mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
3d06adce9f
The __truediv__ pair makes the whole program work in Python 3 as well as 2 (it was _so_ nearly there already!), and __int__ lets you easily turn a ModP back into an ordinary Python integer representing its least positive residue.
406 lines
15 KiB
Python
406 lines
15 KiB
Python
import numbers
|
|
import itertools
|
|
|
|
def jacobi(n,m):
|
|
"""Compute the Jacobi symbol.
|
|
|
|
The special case of this when m is prime is the Legendre symbol,
|
|
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
|
|
non-zero square number mod m; -1 if n is not congruent to any
|
|
square mod m.
|
|
|
|
"""
|
|
assert m & 1
|
|
acc = 1
|
|
while True:
|
|
n %= m
|
|
if n == 0:
|
|
return 0
|
|
while not (n & 1):
|
|
n >>= 1
|
|
if (m & 7) not in {1,7}:
|
|
acc *= -1
|
|
if n == 1:
|
|
return acc
|
|
if (n & 3) == 3 and (m & 3) == 3:
|
|
acc *= -1
|
|
n, m = m, n
|
|
|
|
class SqrtModP(object):
|
|
"""Class for finding square roots of numbers mod p.
|
|
|
|
p must be an odd prime (but its primality is not checked)."""
|
|
|
|
def __init__(self, p):
|
|
p = abs(p)
|
|
assert p & 1
|
|
self.p = p
|
|
|
|
# Decompose p as 2^e k + 1 for odd k.
|
|
self.k = p-1
|
|
self.e = 0
|
|
while not (self.k & 1):
|
|
self.k >>= 1
|
|
self.e += 1
|
|
|
|
# Find a non-square mod p.
|
|
for self.z in itertools.count(1):
|
|
if jacobi(self.z, self.p) == -1:
|
|
break
|
|
self.zinv = ModP(self.p, self.z).invert()
|
|
|
|
def sqrt_recurse(self, a):
|
|
ak = pow(a, self.k, self.p)
|
|
for i in range(self.e, -1, -1):
|
|
if ak == 1:
|
|
break
|
|
ak = ak*ak % self.p
|
|
assert i > 0
|
|
if i == self.e:
|
|
return pow(a, (self.k+1) // 2, self.p)
|
|
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
|
|
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
|
|
|
|
def sqrt(self, a):
|
|
j = jacobi(a, self.p)
|
|
if j == 0:
|
|
return 0
|
|
if j < 0:
|
|
raise ValueError("{} has no square root mod {}".format(a, self.p))
|
|
a %= self.p
|
|
r = self.sqrt_recurse(a)
|
|
assert r*r % self.p == a
|
|
# Normalise to the smaller (or 'positive') one of the two roots.
|
|
return min(r, self.p - r)
|
|
|
|
def __str__(self):
|
|
return "{}({})".format(type(self).__name__, self.p)
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
class ModP(object):
|
|
"""Class that represents integers mod p as a field.
|
|
|
|
All the usual arithmetic operations are supported directly,
|
|
including division, so you can write formulas in a natural way
|
|
without having to keep saying '% p' everywhere or call a
|
|
cumbersome modular_inverse() function.
|
|
|
|
"""
|
|
def __init__(self, p, n=0):
|
|
self.p = p
|
|
if isinstance(n, type(self)):
|
|
self.check(n)
|
|
n = n.n
|
|
self.n = n % p
|
|
def check(self, other):
|
|
assert isinstance(other, type(self))
|
|
assert isinstance(self, type(other))
|
|
assert self.p == other.p
|
|
def coerce_to(self, other):
|
|
if not isinstance(other, type(self)):
|
|
other = type(self)(self.p, other)
|
|
else:
|
|
self.check(other)
|
|
return other
|
|
def invert(self):
|
|
"Internal routine which returns the bare inverse."
|
|
if self.n % self.p == 0:
|
|
raise ZeroDivisionError("division by {!r}".format(self))
|
|
a = self.n, 1, 0
|
|
b = self.p, 0, 1
|
|
while b[0]:
|
|
q = a[0] // b[0]
|
|
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
|
|
b, a = a, b
|
|
assert abs(a[0]) == 1
|
|
return a[1]*a[0]
|
|
def __int__(self):
|
|
return self.n
|
|
def __add__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
|
def __neg__(self):
|
|
return type(self)(self.p, -self.n % self.p)
|
|
def __radd__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
|
def __sub__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n - rhs.n) % self.p)
|
|
def __rsub__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (rhs.n - self.n) % self.p)
|
|
def __mul__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
|
def __rmul__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
|
def __div__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (self.n * rhs.invert()) % self.p)
|
|
def __rdiv__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return type(self)(self.p, (rhs.n * self.invert()) % self.p)
|
|
def __truediv__(self, rhs): return self.__div__(rhs)
|
|
def __rtruediv__(self, rhs): return self.__rdiv__(rhs)
|
|
def __pow__(self, exponent):
|
|
assert exponent >= 0
|
|
n, b_to_n = 1, self
|
|
total = type(self)(self.p, 1)
|
|
while True:
|
|
if exponent & n:
|
|
exponent -= n
|
|
total *= b_to_n
|
|
n *= 2
|
|
if n > exponent:
|
|
break
|
|
b_to_n *= b_to_n
|
|
return total
|
|
def __cmp__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return cmp(self.n, rhs.n)
|
|
def __eq__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return self.n == rhs.n
|
|
def __ne__(self, rhs):
|
|
rhs = self.coerce_to(rhs)
|
|
return self.n != rhs.n
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elements of a modular ring have no ordering")
|
|
def __str__(self):
|
|
return "0x{:x}".format(self.n)
|
|
def __repr__(self):
|
|
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
|
|
|
|
class AffinePoint(object):
|
|
"""Base class for points on an elliptic curve."""
|
|
|
|
def __init__(self, curve, *args):
|
|
self.curve = curve
|
|
if len(args) == 0:
|
|
self.infinite = True
|
|
self.x = self.y = None
|
|
else:
|
|
assert len(args) == 2
|
|
self.infinite = False
|
|
self.x = ModP(self.curve.p, args[0])
|
|
self.y = ModP(self.curve.p, args[1])
|
|
self.check_equation()
|
|
def __neg__(self):
|
|
if self.infinite:
|
|
return self
|
|
return type(self)(self.curve, self.x, -self.y)
|
|
def __mul__(self, rhs):
|
|
if not isinstance(rhs, numbers.Integral):
|
|
raise ValueError("Elliptic curve points can only be multiplied by integers")
|
|
P = self
|
|
if rhs < 0:
|
|
rhs = -rhs
|
|
P = -P
|
|
toret = self.curve.point()
|
|
n = 1
|
|
nP = P
|
|
while rhs != 0:
|
|
if rhs & n:
|
|
rhs -= n
|
|
toret += nP
|
|
n += n
|
|
nP += nP
|
|
return toret
|
|
def __rmul__(self, rhs):
|
|
return self * rhs
|
|
def __sub__(self, rhs):
|
|
return self + (-rhs)
|
|
def __rsub__(self, rhs):
|
|
return (-self) + rhs
|
|
def __str__(self):
|
|
if self.infinite:
|
|
return "inf"
|
|
else:
|
|
return "({},{})".format(self.x, self.y)
|
|
def __repr__(self):
|
|
if self.infinite:
|
|
args = ""
|
|
else:
|
|
args = ", {}, {}".format(self.x, self.y)
|
|
return "{}.Point({}{})".format(type(self.curve).__name__,
|
|
self.curve, args)
|
|
def __eq__(self, rhs):
|
|
if self.infinite or rhs.infinite:
|
|
return self.infinite and rhs.infinite
|
|
return (self.x, self.y) == (rhs.x, rhs.y)
|
|
def __ne__(self, rhs):
|
|
return not (self == rhs)
|
|
def __lt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __le__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __gt__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __ge__(self, rhs):
|
|
raise ValueError("Elliptic curve points have no ordering")
|
|
def __hash__(self):
|
|
if self.infinite:
|
|
return hash((True,))
|
|
else:
|
|
return hash((False, self.x, self.y))
|
|
|
|
class CurveBase(object):
|
|
def point(self, *args):
|
|
return self.Point(self, *args)
|
|
|
|
class WeierstrassCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x + self.curve.b)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + self.curve.a) / (2*y1)
|
|
xp = slope*slope - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
rhs = x**3 + self.a.n * x + self.b.n
|
|
y = self.sqrtmodp.sqrt(rhs)
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class MontgomeryCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
assert (self.curve.b*self.y*self.y ==
|
|
self.x*self.x*self.x +
|
|
self.curve.a*self.x*self.x + self.x)
|
|
def __add__(self, rhs):
|
|
if self.infinite:
|
|
return rhs
|
|
if rhs.infinite:
|
|
return self
|
|
if self.x == rhs.x and self.y != rhs.y:
|
|
return self.curve.point()
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
xdiff = x2-x1
|
|
if xdiff != 0:
|
|
slope = (y2-y1) / xdiff
|
|
else:
|
|
assert y1 == y2
|
|
slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1)
|
|
xp = self.curve.b*slope*slope - self.curve.a - x1 - x2
|
|
yp = -(y1 + slope * (xp-x1))
|
|
return self.curve.point(xp, yp)
|
|
|
|
def __init__(self, p, a, b):
|
|
self.p = p
|
|
self.a = ModP(p, a)
|
|
self.b = ModP(p, b)
|
|
|
|
def cpoint(self, x, yparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
rhs = (x**3 + self.a.n * x**2 + x) / self.b
|
|
y = self.sqrtmodp.sqrt(int(rhs))
|
|
if (y - yparity) % 2:
|
|
y = -y
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.a, self.b)
|
|
|
|
class TwistedEdwardsCurve(CurveBase):
|
|
class Point(AffinePoint):
|
|
def check_equation(self):
|
|
x2, y2 = self.x*self.x, self.y*self.y
|
|
assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2)
|
|
def __neg__(self):
|
|
return type(self)(self.curve, -self.x, self.y)
|
|
def __add__(self, rhs):
|
|
x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y
|
|
x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2
|
|
dxxyy = self.curve.d*x1x2*y1y2
|
|
return self.curve.point((x1y2+y1x2)/(1+dxxyy),
|
|
(y1y2-self.curve.a*x1x2)/(1-dxxyy))
|
|
|
|
def __init__(self, p, d, a):
|
|
self.p = p
|
|
self.d = ModP(p, d)
|
|
self.a = ModP(p, a)
|
|
|
|
def point(self, *args):
|
|
# This curve form represents the identity using finite
|
|
# numbers, so it doesn't need the special infinity flag.
|
|
# Detect a no-argument call to point() and substitute the pair
|
|
# of integers that gives the identity.
|
|
if len(args) == 0:
|
|
args = [0, 1]
|
|
return super(TwistedEdwardsCurve, self).point(*args)
|
|
|
|
def cpoint(self, y, xparity=0):
|
|
if not hasattr(self, 'sqrtmodp'):
|
|
self.sqrtmodp = SqrtModP(self.p)
|
|
y = ModP(self.p, y)
|
|
y2 = y**2
|
|
radicand = (y2 - 1) / (self.d * y2 - self.a)
|
|
x = self.sqrtmodp.sqrt(radicand.n)
|
|
if (x - xparity) % 2:
|
|
x = -x
|
|
return self.point(x, y)
|
|
|
|
def __repr__(self):
|
|
return "{}(0x{:x}, {}, {})".format(
|
|
type(self).__name__, self.p, self.d, self.a)
|
|
|
|
p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
|
|
p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
|
|
p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
|
|
|
p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
|
|
p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
|
|
p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
|
|
|
|
p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)
|
|
p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)
|
|
p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
|
|
|
|
curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1)
|
|
curve25519.G = curve25519.cpoint(9)
|
|
|
|
ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1)
|
|
ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658)
|
|
ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
|
|
|