1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshsha.c
Simon Tatham 9d5a164021 Use a timing-safe memory compare to verify MACs.
Now that we have modes in which the MAC verification happens before
any other crypto operation and hence will be the only thing seen by an
attacker, it seems like about time we got round to doing it in a
cautious way that tries to prevent the attacker from using our memcmp
as a timing oracle.

So, here's an smemeq() function which has the semantics of !memcmp but
attempts to run in time dependent only on the length parameter. All
the MAC implementations now use this in place of !memcmp to verify the
MAC on input data.
2015-04-26 23:31:11 +01:00

436 lines
10 KiB
C

/*
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
* also used as a `stirring' function for the PuTTY random number
* pool. Implemented directly from the specification by Simon
* Tatham.
*/
#include "ssh.h"
/* ----------------------------------------------------------------------
* Core SHA algorithm: processes 16-word blocks into a message digest.
*/
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
static void SHA_Core_Init(uint32 h[5])
{
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
}
void SHATransform(word32 * digest, word32 * block)
{
word32 w[80];
word32 a, b, c, d, e;
int t;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf("SHATransform:");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf(" +");
for (i = 0; i < 16; i++)
printf(" %08x", block[i]);
}
}
#endif
for (t = 0; t < 16; t++)
w[t] = block[t];
for (t = 16; t < 80; t++) {
word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = rol(tmp, 1);
}
a = digest[0];
b = digest[1];
c = digest[2];
d = digest[3];
e = digest[4];
for (t = 0; t < 20; t++) {
word32 tmp =
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 20; t < 40; t++) {
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 40; t < 60; t++) {
word32 tmp = rol(a,
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
0x8f1bbcdc;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 60; t < 80; t++) {
word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf(" =");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf("\n");
}
}
#endif
}
/* ----------------------------------------------------------------------
* Outer SHA algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA algorithm.
*/
void SHA_Init(SHA_State * s)
{
SHA_Core_Init(s->h);
s->blkused = 0;
s->lenhi = s->lenlo = 0;
}
void SHA_Bytes(SHA_State * s, const void *p, int len)
{
const unsigned char *q = (const unsigned char *) p;
uint32 wordblock[16];
uint32 lenw = len;
int i;
/*
* Update the length field.
*/
s->lenlo += lenw;
s->lenhi += (s->lenlo < lenw);
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64) {
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32) s->block[i * 4 + 0]) << 24) |
(((uint32) s->block[i * 4 + 1]) << 16) |
(((uint32) s->block[i * 4 + 2]) << 8) |
(((uint32) s->block[i * 4 + 3]) << 0);
}
SHATransform(s->h, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void SHA_Final(SHA_State * s, unsigned char *output)
{
int i;
int pad;
unsigned char c[64];
uint32 lenhi, lenlo;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
lenlo = (s->lenlo << 3);
memset(c, 0, pad);
c[0] = 0x80;
SHA_Bytes(s, &c, pad);
c[0] = (lenhi >> 24) & 0xFF;
c[1] = (lenhi >> 16) & 0xFF;
c[2] = (lenhi >> 8) & 0xFF;
c[3] = (lenhi >> 0) & 0xFF;
c[4] = (lenlo >> 24) & 0xFF;
c[5] = (lenlo >> 16) & 0xFF;
c[6] = (lenlo >> 8) & 0xFF;
c[7] = (lenlo >> 0) & 0xFF;
SHA_Bytes(s, &c, 8);
for (i = 0; i < 5; i++) {
output[i * 4] = (s->h[i] >> 24) & 0xFF;
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
output[i * 4 + 3] = (s->h[i]) & 0xFF;
}
}
void SHA_Simple(const void *p, int len, unsigned char *output)
{
SHA_State s;
SHA_Init(&s);
SHA_Bytes(&s, p, len);
SHA_Final(&s, output);
}
/*
* Thin abstraction for things where hashes are pluggable.
*/
static void *sha1_init(void)
{
SHA_State *s;
s = snew(SHA_State);
SHA_Init(s);
return s;
}
static void sha1_bytes(void *handle, void *p, int len)
{
SHA_State *s = handle;
SHA_Bytes(s, p, len);
}
static void sha1_final(void *handle, unsigned char *output)
{
SHA_State *s = handle;
SHA_Final(s, output);
sfree(s);
}
const struct ssh_hash ssh_sha1 = {
sha1_init, sha1_bytes, sha1_final, 20, "SHA-1"
};
/* ----------------------------------------------------------------------
* The above is the SHA-1 algorithm itself. Now we implement the
* HMAC wrapper on it.
*/
static void *sha1_make_context(void)
{
return snewn(3, SHA_State);
}
static void sha1_free_context(void *handle)
{
sfree(handle);
}
static void sha1_key_internal(void *handle, unsigned char *key, int len)
{
SHA_State *keys = (SHA_State *)handle;
unsigned char foo[64];
int i;
memset(foo, 0x36, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[0]);
SHA_Bytes(&keys[0], foo, 64);
memset(foo, 0x5C, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[1]);
SHA_Bytes(&keys[1], foo, 64);
smemclr(foo, 64); /* burn the evidence */
}
static void sha1_key(void *handle, unsigned char *key)
{
sha1_key_internal(handle, key, 20);
}
static void sha1_key_buggy(void *handle, unsigned char *key)
{
sha1_key_internal(handle, key, 16);
}
static void hmacsha1_start(void *handle)
{
SHA_State *keys = (SHA_State *)handle;
keys[2] = keys[0]; /* structure copy */
}
static void hmacsha1_bytes(void *handle, unsigned char const *blk, int len)
{
SHA_State *keys = (SHA_State *)handle;
SHA_Bytes(&keys[2], (void *)blk, len);
}
static void hmacsha1_genresult(void *handle, unsigned char *hmac)
{
SHA_State *keys = (SHA_State *)handle;
SHA_State s;
unsigned char intermediate[20];
s = keys[2]; /* structure copy */
SHA_Final(&s, intermediate);
s = keys[1]; /* structure copy */
SHA_Bytes(&s, intermediate, 20);
SHA_Final(&s, hmac);
}
static void sha1_do_hmac(void *handle, unsigned char *blk, int len,
unsigned long seq, unsigned char *hmac)
{
unsigned char seqbuf[4];
PUT_32BIT_MSB_FIRST(seqbuf, seq);
hmacsha1_start(handle);
hmacsha1_bytes(handle, seqbuf, 4);
hmacsha1_bytes(handle, blk, len);
hmacsha1_genresult(handle, hmac);
}
static void sha1_generate(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
sha1_do_hmac(handle, blk, len, seq, blk + len);
}
static int hmacsha1_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[20];
hmacsha1_genresult(handle, correct);
return smemeq(correct, hmac, 20);
}
static int sha1_verify(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char correct[20];
sha1_do_hmac(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 20);
}
static void hmacsha1_96_genresult(void *handle, unsigned char *hmac)
{
unsigned char full[20];
hmacsha1_genresult(handle, full);
memcpy(hmac, full, 12);
}
static void sha1_96_generate(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char full[20];
sha1_do_hmac(handle, blk, len, seq, full);
memcpy(blk + len, full, 12);
}
static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[20];
hmacsha1_genresult(handle, correct);
return smemeq(correct, hmac, 12);
}
static int sha1_96_verify(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char correct[20];
sha1_do_hmac(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 12);
}
void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
unsigned char *output) {
SHA_State states[2];
unsigned char intermediate[20];
sha1_key_internal(states, key, keylen);
SHA_Bytes(&states[0], data, datalen);
SHA_Final(&states[0], intermediate);
SHA_Bytes(&states[1], intermediate, 20);
SHA_Final(&states[1], output);
}
const struct ssh_mac ssh_hmac_sha1 = {
sha1_make_context, sha1_free_context, sha1_key,
sha1_generate, sha1_verify,
hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
"hmac-sha1", "hmac-sha1-etm@openssh.com",
20,
"HMAC-SHA1"
};
const struct ssh_mac ssh_hmac_sha1_96 = {
sha1_make_context, sha1_free_context, sha1_key,
sha1_96_generate, sha1_96_verify,
hmacsha1_start, hmacsha1_bytes,
hmacsha1_96_genresult, hmacsha1_96_verresult,
"hmac-sha1-96", "hmac-sha1-96-etm@openssh.com",
12,
"HMAC-SHA1-96"
};
const struct ssh_mac ssh_hmac_sha1_buggy = {
sha1_make_context, sha1_free_context, sha1_key_buggy,
sha1_generate, sha1_verify,
hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
"hmac-sha1", NULL,
20,
"bug-compatible HMAC-SHA1"
};
const struct ssh_mac ssh_hmac_sha1_96_buggy = {
sha1_make_context, sha1_free_context, sha1_key_buggy,
sha1_96_generate, sha1_96_verify,
hmacsha1_start, hmacsha1_bytes,
hmacsha1_96_genresult, hmacsha1_96_verresult,
"hmac-sha1-96", NULL,
12,
"bug-compatible HMAC-SHA1-96"
};