf_new();
|
|
argon2(flavour, mem, passes, parallel, taglen, P, S, K, X, out);
|
|
return out;
|
|
}
|
|
|
|
strbuf *openssh_bcrypt_wrapper(ptrlen passphrase, ptrlen salt,
|
|
unsigned rounds, unsigned outbytes)
|
|
{
|
|
strbuf *out = strbuf_new();
|
|
openssh_bcrypt(passphrase, salt, rounds,
|
|
strbuf_append(out, outbytes), outbytes);
|
|
return out;
|
|
}
|
|
|
|
strbuf *get_implementations_commasep(ptrlen alg)
|
|
{
|
|
strbuf *out = strbuf_new();
|
|
put_datapl(out, alg);
|
|
|
|
if (ptrlen_startswith(alg, PTRLEN_LITERAL("aes"), NULL)) {
|
|
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
|
|
#if HAVE_AES_NI
|
|
put_fmt(out, ",%.*s_ni", PTRLEN_PRINTF(alg));
|
|
#endif
|
|
#if HAVE_NEON_CRYPTO
|
|
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
|
|
#endif
|
|
} else if (ptrlen_startswith(alg, PTRLEN_LITERAL("sha256"), NULL) ||
|
|
ptrlen_startswith(alg, PTRLEN_LITERAL("sha1"), NULL)) {
|
|
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
|
|
#if HAVE_SHA_NI
|
|
put_fmt(out, ",%.*s_ni", PTRLEN_PRINTF(alg));
|
|
#endif
|
|
#if HAVE_NEON_CRYPTO
|
|
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
|
|
#endif
|
|
} else if (ptrlen_startswith(alg, PTRLEN_LITERAL("sha512"), NULL)) {
|
|
put_fmt(out, ",%.*s_sw", PTRLEN_PRINTF(alg));
|
|
#if HAVE_NEON_SHA512
|
|
put_fmt(out, ",%.*s_neon", PTRLEN_PRINTF(alg));
|
|
#endif
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
#define OPTIONAL_PTR_FUNC(type) \
|
|
typedef TD_val_##type TD_opt_val_##type; \
|
|
static TD_opt_val_##type get_opt_val_##type(BinarySource *in) { \
|
|
ptrlen word = get_word(in); \
|
|
if (ptrlen_eq_string(word, "NULL")) \
|
|
return NULL; \
|
|
return unwrap_value_##type(lookup_value(word))->vu_##type; \
|
|
}
|
|
OPTIONAL_PTR_FUNC(cipher)
|
|
OPTIONAL_PTR_FUNC(mpint)
|
|
OPTIONAL_PTR_FUNC(string)
|
|
|
|
/*
|
|
* HERE BE DRAGONS: the horrible C preprocessor business that reads
|
|
* testcrypt-func.h and generates a marshalling wrapper for each
|
|
* exported function.
|
|
*
|
|
* In an ideal world, we would start from a specification like this in
|
|
* testcrypt-func.h
|
|
*
|
|
* FUNC(val_foo, example, ARG(val_bar, bar), ARG(uint, n))
|
|
*
|
|
* and generate a wrapper function looking like this:
|
|
*
|
|
* static void handle_example(BinarySource *in, strbuf *out) {
|
|
* TD_val_bar bar = get_val_bar(in);
|
|
* TD_uint n = get_uint(in);
|
|
* return_val_foo(out, example(bar, n));
|
|
* }
|
|
*
|
|
* which would read the marshalled form of each function argument in
|
|
* turn from the input BinarySource via the get_<type>() function
|
|
* family defined in this file; assign each argument to a local
|
|
* variable; call the underlying C function with all those arguments;
|
|
* and then call a function of the return_<type>() family to marshal
|
|
* the output value into the output strbuf to be sent to standard
|
|
* output.
|
|
*
|
|
* With a more general macro processor such as m4, or custom code in
|
|
* Perl or Python, or a helper program like llvm-tblgen, we could just
|
|
* do that directly, reading function specifications from
|
|
* testcrypt-func.h and writing out exactly the above. But we don't
|
|
* have a fully general macro processor (since everything in that
|
|
* category introduces an extra build dependency that's awkward on
|
|
* plain Windows, or requires compiling and running a helper program
|
|
* which is awkward in a cross-compile). We only have cpp. And in cpp,
|
|
* a macro can't expand one of its arguments differently in two parts
|
|
* of its own expansion. So we have to be more clever.
|
|
*
|
|
* In place of the above code, I instead generate three successive
|
|
* declarations for each function. In simplified form they would look
|
|
* like this:
|
|
*
|
|
* typedef struct ARGS_example {
|
|
* TD_val_bar bar;
|
|
* TD_uint n;
|
|
* } ARGS_example;
|
|
*
|
|
* static inline ARGS_example get_args_example(BinarySource *in) {
|
|
* ARGS_example args;
|
|
* args.bar = get_val_bar(in);
|
|
* args.n = get_uint(in);
|
|
* return args;
|
|
* }
|
|
*
|
|
* static void handle_example(BinarySource *in, strbuf *out) {
|
|
* ARGS_example args = get_args_example(in);
|
|
* return_val_foo(out, example(args.bar, args.n));
|
|
* }
|
|
*
|
|
* Each of these mentions the arguments and their types just _once_,
|
|
* so each one can be generated by a single expansion of the FUNC(...)
|
|
* specification in testcrypt-func.h, with FUNC and ARG and VOID
|
|
* defined to appropriate values.
|
|
*
|
|
* Or ... *nearly*. In fact, I left out several details there, but
|
|
* it's a good starting point to understand the full version.
|
|
*
|
|
* To begin with, several of the variable names shown above are
|
|
* actually named with an ugly leading underscore, to minimise the
|
|
* chance of them colliding with real parameter names. (You could
|
|
* easily imagine 'out' being the name of a parameter to one of the
|
|
* wrapped functions.) Also, we memset the whole structure to zero at
|
|
* the start of get_args_example() to avoid compiler warnings about
|
|
* uninitialised stuff, and insert a precautionary '(void)args;' in
|
|
* handle_example to avoid a similar warning about _unused_ stuff.
|
|
*
|
|
* The big problem is the commas that have to appear between arguments
|
|
* in the final call to the actual C function. Those can't be
|
|
* generated by expanding the ARG macro itself, or you'd get one too
|
|
* many - either a leading comma or a trailing comma. Trailing commas
|
|
* are legal in a Python function call, but unfortunately C is not yet
|
|
* so enlightened. (C permits a trailing comma in a struct or array
|
|
* initialiser, and is coming round to it in enums, but hasn't yet
|
|
* seen the light about function calls or function prototypes.)
|
|
*
|
|
* So the commas must appear _between_ ARG(...) specifiers. And that
|
|
* means they unavoidably appear in _every_ expansion of FUNC() (or
|
|
* rather, every expansion that uses the variadic argument list at
|
|
* all). Therefore, we need to ensure they're harmless in the other
|
|
* two functions as well.
|
|
*
|
|
* In the get_args_example() function above, there's no real problem.
|
|
* The list of assignments can perfectly well be separated by commas
|
|
* instead of semicolons, so that it becomes a single expression-
|
|
* statement instead of a sequence of them; the comma operator still
|
|
* defines a sequence point, so it's fine.
|
|
*
|
|
* But what about the structure definition of ARGS_example?
|
|
*
|
|
* To get round that, we fill the structure with pointless extra
|
|
* cruft, in the form of an extra 'int' field before and after each
|
|
* actually useful argument field. So the real structure definition
|
|
* ends up looking more like this:
|
|
*
|
|
* typedef struct ARGS_example {
|
|
* int _predummy_bar;
|
|
* TD_val_bar bar;
|
|
* int _postdummy_bar, _predummy_n;
|
|
* TD_uint n;
|
|
* int _postdummy_n;
|
|
* } ARGS_example;
|
|
*
|
|
* Those extra 'int' fields are ignored completely at run time. They
|
|
* might cause a runtime space cost if the struct doesn't get
|
|
* completely optimised away when get_args_example is inlined into
|
|
* handle_example, but even if so, that's OK, this is a test program
|
|
* whose memory usage isn't critical. The real point is that, in
|
|
* between each pair of real arguments, there's a declaration
|
|
* containing *two* int variables, and in between them is the vital
|
|
* comma that we need!
|
|
*
|
|
* So in that pass through testcrypt-func.h, the ARG(type, name) macro
|
|
* has to expand to the weird piece of text
|
|
*
|
|
* _predummy_name; // terminating the previous int declaration
|
|
* TD_type name; // declaring the thing we actually wanted
|
|
* int _postdummy_name // new declaration ready to see a comma
|
|
*
|
|
* so that a comma-separated list of pieces of expansion like that
|
|
* will fall into just the right form to be the core of the above
|
|
* expanded structure definition. Then we just need to put in the
|
|
* 'int' after the open brace, and the ';' before the closing brace,
|
|
* and we've got everything we need to make it all syntactically legal.
|
|
*
|
|
* Finally, what if a wrapped function has _no_ arguments? Two out of
|
|
* three uses of the argument list here need some kind of special case
|
|
* for that. That's why you have to write 'VOID' explicitly in an
|
|
* empty argument list in testcrypt-func.h: we make VOID expand to
|
|
* whatever is needed to avoid a syntax error in that special case.
|
|
*/
|
|
|
|
/*
|
|
* Workarounds for an awkwardness in Visual Studio's preprocessor,
|
|
* which disagrees with everyone else about what happens if you expand
|
|
* __VA_ARGS__ into the argument list of another macro. gcc and clang
|
|
* will treat the commas expanding from __VA_ARGS__ as argument
|
|
* separators, whereas VS will make them all part of a single argument
|
|
* to the secondary macro. We want the former behaviour, so we use
|
|
* the following workaround to enforce it.
|
|
*
|
|
* Each of these JUXTAPOSE macros simply places its arguments side by
|
|
* side. But the arguments are macro-expanded before JUXTAPOSE is
|
|
* called at all, so we can do this:
|
|
*
|
|
* JUXTAPOSE(macroname, (__VA_ARGS__))
|
|
* -> JUXTAPOSE(macroname, (foo, bar, baz))
|
|
* -> macroname (foo, bar, baz)
|
|
*
|
|
* and this preliminary expansion causes the commas to be treated
|
|
* normally by the time VS gets round to expanding the inner macro.
|
|
*
|
|
* We need two differently named JUXTAPOSE macros, because we have to
|
|
* do this trick twice: once to turn FUNC and FUNC_WRAPPED in
|
|
* testcrypt-funcs.h into the underlying common FUNC_INNER, and again
|
|
* to expand the final function call. And you can't expand a macro
|
|
* inside text expanded from the _same_ macro, so we have to do the
|
|
* outer and inner instances of this trick using macros of different
|
|
* names.
|
|
*/
|
|
#define JUXTAPOSE1(first, second) first second
|
|
#define JUXTAPOSE2(first, second) first second
|
|
|
|
#define FUNC(outtype, fname, ...) \
|
|
JUXTAPOSE1(FUNC_INNER, (outtype, fname, fname, __VA_ARGS__))
|
|
#define FUNC_WRAPPED(outtype, fname, ...) \
|
|
JUXTAPOSE1(FUNC_INNER, (outtype, fname, fname##_wrapper, __VA_ARGS__))
|
|
|
|
#define ARG(type, arg) _predummy_##arg; TD_##type arg; int _postdummy_##arg
|
|
#define VOID _voiddummy
|
|
#define FUNC_INNER(outtype, fname, realname, ...) \
|
|
typedef struct ARGS_##fname { \
|
|
int __VA_ARGS__; \
|
|
} ARGS_##fname;
|
|
#include "testcrypt-func.h"
|
|
#undef FUNC_INNER
|
|
#undef ARG
|
|
#undef VOID
|
|
|
|
#define ARG(type, arg) _args.arg = get_##type(_in)
|
|
#define VOID ((void)0)
|
|
#define FUNC_INNER(outtype, fname, realname, ...) \
|
|
static inline ARGS_##fname get_args_##fname(BinarySource *_in) { \
|
|
ARGS_##fname _args; \
|
|
memset(&_args, 0, sizeof(_args)); \
|
|
__VA_ARGS__; \
|
|
return _args; \
|
|
}
|
|
#include "testcrypt-func.h"
|
|
#undef FUNC_INNER
|
|
#undef ARG
|
|
#undef VOID
|
|
|
|
#define ARG(type, arg) _args.arg
|
|
#define VOID
|
|
#define FUNC_INNER(outtype, fname, realname, ...) \
|
|
static void handle_##fname(BinarySource *_in, strbuf *_out) { \
|
|
ARGS_##fname _args = get_args_##fname(_in); \
|
|
(void)_args; /* suppress warning if no actual arguments */ \
|
|
return_##outtype(_out, JUXTAPOSE2(realname, (__VA_ARGS__))); \
|
|
}
|
|
#include "testcrypt-func.h"
|
|
#undef FUNC_INNER
|
|
#undef ARG
|
|
|
|
static void process_line(BinarySource *in, strbuf *out)
|
|
{
|
|
ptrlen id = get_word(in);
|
|
|
|
#define DISPATCH_INTERNAL(cmdname, handler) do { \
|
|
if (ptrlen_eq_string(id, cmdname)) { \
|
|
handler(in, out); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define DISPATCH_COMMAND(cmd) DISPATCH_INTERNAL(#cmd, handle_##cmd)
|
|
DISPATCH_COMMAND(hello);
|
|
DISPATCH_COMMAND(free);
|
|
DISPATCH_COMMAND(newstring);
|
|
DISPATCH_COMMAND(getstring);
|
|
DISPATCH_COMMAND(mp_literal);
|
|
DISPATCH_COMMAND(mp_dump);
|
|
DISPATCH_COMMAND(checkenum);
|
|
#undef DISPATCH_COMMAND
|
|
|
|
#define FUNC_INNER(outtype, fname, realname, ...) \
|
|
DISPATCH_INTERNAL(#fname,handle_##fname);
|
|
#define ARG1(type, arg)
|
|
#define ARGN(type, arg)
|
|
#define VOID
|
|
#include "testcrypt-func.h"
|
|
#undef FUNC_INNER
|
|
#undef ARG
|
|
#undef VOID
|
|
|
|
#undef DISPATCH_INTERNAL
|
|
|
|
fatal_error("command '%.*s': unrecognised", PTRLEN_PRINTF(id));
|
|
}
|
|
|
|
static void free_all_values(void)
|
|
{
|
|
for (Value *val; (val = delpos234(values, 0)) != NULL ;)
|
|
free_value(val);
|
|
freetree234(values);
|
|
}
|
|
|
|
void dputs(const char *buf)
|
|
{
|
|
fputs(buf, stderr);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
const char *infile = NULL, *outfile = NULL;
|
|
bool doing_opts = true;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
|
|
if (p[0] == '-' && doing_opts) {
|
|
if (!strcmp(p, "-o")) {
|
|
if (--argc <= 0) {
|
|
fprintf(stderr, "'-o' expects a filename\n");
|
|
return 1;
|
|
}
|
|
outfile = *++argv;
|
|
} else if (!strcmp(p, "--")) {
|
|
doing_opts = false;
|
|
} else if (!strcmp(p, "--help")) {
|
|
printf("usage: testcrypt [INFILE] [-o OUTFILE]\n");
|
|
printf(" also: testcrypt --help display this text\n");
|
|
return 0;
|
|
} else {
|
|
fprintf(stderr, "unknown command line option '%s'\n", p);
|
|
return 1;
|
|
}
|
|
} else if (!infile) {
|
|
infile = p;
|
|
} else {
|
|
fprintf(stderr, "can only handle one input file name\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
FILE *infp = stdin;
|
|
if (infile) {
|
|
infp = fopen(infile, "r");
|
|
if (!infp) {
|
|
fprintf(stderr, "%s: open: %s\n", infile, strerror(errno));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
FILE *outfp = stdout;
|
|
if (outfile) {
|
|
outfp = fopen(outfile, "w");
|
|
if (!outfp) {
|
|
fprintf(stderr, "%s: open: %s\n", outfile, strerror(errno));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
values = newtree234(valuecmp);
|
|
|
|
atexit(free_all_values);
|
|
|
|
for (char *line; (line = chomp(fgetline(infp))) != NULL ;) {
|
|
BinarySource src[1];
|
|
BinarySource_BARE_INIT(src, line, strlen(line));
|
|
strbuf *sb = strbuf_new();
|
|
process_line(src, sb);
|
|
run_finalisers(sb);
|
|
size_t lines = 0;
|
|
for (size_t i = 0; i < sb->len; i++)
|
|
if (sb->s[i] == '\n')
|
|
lines++;
|
|
fprintf(outfp, "%"SIZEu"\n%s", lines, sb->s);
|
|
fflush(outfp);
|
|
strbuf_free(sb);
|
|
sfree(line);
|
|
}
|
|
|
|
if (infp != stdin)
|
|
fclose(infp);
|
|
if (outfp != stdin)
|
|
fclose(outfp);
|
|
|
|
return 0;
|
|
}
|