1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshdss.c
Simon Tatham 9396fcc9f7 Rename FROMFIELD to 'container_of'.
Ian Jackson points out that the Linux kernel has a macro of this name
with the same purpose, and suggests that it's a good idea to use the
same name as they do, so that at least some people reading one code
base might recognise it from the other.

I never really thought very hard about what order FROMFIELD's
parameters should go in, and therefore I'm pleasantly surprised to
find that my order agrees with the kernel's, so I don't have to
permute every call site as part of making this change :-)
2018-10-06 07:28:51 +01:00

508 lines
14 KiB
C

/*
* Digital Signature Standard implementation for PuTTY.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "ssh.h"
#include "misc.h"
static void dss_freekey(ssh_key *key); /* forward reference */
static ssh_key *dss_new_pub(const ssh_keyalg *self, ptrlen data)
{
BinarySource src[1];
struct dss_key *dss;
BinarySource_BARE_INIT(src, data.ptr, data.len);
if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
return NULL;
dss = snew(struct dss_key);
dss->sshk = &ssh_dss;
dss->p = get_mp_ssh2(src);
dss->q = get_mp_ssh2(src);
dss->g = get_mp_ssh2(src);
dss->y = get_mp_ssh2(src);
dss->x = NULL;
if (get_err(src) ||
!bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
/* Invalid key. */
dss_freekey(&dss->sshk);
return NULL;
}
return &dss->sshk;
}
static void dss_freekey(ssh_key *key)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
if (dss->p)
freebn(dss->p);
if (dss->q)
freebn(dss->q);
if (dss->g)
freebn(dss->g);
if (dss->y)
freebn(dss->y);
if (dss->x)
freebn(dss->x);
sfree(dss);
}
static char *dss_cache_str(ssh_key *key)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
char *p;
int len, i, pos, nibbles;
static const char hex[] = "0123456789abcdef";
if (!dss->p)
return NULL;
len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
p = snewn(len, char);
if (!p)
return NULL;
pos = 0;
pos += sprintf(p + pos, "0x");
nibbles = (3 + bignum_bitcount(dss->p)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
p[pos++] =
hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(dss->q)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
p[pos++] =
hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(dss->g)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
p[pos++] =
hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(dss->y)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
p[pos++] =
hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
p[pos] = '\0';
return p;
}
static int dss_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
BinarySource src[1];
unsigned char hash[20];
Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
int ret;
if (!dss->p)
return 0;
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
/*
* Commercial SSH (2.0.13) and OpenSSH disagree over the format
* of a DSA signature. OpenSSH is in line with RFC 4253:
* it uses a string "ssh-dss", followed by a 40-byte string
* containing two 160-bit integers end-to-end. Commercial SSH
* can't be bothered with the header bit, and considers a DSA
* signature blob to be _just_ the 40-byte string containing
* the two 160-bit integers. We tell them apart by measuring
* the length: length 40 means the commercial-SSH bug, anything
* else is assumed to be RFC-compliant.
*/
if (sig.len != 40) { /* bug not present; read admin fields */
ptrlen type = get_string(src);
sig = get_string(src);
if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
sig.len != 40)
return 0;
}
/* Now we're sitting on a 40-byte string for sure. */
r = bignum_from_bytes(sig.ptr, 20);
s = bignum_from_bytes((const char *)sig.ptr + 20, 20);
if (!r || !s) {
if (r)
freebn(r);
if (s)
freebn(s);
return 0;
}
if (!bignum_cmp(s, Zero)) {
freebn(r);
freebn(s);
return 0;
}
/*
* Step 1. w <- s^-1 mod q.
*/
w = modinv(s, dss->q);
if (!w) {
freebn(r);
freebn(s);
return 0;
}
/*
* Step 2. u1 <- SHA(message) * w mod q.
*/
SHA_Simple(data.ptr, data.len, hash);
sha = bignum_from_bytes(hash, 20);
u1 = modmul(sha, w, dss->q);
/*
* Step 3. u2 <- r * w mod q.
*/
u2 = modmul(r, w, dss->q);
/*
* Step 4. v <- (g^u1 * y^u2 mod p) mod q.
*/
gu1p = modpow(dss->g, u1, dss->p);
yu2p = modpow(dss->y, u2, dss->p);
gu1yu2p = modmul(gu1p, yu2p, dss->p);
v = modmul(gu1yu2p, One, dss->q);
/*
* Step 5. v should now be equal to r.
*/
ret = !bignum_cmp(v, r);
freebn(w);
freebn(sha);
freebn(u1);
freebn(u2);
freebn(gu1p);
freebn(yu2p);
freebn(gu1yu2p);
freebn(v);
freebn(r);
freebn(s);
return ret;
}
static void dss_public_blob(ssh_key *key, BinarySink *bs)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
put_stringz(bs, "ssh-dss");
put_mp_ssh2(bs, dss->p);
put_mp_ssh2(bs, dss->q);
put_mp_ssh2(bs, dss->g);
put_mp_ssh2(bs, dss->y);
}
static void dss_private_blob(ssh_key *key, BinarySink *bs)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
put_mp_ssh2(bs, dss->x);
}
static ssh_key *dss_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
{
BinarySource src[1];
ssh_key *sshk;
struct dss_key *dss;
ptrlen hash;
SHA_State s;
unsigned char digest[20];
Bignum ytest;
sshk = dss_new_pub(self, pub);
if (!sshk)
return NULL;
dss = container_of(sshk, struct dss_key, sshk);
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
dss->x = get_mp_ssh2(src);
if (get_err(src)) {
dss_freekey(&dss->sshk);
return NULL;
}
/*
* Check the obsolete hash in the old DSS key format.
*/
hash = get_string(src);
if (hash.len == 20) {
SHA_Init(&s);
put_mp_ssh2(&s, dss->p);
put_mp_ssh2(&s, dss->q);
put_mp_ssh2(&s, dss->g);
SHA_Final(&s, digest);
if (0 != memcmp(hash.ptr, digest, 20)) {
dss_freekey(&dss->sshk);
return NULL;
}
}
/*
* Now ensure g^x mod p really is y.
*/
ytest = modpow(dss->g, dss->x, dss->p);
if (0 != bignum_cmp(ytest, dss->y)) {
dss_freekey(&dss->sshk);
freebn(ytest);
return NULL;
}
freebn(ytest);
return &dss->sshk;
}
static ssh_key *dss_new_priv_openssh(const ssh_keyalg *self,
BinarySource *src)
{
struct dss_key *dss;
dss = snew(struct dss_key);
dss->sshk = &ssh_dss;
dss->p = get_mp_ssh2(src);
dss->q = get_mp_ssh2(src);
dss->g = get_mp_ssh2(src);
dss->y = get_mp_ssh2(src);
dss->x = get_mp_ssh2(src);
if (get_err(src) ||
!bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
/* Invalid key. */
dss_freekey(&dss->sshk);
return NULL;
}
return &dss->sshk;
}
static void dss_openssh_blob(ssh_key *key, BinarySink *bs)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
put_mp_ssh2(bs, dss->p);
put_mp_ssh2(bs, dss->q);
put_mp_ssh2(bs, dss->g);
put_mp_ssh2(bs, dss->y);
put_mp_ssh2(bs, dss->x);
}
static int dss_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
{
ssh_key *sshk;
struct dss_key *dss;
int ret;
sshk = dss_new_pub(self, pub);
if (!sshk)
return -1;
dss = container_of(sshk, struct dss_key, sshk);
ret = bignum_bitcount(dss->p);
dss_freekey(&dss->sshk);
return ret;
}
Bignum *dss_gen_k(const char *id_string, Bignum modulus, Bignum private_key,
unsigned char *digest, int digest_len)
{
/*
* The basic DSS signing algorithm is:
*
* - invent a random k between 1 and q-1 (exclusive).
* - Compute r = (g^k mod p) mod q.
* - Compute s = k^-1 * (hash + x*r) mod q.
*
* This has the dangerous properties that:
*
* - if an attacker in possession of the public key _and_ the
* signature (for example, the host you just authenticated
* to) can guess your k, he can reverse the computation of s
* and work out x = r^-1 * (s*k - hash) mod q. That is, he
* can deduce the private half of your key, and masquerade
* as you for as long as the key is still valid.
*
* - since r is a function purely of k and the public key, if
* the attacker only has a _range of possibilities_ for k
* it's easy for him to work through them all and check each
* one against r; he'll never be unsure of whether he's got
* the right one.
*
* - if you ever sign two different hashes with the same k, it
* will be immediately obvious because the two signatures
* will have the same r, and moreover an attacker in
* possession of both signatures (and the public key of
* course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
* and from there deduce x as before.
*
* - the Bleichenbacher attack on DSA makes use of methods of
* generating k which are significantly non-uniformly
* distributed; in particular, generating a 160-bit random
* number and reducing it mod q is right out.
*
* For this reason we must be pretty careful about how we
* generate our k. Since this code runs on Windows, with no
* particularly good system entropy sources, we can't trust our
* RNG itself to produce properly unpredictable data. Hence, we
* use a totally different scheme instead.
*
* What we do is to take a SHA-512 (_big_) hash of the private
* key x, and then feed this into another SHA-512 hash that
* also includes the message hash being signed. That is:
*
* proto_k = SHA512 ( SHA512(x) || SHA160(message) )
*
* This number is 512 bits long, so reducing it mod q won't be
* noticeably non-uniform. So
*
* k = proto_k mod q
*
* This has the interesting property that it's _deterministic_:
* signing the same hash twice with the same key yields the
* same signature.
*
* Despite this determinism, it's still not predictable to an
* attacker, because in order to repeat the SHA-512
* construction that created it, the attacker would have to
* know the private key value x - and by assumption he doesn't,
* because if he knew that he wouldn't be attacking k!
*
* (This trick doesn't, _per se_, protect against reuse of k.
* Reuse of k is left to chance; all it does is prevent
* _excessively high_ chances of reuse of k due to entropy
* problems.)
*
* Thanks to Colin Plumb for the general idea of using x to
* ensure k is hard to guess, and to the Cambridge University
* Computer Security Group for helping to argue out all the
* fine details.
*/
SHA512_State ss;
unsigned char digest512[64];
Bignum proto_k, k;
/*
* Hash some identifying text plus x.
*/
SHA512_Init(&ss);
put_asciz(&ss, id_string);
put_mp_ssh2(&ss, private_key);
SHA512_Final(&ss, digest512);
/*
* Now hash that digest plus the message hash.
*/
SHA512_Init(&ss);
put_data(&ss, digest512, sizeof(digest512));
put_data(&ss, digest, digest_len);
while (1) {
SHA512_State ss2 = ss; /* structure copy */
SHA512_Final(&ss2, digest512);
smemclr(&ss2, sizeof(ss2));
/*
* Now convert the result into a bignum, and reduce it mod q.
*/
proto_k = bignum_from_bytes(digest512, 64);
k = bigmod(proto_k, modulus);
freebn(proto_k);
if (bignum_cmp(k, One) != 0 && bignum_cmp(k, Zero) != 0) {
smemclr(&ss, sizeof(ss));
smemclr(digest512, sizeof(digest512));
return k;
}
/* Very unlikely we get here, but if so, k was unsuitable. */
freebn(k);
/* Perturb the hash to think of a different k. */
put_byte(&ss, 'x');
/* Go round and try again. */
}
}
static void dss_sign(ssh_key *key, const void *data, int datalen,
BinarySink *bs)
{
struct dss_key *dss = container_of(key, struct dss_key, sshk);
Bignum k, gkp, hash, kinv, hxr, r, s;
unsigned char digest[20];
int i;
SHA_Simple(data, datalen, digest);
k = dss_gen_k("DSA deterministic k generator", dss->q, dss->x,
digest, sizeof(digest));
kinv = modinv(k, dss->q); /* k^-1 mod q */
assert(kinv);
/*
* Now we have k, so just go ahead and compute the signature.
*/
gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
freebn(gkp);
hash = bignum_from_bytes(digest, 20);
hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
freebn(hxr);
freebn(kinv);
freebn(k);
freebn(hash);
put_stringz(bs, "ssh-dss");
put_uint32(bs, 40);
for (i = 0; i < 20; i++)
put_byte(bs, bignum_byte(r, 19 - i));
for (i = 0; i < 20; i++)
put_byte(bs, bignum_byte(s, 19 - i));
freebn(r);
freebn(s);
}
const ssh_keyalg ssh_dss = {
dss_new_pub,
dss_new_priv,
dss_new_priv_openssh,
dss_freekey,
dss_sign,
dss_verify,
dss_public_blob,
dss_private_blob,
dss_openssh_blob,
dss_cache_str,
dss_pubkey_bits,
"ssh-dss",
"dss",
NULL,
};