1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-24 08:42:25 +00:00
putty-source/testsc.c
Simon Tatham 82a7e8c4ac New wrapper macro for printf("%zu"), for old VS compat.
A user reports that Visual Studio 2013 and earlier have printf
implementations in their C library that don't support the 'z' modifier
to indicate that an integer argument is size_t. The 'I' modifier
apparently works in place of it.

To avoid littering ifdefs everywhere, I've invented my own inttypes.h
style macros to wrap size_t formatting directives, which are defined
to %zu and %zx normally, or %Iu and %Ix in old-VS mode. Those are in
defs.h, and they're used everywhere that a %z might otherwise get into
the Windows build.
2020-01-26 16:36:01 +00:00

1579 lines
46 KiB
C

/*
* testsc: run PuTTY's crypto primitives under instrumentation that
* checks for cache and timing side channels.
*
* The idea is: cryptographic code should avoid leaking secret data
* through timing information, or through traces of its activity left
* in the caches.
*
* (This property is sometimes called 'constant-time', although really
* that's a misnomer. It would be impossible to avoid the execution
* time varying for any number of reasons outside the code's control,
* such as the prior contents of caches and branch predictors,
* temperature-based CPU throttling, system load, etc. And in any case
* you don't _need_ the execution time to be literally constant: you
* just need it to be independent of your secrets. It can vary as much
* as it likes based on anything else.)
*
* To avoid this, you need to ensure that various aspects of the
* code's behaviour do not depend on the secret data. The control
* flow, for a start - no conditional branches based on secrets - and
* also the memory access pattern (no using secret data as an index
* into a lookup table). A couple of other kinds of CPU instruction
* also can't be trusted to run in constant time: we check for
* register-controlled shifts and hardware divisions. (But, again,
* it's perfectly fine to _use_ those instructions in the course of
* crypto code. You just can't use a secret as any time-affecting
* operand.)
*
* This test program works by running the same crypto primitive
* multiple times, with different secret input data. The relevant
* details of each run is logged to a file via the DynamoRIO-based
* instrumentation system living in the subdirectory test/sclog. Then
* we check over all the files and ensure they're identical.
*
* This program itself (testsc) is built by the ordinary PuTTY
* makefiles. But run by itself, it will do nothing useful: it needs
* to be run under DynamoRIO, with the sclog instrumentation library.
*
* Here's an example of how I built it:
*
* Download the DynamoRIO source. I did this by cloning
* https://github.com/DynamoRIO/dynamorio.git, and at the time of
* writing this, 259c182a75ce80112bcad329c97ada8d56ba854d was the head
* commit.
*
* In the DynamoRIO checkout:
*
* mkdir build
* cd build
* cmake -G Ninja ..
* ninja
*
* Now set the shell variable DRBUILD to be the location of the build
* directory you did that in. (Or not, if you prefer, but the example
* build commands below will assume that that's where the DynamoRIO
* libraries, headers and runtime can be found.)
*
* Then, in test/sclog:
*
* cmake -G Ninja -DCMAKE_PREFIX_PATH=$DRBUILD/cmake .
* ninja
*
* Finally, to run the actual test, set SCTMP to some temp directory
* you don't mind filling with large temp files (several GB at a
* time), and in the main PuTTY source directory (assuming that's
* where testsc has been built):
*
* $DRBUILD/bin64/drrun -c test/sclog/libsclog.so -- ./testsc -O $SCTMP
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "defs.h"
#include "putty.h"
#include "ssh.h"
#include "misc.h"
#include "mpint.h"
#include "ecc.h"
static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
{
va_list ap;
fprintf(stderr, "testsc: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fputc('\n', stderr);
exit(1);
}
void out_of_memory(void) { fatal_error("out of memory"); }
/*
* A simple deterministic PRNG, without any of the Fortuna
* complexities, for generating test inputs in a way that's repeatable
* between runs of the program, even if only a subset of test cases is
* run.
*/
static uint64_t random_counter = 0;
static const char *random_seedstr = NULL;
static uint8_t random_buf[MAX_HASH_LEN];
static size_t random_buf_limit = 0;
static ssh_hash *random_hash;
static void random_seed(const char *seedstr)
{
random_seedstr = seedstr;
random_counter = 0;
random_buf_limit = 0;
}
void random_read(void *vbuf, size_t size)
{
assert(random_seedstr);
uint8_t *buf = (uint8_t *)vbuf;
while (size-- > 0) {
if (random_buf_limit == 0) {
ssh_hash_reset(random_hash);
put_asciz(random_hash, random_seedstr);
put_uint64(random_hash, random_counter);
random_counter++;
random_buf_limit = ssh_hash_alg(random_hash)->hlen;
ssh_hash_digest(random_hash, random_buf);
}
*buf++ = random_buf[random_buf_limit--];
}
}
/*
* Macro that defines a function, and also a volatile function pointer
* pointing to it. Callers indirect through the function pointer
* instead of directly calling the function, to ensure that the
* compiler doesn't try to get clever by eliminating the call
* completely, or inlining it.
*
* This is used to mark functions that DynamoRIO will look for to
* intercept, and also to inhibit inlining and unrolling where they'd
* cause a failure of experimental control in the main test.
*/
#define VOLATILE_WRAPPED_DEFN(qualifier, rettype, fn, params) \
qualifier rettype fn##_real params; \
qualifier rettype (*volatile fn) params = fn##_real; \
qualifier rettype fn##_real params
VOLATILE_WRAPPED_DEFN(, void, log_to_file, (const char *filename))
{
/*
* This function is intercepted by the DynamoRIO side of the
* mechanism. We use it to send instructions to the DR wrapper,
* namely, 'please start logging to this file' or 'please stop
* logging' (if filename == NULL). But we don't have to actually
* do anything in _this_ program - all the functionality is in the
* DR wrapper.
*/
}
static const char *outdir = NULL;
char *log_filename(const char *basename, size_t index)
{
return dupprintf("%s/%s.%04"SIZEu, outdir, basename, index);
}
static char *last_filename;
static const char *test_basename;
static size_t test_index = 0;
void log_start(void)
{
last_filename = log_filename(test_basename, test_index++);
log_to_file(last_filename);
}
void log_end(void)
{
log_to_file(NULL);
sfree(last_filename);
}
static bool test_skipped = false;
VOLATILE_WRAPPED_DEFN(, intptr_t, dry_run, (void))
{
/*
* This is another function intercepted by DynamoRIO. In this
* case, DR overrides this function to return 0 rather than 1, so
* we can use it as a check for whether we're running under
* instrumentation, or whether this is just a dry run which goes
* through the motions but doesn't expect to find any log files
* created.
*/
return 1;
}
static void mp_random_bits_into(mp_int *r, size_t bits)
{
mp_int *x = mp_random_bits(bits);
mp_copy_into(r, x);
mp_free(x);
}
static void mp_random_fill(mp_int *r)
{
mp_random_bits_into(r, mp_max_bits(r));
}
VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
{
/*
* looplimit() is the identity function on size_t, but the
* compiler isn't allowed to rely on it being that. I use it to
* make loops in the test functions look less attractive to
* compilers' unrolling heuristics.
*/
return x;
}
/* Ciphers that we expect to pass this test. Blowfish and Arcfour are
* intentionally omitted, because we already know they don't. */
#define CIPHERS(X, Y) \
X(Y, ssh_3des_ssh1) \
X(Y, ssh_3des_ssh2_ctr) \
X(Y, ssh_3des_ssh2) \
X(Y, ssh_des) \
X(Y, ssh_des_sshcom_ssh2) \
X(Y, ssh_aes256_sdctr) \
X(Y, ssh_aes256_sdctr_hw) \
X(Y, ssh_aes256_sdctr_sw) \
X(Y, ssh_aes256_cbc) \
X(Y, ssh_aes256_cbc_hw) \
X(Y, ssh_aes256_cbc_sw) \
X(Y, ssh_aes192_sdctr) \
X(Y, ssh_aes192_sdctr_hw) \
X(Y, ssh_aes192_sdctr_sw) \
X(Y, ssh_aes192_cbc) \
X(Y, ssh_aes192_cbc_hw) \
X(Y, ssh_aes192_cbc_sw) \
X(Y, ssh_aes128_sdctr) \
X(Y, ssh_aes128_sdctr_hw) \
X(Y, ssh_aes128_sdctr_sw) \
X(Y, ssh_aes128_cbc) \
X(Y, ssh_aes128_cbc_hw) \
X(Y, ssh_aes128_cbc_sw) \
X(Y, ssh2_chacha20_poly1305) \
/* end of list */
#define CIPHER_TESTLIST(X, name) X(cipher_ ## name)
#define MACS(X, Y) \
X(Y, ssh_hmac_md5) \
X(Y, ssh_hmac_sha1) \
X(Y, ssh_hmac_sha1_buggy) \
X(Y, ssh_hmac_sha1_96) \
X(Y, ssh_hmac_sha1_96_buggy) \
X(Y, ssh_hmac_sha256) \
/* end of list */
#define MAC_TESTLIST(X, name) X(mac_ ## name)
#define HASHES(X, Y) \
X(Y, ssh_md5) \
X(Y, ssh_sha1) \
X(Y, ssh_sha1_hw) \
X(Y, ssh_sha1_sw) \
X(Y, ssh_sha256) \
X(Y, ssh_sha256_hw) \
X(Y, ssh_sha256_sw) \
X(Y, ssh_sha384) \
X(Y, ssh_sha512) \
/* end of list */
#define HASH_TESTLIST(X, name) X(hash_ ## name)
#define TESTLIST(X) \
X(mp_get_nbits) \
X(mp_from_decimal) \
X(mp_from_hex) \
X(mp_get_decimal) \
X(mp_get_hex) \
X(mp_cmp_hs) \
X(mp_cmp_eq) \
X(mp_min) \
X(mp_max) \
X(mp_select_into) \
X(mp_cond_swap) \
X(mp_cond_clear) \
X(mp_add) \
X(mp_sub) \
X(mp_mul) \
X(mp_rshift_safe) \
X(mp_divmod) \
X(mp_modadd) \
X(mp_modsub) \
X(mp_modmul) \
X(mp_modpow) \
X(mp_invert_mod_2to) \
X(mp_invert) \
X(mp_modsqrt) \
X(ecc_weierstrass_add) \
X(ecc_weierstrass_double) \
X(ecc_weierstrass_add_general) \
X(ecc_weierstrass_multiply) \
X(ecc_weierstrass_is_identity) \
X(ecc_weierstrass_get_affine) \
X(ecc_weierstrass_decompress) \
X(ecc_montgomery_diff_add) \
X(ecc_montgomery_double) \
X(ecc_montgomery_multiply) \
X(ecc_montgomery_get_affine) \
X(ecc_edwards_add) \
X(ecc_edwards_multiply) \
X(ecc_edwards_eq) \
X(ecc_edwards_get_affine) \
X(ecc_edwards_decompress) \
CIPHERS(CIPHER_TESTLIST, X) \
MACS(MAC_TESTLIST, X) \
HASHES(HASH_TESTLIST, X) \
/* end of list */
static void test_mp_get_nbits(void)
{
mp_int *z = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
mp_int *prev = mp_from_integer(0);
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_int *x = mp_power_2(bitposns[i]);
mp_add_into(z, x, prev);
mp_free(prev);
prev = x;
log_start();
mp_get_nbits(z);
log_end();
}
mp_free(prev);
mp_free(z);
}
static void test_mp_from_decimal(void)
{
char dec[64];
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
memset(dec, '0', lenof(dec));
for (size_t j = starts[i]; j < lenof(dec); j++) {
uint8_t r[4];
random_read(r, 4);
dec[j] = '0' + GET_32BIT_MSB_FIRST(r) % 10;
}
log_start();
mp_int *x = mp_from_decimal_pl(make_ptrlen(dec, lenof(dec)));
log_end();
mp_free(x);
}
}
static void test_mp_from_hex(void)
{
char hex[64];
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
static const char digits[] = "0123456789abcdefABCDEF";
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
memset(hex, '0', lenof(hex));
for (size_t j = starts[i]; j < lenof(hex); j++) {
uint8_t r[4];
random_read(r, 4);
hex[j] = digits[GET_32BIT_MSB_FIRST(r) % lenof(digits)];
}
log_start();
mp_int *x = mp_from_hex_pl(make_ptrlen(hex, lenof(hex)));
log_end();
mp_free(x);
}
}
static void test_mp_string_format(char *(*mp_format)(mp_int *x))
{
mp_int *z = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_random_bits_into(z, bitposns[i]);
log_start();
char *formatted = mp_format(z);
log_end();
sfree(formatted);
}
mp_free(z);
}
static void test_mp_get_decimal(void)
{
test_mp_string_format(mp_get_decimal);
}
static void test_mp_get_hex(void)
{
test_mp_string_format(mp_get_hex);
}
static void test_mp_cmp(unsigned (*mp_cmp)(mp_int *a, mp_int *b))
{
mp_int *a = mp_new(512), *b = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_random_fill(b);
mp_int *x = mp_random_bits(bitposns[i]);
mp_xor_into(a, b, x);
mp_free(x);
log_start();
mp_cmp(a, b);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_cmp_hs(void)
{
test_mp_cmp(mp_cmp_hs);
}
static void test_mp_cmp_eq(void)
{
test_mp_cmp(mp_cmp_eq);
}
static void test_mp_minmax(
void (*mp_minmax_into)(mp_int *r, mp_int *x, mp_int *y))
{
mp_int *a = mp_new(256), *b = mp_new(256);
for (size_t i = 0; i < looplimit(10); i++) {
uint8_t lens[2];
random_read(lens, 2);
mp_int *x = mp_random_bits(lens[0]);
mp_copy_into(a, x);
mp_free(x);
mp_int *y = mp_random_bits(lens[1]);
mp_copy_into(a, y);
mp_free(y);
log_start();
mp_minmax_into(a, a, b);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_max(void)
{
test_mp_minmax(mp_max_into);
}
static void test_mp_min(void)
{
test_mp_minmax(mp_min_into);
}
static void test_mp_select_into(void)
{
mp_int *a = mp_random_bits(256);
mp_int *b = mp_random_bits(512);
mp_int *r = mp_new(384);
for (size_t i = 0; i < looplimit(16); i++) {
log_start();
mp_select_into(r, a, b, i & 1);
log_end();
}
mp_free(a);
mp_free(b);
mp_free(r);
}
static void test_mp_cond_swap(void)
{
mp_int *a = mp_random_bits(512);
mp_int *b = mp_random_bits(512);
for (size_t i = 0; i < looplimit(16); i++) {
log_start();
mp_cond_swap(a, b, i & 1);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_cond_clear(void)
{
mp_int *a = mp_random_bits(512);
mp_int *x = mp_copy(a);
for (size_t i = 0; i < looplimit(16); i++) {
mp_copy_into(x, a);
log_start();
mp_cond_clear(a, i & 1);
log_end();
}
mp_free(a);
mp_free(x);
}
static void test_mp_arithmetic(mp_int *(*mp_arith)(mp_int *x, mp_int *y))
{
mp_int *a = mp_new(256), *b = mp_new(512);
for (size_t i = 0; i < looplimit(16); i++) {
mp_random_fill(a);
mp_random_fill(b);
log_start();
mp_int *r = mp_arith(a, b);
log_end();
mp_free(r);
}
mp_free(a);
mp_free(b);
}
static void test_mp_add(void)
{
test_mp_arithmetic(mp_add);
}
static void test_mp_sub(void)
{
test_mp_arithmetic(mp_sub);
}
static void test_mp_mul(void)
{
test_mp_arithmetic(mp_mul);
}
static void test_mp_invert(void)
{
test_mp_arithmetic(mp_invert);
}
static void test_mp_rshift_safe(void)
{
mp_int *x = mp_random_bits(256);
for (size_t i = 0; i < looplimit(mp_max_bits(x)+1); i++) {
log_start();
mp_int *r = mp_rshift_safe(x, i);
log_end();
mp_free(r);
}
mp_free(x);
}
static void test_mp_divmod(void)
{
mp_int *n = mp_new(256), *d = mp_new(256);
mp_int *q = mp_new(256), *r = mp_new(256);
for (size_t i = 0; i < looplimit(32); i++) {
uint8_t sizes[2];
random_read(sizes, 2);
mp_random_bits_into(n, sizes[0]);
mp_random_bits_into(d, sizes[1]);
log_start();
mp_divmod_into(n, d, q, r);
log_end();
}
mp_free(n);
mp_free(d);
mp_free(q);
mp_free(r);
}
static void test_mp_modarith(
mp_int *(*mp_modarith)(mp_int *x, mp_int *y, mp_int *modulus))
{
mp_int *base = mp_new(256);
mp_int *exponent = mp_new(256);
mp_int *modulus = mp_new(256);
for (size_t i = 0; i < looplimit(8); i++) {
mp_random_fill(base);
mp_random_fill(exponent);
mp_random_fill(modulus);
mp_set_bit(modulus, 0, 1); /* we only support odd moduli */
log_start();
mp_int *out = mp_modarith(base, exponent, modulus);
log_end();
mp_free(out);
}
mp_free(base);
mp_free(exponent);
mp_free(modulus);
}
static void test_mp_modadd(void)
{
test_mp_modarith(mp_modadd);
}
static void test_mp_modsub(void)
{
test_mp_modarith(mp_modsub);
}
static void test_mp_modmul(void)
{
test_mp_modarith(mp_modmul);
}
static void test_mp_modpow(void)
{
test_mp_modarith(mp_modpow);
}
static void test_mp_invert_mod_2to(void)
{
mp_int *x = mp_new(512);
for (size_t i = 0; i < looplimit(32); i++) {
mp_random_fill(x);
mp_set_bit(x, 0, 1); /* input should be odd */
log_start();
mp_int *out = mp_invert_mod_2to(x, 511);
log_end();
mp_free(out);
}
mp_free(x);
}
static void test_mp_modsqrt(void)
{
/* The prime isn't secret in this function (and in any case
* finding a non-square on the fly would be prohibitively
* annoying), so I hardcode a fixed one, selected to have a lot of
* factors of two in p-1 so as to exercise lots of choices in the
* algorithm. */
mp_int *p =
MP_LITERAL(0xb56a517b206a88c73cfa9ec6f704c7030d18212cace82401);
mp_int *nonsquare = MP_LITERAL(0x5);
size_t bits = mp_max_bits(p);
ModsqrtContext *sc = modsqrt_new(p, nonsquare);
mp_free(p);
mp_free(nonsquare);
mp_int *x = mp_new(bits);
unsigned success;
/* Do one initial call to cause the lazily initialised sub-context
* to be set up. This will take a while, but it can't be helped. */
mp_int *unwanted = mp_modsqrt(sc, x, &success);
mp_free(unwanted);
for (size_t i = 0; i < looplimit(8); i++) {
mp_random_bits_into(x, bits - 1);
log_start();
mp_int *out = mp_modsqrt(sc, x, &success);
log_end();
mp_free(out);
}
mp_free(x);
modsqrt_free(sc);
}
static WeierstrassCurve *wcurve(void)
{
mp_int *p = MP_LITERAL(0xc19337603dc856acf31e01375a696fdf5451);
mp_int *a = MP_LITERAL(0x864946f50eecca4cde7abad4865e34be8f67);
mp_int *b = MP_LITERAL(0x6a5bf56db3a03ba91cfbf3241916c90feeca);
mp_int *nonsquare = mp_from_integer(3);
WeierstrassCurve *wc = ecc_weierstrass_curve(p, a, b, nonsquare);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(nonsquare);
return wc;
}
static WeierstrassPoint *wpoint(WeierstrassCurve *wc, size_t index)
{
mp_int *x = NULL, *y = NULL;
WeierstrassPoint *wp;
switch (index) {
case 0:
break;
case 1:
x = MP_LITERAL(0x12345);
y = MP_LITERAL(0x3c2c799a365b53d003ef37dab65860bf80ae);
break;
case 2:
x = MP_LITERAL(0x4e1c77e3c00f7c3b15869e6a4e5f86b3ee53);
y = MP_LITERAL(0x5bde01693130591400b5c9d257d8325a44a5);
break;
case 3:
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
y = MP_LITERAL(0x033d636b855c931cfe679f0b18db164a0d64);
break;
case 4:
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
y = MP_LITERAL(0xbe55d3f4b86bc38ff4b6622c418e599546ed);
break;
default:
unreachable("only 5 example Weierstrass points defined");
}
if (x && y) {
wp = ecc_weierstrass_point_new(wc, x, y);
} else {
wp = ecc_weierstrass_point_new_identity(wc);
}
if (x)
mp_free(x);
if (y)
mp_free(y);
return wp;
}
static void test_ecc_weierstrass_add(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
if (i == 0 || j == 0 || i == j ||
(i==3 && j==4) || (i==4 && j==3))
continue; /* difficult cases */
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_copy_into(b, B);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
log_start();
WeierstrassPoint *r = ecc_weierstrass_add(a, b);
log_end();
ecc_weierstrass_point_free(r);
}
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_point_free(b);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_double(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
log_start();
WeierstrassPoint *r = ecc_weierstrass_double(a);
log_end();
ecc_weierstrass_point_free(r);
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_add_general(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_copy_into(b, B);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
log_start();
WeierstrassPoint *r = ecc_weierstrass_add_general(a, b);
log_end();
ecc_weierstrass_point_free(r);
}
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_point_free(b);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_multiply(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
mp_int *exponent = mp_new(56);
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
mp_random_fill(exponent);
log_start();
WeierstrassPoint *r = ecc_weierstrass_multiply(a, exponent);
log_end();
ecc_weierstrass_point_free(r);
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
mp_free(exponent);
}
static void test_ecc_weierstrass_is_identity(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
log_start();
ecc_weierstrass_is_identity(a);
log_end();
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_get_affine(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *r = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(4); i++) {
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, i+1);
WeierstrassPoint *R = ecc_weierstrass_add_general(A, B);
ecc_weierstrass_point_copy_into(r, R);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
ecc_weierstrass_point_free(R);
log_start();
mp_int *x, *y;
ecc_weierstrass_get_affine(r, &x, &y);
log_end();
mp_free(x);
mp_free(y);
}
ecc_weierstrass_point_free(r);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_decompress(void)
{
WeierstrassCurve *wc = wcurve();
/* As in the mp_modsqrt test, prime the lazy initialisation of the
* ModsqrtContext */
mp_int *x = mp_new(144);
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, 0);
if (a) /* don't care whether this one succeeded */
ecc_weierstrass_point_free(a);
for (size_t p = 0; p < looplimit(2); p++) {
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
mp_int *X;
ecc_weierstrass_get_affine(A, &X, NULL);
mp_copy_into(x, X);
mp_free(X);
ecc_weierstrass_point_free(A);
log_start();
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, p);
log_end();
ecc_weierstrass_point_free(a);
}
}
mp_free(x);
ecc_weierstrass_curve_free(wc);
}
static MontgomeryCurve *mcurve(void)
{
mp_int *p = MP_LITERAL(0xde978eb1db35236a5792e9f0c04d86000659);
mp_int *a = MP_LITERAL(0x799b62a612b1b30e1c23cea6d67b2e33c51a);
mp_int *b = MP_LITERAL(0x944bf9042b56821a8c9e0b49b636c2502b2b);
MontgomeryCurve *mc = ecc_montgomery_curve(p, a, b);
mp_free(p);
mp_free(a);
mp_free(b);
return mc;
}
static MontgomeryPoint *mpoint(MontgomeryCurve *wc, size_t index)
{
mp_int *x = NULL;
MontgomeryPoint *mp;
switch (index) {
case 0:
x = MP_LITERAL(31415);
break;
case 1:
x = MP_LITERAL(0x4d352c654c06eecfe19104118857b38398e8);
break;
case 2:
x = MP_LITERAL(0x03fca2a73983bc3434caae3134599cd69cce);
break;
case 3:
x = MP_LITERAL(0xa0fd735ce9b3406498b5f035ee655bda4e15);
break;
case 4:
x = MP_LITERAL(0x7c7f46a00cc286dbe47db39b6d8f5efd920e);
break;
case 5:
x = MP_LITERAL(0x07a6dc30d3b320448e6f8999be417e6b7c6b);
break;
case 6:
x = MP_LITERAL(0x7832da5fc16dfbd358170b2b96896cd3cd06);
break;
default:
unreachable("only 7 example Weierstrass points defined");
}
mp = ecc_montgomery_point_new(wc, x);
mp_free(x);
return mp;
}
static void test_ecc_montgomery_diff_add(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL, *b = NULL, *c = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
MontgomeryPoint *A = mpoint(wc, i);
MontgomeryPoint *B = mpoint(wc, i);
MontgomeryPoint *C = mpoint(wc, i);
if (!a) {
a = A;
b = B;
c = C;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_copy_into(b, B);
ecc_montgomery_point_copy_into(c, C);
ecc_montgomery_point_free(A);
ecc_montgomery_point_free(B);
ecc_montgomery_point_free(C);
}
log_start();
MontgomeryPoint *r = ecc_montgomery_diff_add(b, c, a);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_point_free(b);
ecc_montgomery_point_free(c);
ecc_montgomery_curve_free(wc);
}
static void test_ecc_montgomery_double(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL;
for (size_t i = 0; i < looplimit(7); i++) {
MontgomeryPoint *A = mpoint(wc, i);
if (!a) {
a = A;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_free(A);
}
log_start();
MontgomeryPoint *r = ecc_montgomery_double(a);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_curve_free(wc);
}
static void test_ecc_montgomery_multiply(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL;
mp_int *exponent = mp_new(56);
for (size_t i = 0; i < looplimit(7); i++) {
MontgomeryPoint *A = mpoint(wc, i);
if (!a) {
a = A;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_free(A);
}
mp_random_fill(exponent);
log_start();
MontgomeryPoint *r = ecc_montgomery_multiply(a, exponent);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_curve_free(wc);
mp_free(exponent);
}
static void test_ecc_montgomery_get_affine(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *r = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
MontgomeryPoint *A = mpoint(wc, i);
MontgomeryPoint *B = mpoint(wc, i);
MontgomeryPoint *C = mpoint(wc, i);
MontgomeryPoint *R = ecc_montgomery_diff_add(B, C, A);
ecc_montgomery_point_free(A);
ecc_montgomery_point_free(B);
ecc_montgomery_point_free(C);
if (!r) {
r = R;
} else {
ecc_montgomery_point_copy_into(r, R);
ecc_montgomery_point_free(R);
}
log_start();
mp_int *x;
ecc_montgomery_get_affine(r, &x);
log_end();
mp_free(x);
}
ecc_montgomery_point_free(r);
ecc_montgomery_curve_free(wc);
}
static EdwardsCurve *ecurve(void)
{
mp_int *p = MP_LITERAL(0xfce2dac1704095de0b5c48876c45063cd475);
mp_int *d = MP_LITERAL(0xbd4f77401c3b14ae1742a7d1d367adac8f3e);
mp_int *a = MP_LITERAL(0x51d0845da3fa871aaac4341adea53b861919);
mp_int *nonsquare = mp_from_integer(2);
EdwardsCurve *ec = ecc_edwards_curve(p, d, a, nonsquare);
mp_free(p);
mp_free(d);
mp_free(a);
mp_free(nonsquare);
return ec;
}
static EdwardsPoint *epoint(EdwardsCurve *wc, size_t index)
{
mp_int *x, *y;
EdwardsPoint *ep;
switch (index) {
case 0:
x = MP_LITERAL(0x0);
y = MP_LITERAL(0x1);
break;
case 1:
x = MP_LITERAL(0x3d8aef0294a67c1c7e8e185d987716250d7c);
y = MP_LITERAL(0x27184);
break;
case 2:
x = MP_LITERAL(0xf44ed5b8a6debfd3ab24b7874cd2589fd672);
y = MP_LITERAL(0xd635d8d15d367881c8a3af472c8fe487bf40);
break;
case 3:
x = MP_LITERAL(0xde114ecc8b944684415ef81126a07269cd30);
y = MP_LITERAL(0xbe0fd45ff67ebba047ed0ec5a85d22e688a1);
break;
case 4:
x = MP_LITERAL(0x76bd2f90898d271b492c9c20dd7bbfe39fe5);
y = MP_LITERAL(0xbf1c82698b4a5a12c1057631c1ebdc216ae2);
break;
default:
unreachable("only 5 example Edwards points defined");
}
ep = ecc_edwards_point_new(wc, x, y);
mp_free(x);
mp_free(y);
return ep;
}
static void test_ecc_edwards_add(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL, *b = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
if (!a) {
a = A;
b = B;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_copy_into(b, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
}
log_start();
EdwardsPoint *r = ecc_edwards_add(a, b);
log_end();
ecc_edwards_point_free(r);
}
}
ecc_edwards_point_free(a);
ecc_edwards_point_free(b);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_multiply(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL;
mp_int *exponent = mp_new(56);
for (size_t i = 1; i < looplimit(5); i++) {
EdwardsPoint *A = epoint(ec, i);
if (!a) {
a = A;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_free(A);
}
mp_random_fill(exponent);
log_start();
EdwardsPoint *r = ecc_edwards_multiply(a, exponent);
log_end();
ecc_edwards_point_free(r);
}
ecc_edwards_point_free(a);
ecc_edwards_curve_free(ec);
mp_free(exponent);
}
static void test_ecc_edwards_eq(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL, *b = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
if (!a) {
a = A;
b = B;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_copy_into(b, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
}
log_start();
ecc_edwards_eq(a, b);
log_end();
}
}
ecc_edwards_point_free(a);
ecc_edwards_point_free(b);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_get_affine(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *r = NULL;
for (size_t i = 0; i < looplimit(4); i++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, i+1);
EdwardsPoint *R = ecc_edwards_add(A, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
if (!r) {
r = R;
} else {
ecc_edwards_point_copy_into(r, R);
ecc_edwards_point_free(R);
}
log_start();
mp_int *x, *y;
ecc_edwards_get_affine(r, &x, &y);
log_end();
mp_free(x);
mp_free(y);
}
ecc_edwards_point_free(r);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_decompress(void)
{
EdwardsCurve *ec = ecurve();
/* As in the mp_modsqrt test, prime the lazy initialisation of the
* ModsqrtContext */
mp_int *y = mp_new(144);
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, 0);
if (a) /* don't care whether this one succeeded */
ecc_edwards_point_free(a);
for (size_t p = 0; p < looplimit(2); p++) {
for (size_t i = 0; i < looplimit(5); i++) {
EdwardsPoint *A = epoint(ec, i);
mp_int *Y;
ecc_edwards_get_affine(A, NULL, &Y);
mp_copy_into(y, Y);
mp_free(Y);
ecc_edwards_point_free(A);
log_start();
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, p);
log_end();
ecc_edwards_point_free(a);
}
}
mp_free(y);
ecc_edwards_curve_free(ec);
}
static void test_cipher(const ssh_cipheralg *calg)
{
ssh_cipher *c = ssh_cipher_new(calg);
if (!c) {
test_skipped = true;
return;
}
const ssh2_macalg *malg = calg->required_mac;
ssh2_mac *m = NULL;
if (malg) {
m = ssh2_mac_new(malg, c);
if (!m) {
ssh_cipher_free(c);
test_skipped = true;
return;
}
}
uint8_t *ckey = snewn(calg->padded_keybytes, uint8_t);
uint8_t *civ = snewn(calg->blksize, uint8_t);
uint8_t *mkey = malg ? snewn(malg->keylen, uint8_t) : NULL;
size_t datalen = calg->blksize * 8;
size_t maclen = malg ? malg->len : 0;
uint8_t *data = snewn(datalen + maclen, uint8_t);
size_t lenlen = 4;
uint8_t *lendata = snewn(lenlen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(ckey, calg->padded_keybytes);
if (malg)
random_read(mkey, malg->keylen);
random_read(data, datalen);
random_read(lendata, lenlen);
if (i == 0) {
/* Ensure one of our test IVs will cause SDCTR wraparound */
memset(civ, 0xFF, calg->blksize);
} else {
random_read(civ, calg->blksize);
}
uint8_t seqbuf[4];
random_read(seqbuf, 4);
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
log_start();
ssh_cipher_setkey(c, ckey);
ssh_cipher_setiv(c, civ);
if (m)
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
ssh_cipher_encrypt_length(c, data, datalen, seq);
ssh_cipher_encrypt(c, data, datalen);
if (m) {
ssh2_mac_generate(m, data, datalen, seq);
ssh2_mac_verify(m, data, datalen, seq);
}
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
ssh_cipher_decrypt_length(c, data, datalen, seq);
ssh_cipher_decrypt(c, data, datalen);
log_end();
}
sfree(ckey);
sfree(civ);
sfree(mkey);
sfree(data);
sfree(lendata);
if (m)
ssh2_mac_free(m);
ssh_cipher_free(c);
}
#define CIPHER_TESTFN(Y_unused, cipher) \
static void test_cipher_##cipher(void) { test_cipher(&cipher); }
CIPHERS(CIPHER_TESTFN, Y_unused)
static void test_mac(const ssh2_macalg *malg)
{
ssh2_mac *m = ssh2_mac_new(malg, NULL);
if (!m) {
test_skipped = true;
return;
}
uint8_t *mkey = snewn(malg->keylen, uint8_t);
size_t datalen = 256;
size_t maclen = malg->len;
uint8_t *data = snewn(datalen + maclen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(mkey, malg->keylen);
random_read(data, datalen);
uint8_t seqbuf[4];
random_read(seqbuf, 4);
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
log_start();
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
ssh2_mac_generate(m, data, datalen, seq);
ssh2_mac_verify(m, data, datalen, seq);
log_end();
}
sfree(mkey);
sfree(data);
ssh2_mac_free(m);
}
#define MAC_TESTFN(Y_unused, mac) \
static void test_mac_##mac(void) { test_mac(&mac); }
MACS(MAC_TESTFN, Y_unused)
static void test_hash(const ssh_hashalg *halg)
{
ssh_hash *h = ssh_hash_new(halg);
if (!h) {
test_skipped = true;
return;
}
size_t datalen = 256;
uint8_t *data = snewn(datalen, uint8_t);
uint8_t *hash = snewn(halg->hlen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(data, datalen);
log_start();
put_data(h, data, datalen);
ssh_hash_final(h, hash);
log_end();
h = ssh_hash_new(halg);
}
sfree(data);
sfree(hash);
ssh_hash_free(h);
}
#define HASH_TESTFN(Y_unused, hash) \
static void test_hash_##hash(void) { test_hash(&hash); }
HASHES(HASH_TESTFN, Y_unused)
struct test {
const char *testname;
void (*testfn)(void);
};
static const struct test tests[] = {
#define STRUCT_TEST(X) { #X, test_##X },
TESTLIST(STRUCT_TEST)
#undef STRUCT_TEST
};
int main(int argc, char **argv)
{
bool doing_opts = true;
const char *pname = argv[0];
uint8_t tests_to_run[lenof(tests)];
bool keep_outfiles = false;
bool test_names_given = false;
memset(tests_to_run, 1, sizeof(tests_to_run));
random_hash = ssh_hash_new(&ssh_sha256);
while (--argc > 0) {
char *p = *++argv;
if (p[0] == '-' && doing_opts) {
if (!strcmp(p, "-O")) {
if (--argc <= 0) {
fprintf(stderr, "'-O' expects a directory name\n");
return 1;
}
outdir = *++argv;
} else if (!strcmp(p, "-k") || !strcmp(p, "--keep")) {
keep_outfiles = true;
} else if (!strcmp(p, "--")) {
doing_opts = false;
} else if (!strcmp(p, "--help")) {
printf(" usage: drrun -c test/sclog/libsclog.so -- "
"%s -O <outdir>\n", pname);
printf("options: -O <outdir> "
"put log files in the specified directory\n");
printf(" -k, --keep "
"do not delete log files for tests that passed\n");
printf(" also: --help "
"display this text\n");
return 0;
} else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else {
if (!test_names_given) {
test_names_given = true;
memset(tests_to_run, 0, sizeof(tests_to_run));
}
bool found_one = false;
for (size_t i = 0; i < lenof(tests); i++) {
if (wc_match(p, tests[i].testname)) {
tests_to_run[i] = 1;
found_one = true;
}
}
if (!found_one) {
fprintf(stderr, "no test name matched '%s'\n", p);
return 1;
}
}
}
bool is_dry_run = dry_run();
if (is_dry_run) {
printf("Dry run (DynamoRIO instrumentation not detected)\n");
} else {
/* Print the address of main() in this run. The idea is that
* if this image is compiled to be position-independent, then
* PC values in the logs won't match the ones you get if you
* disassemble the binary, so it'll be harder to match up the
* log messages to the code. But if you know the address of a
* fixed (and not inlined) function in both worlds, you can
* find out the offset between them. */
printf("Live run, main = %p\n", (void *)main);
if (!outdir) {
fprintf(stderr, "expected -O <outdir> option\n");
return 1;
}
printf("Will write log files to %s\n", outdir);
}
size_t nrun = 0, npass = 0;
for (size_t i = 0; i < lenof(tests); i++) {
bool keep_these_outfiles = true;
if (!tests_to_run[i])
continue;
const struct test *test = &tests[i];
printf("Running test %s ... ", test->testname);
fflush(stdout);
test_skipped = false;
random_seed(test->testname);
test_basename = test->testname;
test_index = 0;
test->testfn();
if (test_skipped) {
/* Used for e.g. tests of hardware-accelerated crypto when
* the hardware acceleration isn't available */
printf("skipped\n");
continue;
}
nrun++;
if (is_dry_run) {
printf("dry run done\n");
continue; /* test files won't exist anyway */
}
if (test_index < 2) {
printf("FAIL: test did not generate multiple output files\n");
goto test_done;
}
char *firstfile = log_filename(test_basename, 0);
FILE *firstfp = fopen(firstfile, "rb");
if (!firstfp) {
printf("ERR: %s: open: %s\n", firstfile, strerror(errno));
goto test_done;
}
for (size_t i = 1; i < test_index; i++) {
char *nextfile = log_filename(test_basename, i);
FILE *nextfp = fopen(nextfile, "rb");
if (!nextfp) {
printf("ERR: %s: open: %s\n", nextfile, strerror(errno));
goto test_done;
}
rewind(firstfp);
char buf1[4096], bufn[4096];
bool compare_ok = false;
while (true) {
size_t r1 = fread(buf1, 1, sizeof(buf1), firstfp);
size_t rn = fread(bufn, 1, sizeof(bufn), nextfp);
if (r1 != rn) {
printf("FAIL: %s %s: different lengths\n",
firstfile, nextfile);
break;
}
if (r1 == 0) {
if (feof(firstfp) && feof(nextfp)) {
compare_ok = true;
} else {
printf("FAIL: %s %s: error at end of file\n",
firstfile, nextfile);
}
break;
}
if (memcmp(buf1, bufn, r1) != 0) {
printf("FAIL: %s %s: different content\n",
firstfile, nextfile);
break;
}
}
fclose(nextfp);
sfree(nextfile);
if (!compare_ok) {
goto test_done;
}
}
fclose(firstfp);
sfree(firstfile);
printf("pass\n");
npass++;
keep_these_outfiles = keep_outfiles;
test_done:
if (!keep_these_outfiles) {
for (size_t i = 0; i < test_index; i++) {
char *file = log_filename(test_basename, i);
remove(file);
sfree(file);
}
}
}
ssh_hash_free(random_hash);
if (npass == nrun) {
printf("All tests passed\n");
return 0;
} else {
printf("%"SIZEu" tests failed\n", nrun - npass);
return 1;
}
}