1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/sshrsa.c
Simon Tatham d36a4c3685 Introduced wrapper macros snew(), snewn() and sresize() for the
malloc functions, which automatically cast to the same type they're
allocating the size of. Should prevent any future errors involving
mallocing the size of the wrong structure type, and will also make
life easier if we ever need to turn the PuTTY core code from real C
into C++-friendly C. I haven't touched the Mac frontend in this
checkin because I couldn't compile or test it.

[originally from svn r3014]
2003-03-29 16:14:26 +00:00

752 lines
19 KiB
C

/*
* RSA implementation for PuTTY.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "ssh.h"
#include "misc.h"
#define GET_32BIT(cp) \
(((unsigned long)(unsigned char)(cp)[0] << 24) | \
((unsigned long)(unsigned char)(cp)[1] << 16) | \
((unsigned long)(unsigned char)(cp)[2] << 8) | \
((unsigned long)(unsigned char)(cp)[3]))
#define PUT_32BIT(cp, value) { \
(cp)[0] = (unsigned char)((value) >> 24); \
(cp)[1] = (unsigned char)((value) >> 16); \
(cp)[2] = (unsigned char)((value) >> 8); \
(cp)[3] = (unsigned char)(value); }
int makekey(unsigned char *data, struct RSAKey *result,
unsigned char **keystr, int order)
{
unsigned char *p = data;
int i;
if (result) {
result->bits = 0;
for (i = 0; i < 4; i++)
result->bits = (result->bits << 8) + *p++;
} else
p += 4;
/*
* order=0 means exponent then modulus (the keys sent by the
* server). order=1 means modulus then exponent (the keys
* stored in a keyfile).
*/
if (order == 0)
p += ssh1_read_bignum(p, result ? &result->exponent : NULL);
if (result)
result->bytes = (((p[0] << 8) + p[1]) + 7) / 8;
if (keystr)
*keystr = p + 2;
p += ssh1_read_bignum(p, result ? &result->modulus : NULL);
if (order == 1)
p += ssh1_read_bignum(p, result ? &result->exponent : NULL);
return p - data;
}
int makeprivate(unsigned char *data, struct RSAKey *result)
{
return ssh1_read_bignum(data, &result->private_exponent);
}
void rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
{
Bignum b1, b2;
int i;
unsigned char *p;
memmove(data + key->bytes - length, data, length);
data[0] = 0;
data[1] = 2;
for (i = 2; i < key->bytes - length - 1; i++) {
do {
data[i] = random_byte();
} while (data[i] == 0);
}
data[key->bytes - length - 1] = 0;
b1 = bignum_from_bytes(data, key->bytes);
b2 = modpow(b1, key->exponent, key->modulus);
p = data;
for (i = key->bytes; i--;) {
*p++ = bignum_byte(b2, i);
}
freebn(b1);
freebn(b2);
}
/*
* This function is a wrapper on modpow(). It has the same effect
* as modpow(), but employs RSA blinding to protect against timing
* attacks.
*/
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
{
Bignum random, random_encrypted, random_inverse;
Bignum input_blinded, ret_blinded;
Bignum ret;
/*
* Start by inventing a random number chosen uniformly from the
* range 2..modulus-1. (We do this by preparing a random number
* of the right length and retrying if it's greater than the
* modulus, to prevent any potential Bleichenbacher-like
* attacks making use of the uneven distribution within the
* range that would arise from just reducing our number mod n.
* There are timing implications to the potential retries, of
* course, but all they tell you is the modulus, which you
* already knew.)
*/
while (1) {
int bits, byte, bitsleft, v;
random = copybn(key->modulus);
/*
* Find the topmost set bit. (This function will return its
* index plus one.) Then we'll set all bits from that one
* downwards randomly.
*/
bits = bignum_bitcount(random);
byte = 0;
bitsleft = 0;
while (bits--) {
if (bitsleft <= 0)
bitsleft = 8, byte = random_byte();
v = byte & 1;
byte >>= 1;
bitsleft--;
bignum_set_bit(random, bits, v);
}
/*
* Now check that this number is strictly greater than
* zero, and strictly less than modulus.
*/
if (bignum_cmp(random, Zero) <= 0 ||
bignum_cmp(random, key->modulus) >= 0) {
freebn(random);
continue;
} else {
break;
}
}
/*
* RSA blinding relies on the fact that (xy)^d mod n is equal
* to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
* y and y^d; then we multiply x by y, raise to the power d mod
* n as usual, and divide by y^d to recover x^d. Thus an
* attacker can't correlate the timing of the modpow with the
* input, because they don't know anything about the number
* that was input to the actual modpow.
*
* The clever bit is that we don't have to do a huge modpow to
* get y and y^d; we will use the number we just invented as
* _y^d_, and use the _public_ exponent to compute (y^d)^e = y
* from it, which is much faster to do.
*/
random_encrypted = modpow(random, key->exponent, key->modulus);
random_inverse = modinv(random, key->modulus);
input_blinded = modmul(input, random_encrypted, key->modulus);
ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
ret = modmul(ret_blinded, random_inverse, key->modulus);
freebn(ret_blinded);
freebn(input_blinded);
freebn(random_inverse);
freebn(random_encrypted);
freebn(random);
return ret;
}
Bignum rsadecrypt(Bignum input, struct RSAKey *key)
{
return rsa_privkey_op(input, key);
}
int rsastr_len(struct RSAKey *key)
{
Bignum md, ex;
int mdlen, exlen;
md = key->modulus;
ex = key->exponent;
mdlen = (bignum_bitcount(md) + 15) / 16;
exlen = (bignum_bitcount(ex) + 15) / 16;
return 4 * (mdlen + exlen) + 20;
}
void rsastr_fmt(char *str, struct RSAKey *key)
{
Bignum md, ex;
int len = 0, i, nibbles;
static const char hex[] = "0123456789abcdef";
md = key->modulus;
ex = key->exponent;
len += sprintf(str + len, "0x");
nibbles = (3 + bignum_bitcount(ex)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
len += sprintf(str + len, ",0x");
nibbles = (3 + bignum_bitcount(md)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;)
str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
str[len] = '\0';
}
/*
* Generate a fingerprint string for the key. Compatible with the
* OpenSSH fingerprint code.
*/
void rsa_fingerprint(char *str, int len, struct RSAKey *key)
{
struct MD5Context md5c;
unsigned char digest[16];
char buffer[16 * 3 + 40];
int numlen, slen, i;
MD5Init(&md5c);
numlen = ssh1_bignum_length(key->modulus) - 2;
for (i = numlen; i--;) {
unsigned char c = bignum_byte(key->modulus, i);
MD5Update(&md5c, &c, 1);
}
numlen = ssh1_bignum_length(key->exponent) - 2;
for (i = numlen; i--;) {
unsigned char c = bignum_byte(key->exponent, i);
MD5Update(&md5c, &c, 1);
}
MD5Final(digest, &md5c);
sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
for (i = 0; i < 16; i++)
sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
digest[i]);
strncpy(str, buffer, len);
str[len - 1] = '\0';
slen = strlen(str);
if (key->comment && slen < len - 1) {
str[slen] = ' ';
strncpy(str + slen + 1, key->comment, len - slen - 1);
str[len - 1] = '\0';
}
}
/*
* Verify that the public data in an RSA key matches the private
* data. We also check the private data itself: we ensure that p >
* q and that iqmp really is the inverse of q mod p.
*/
int rsa_verify(struct RSAKey *key)
{
Bignum n, ed, pm1, qm1;
int cmp;
/* n must equal pq. */
n = bigmul(key->p, key->q);
cmp = bignum_cmp(n, key->modulus);
freebn(n);
if (cmp != 0)
return 0;
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
pm1 = copybn(key->p);
decbn(pm1);
ed = modmul(key->exponent, key->private_exponent, pm1);
cmp = bignum_cmp(ed, One);
sfree(ed);
if (cmp != 0)
return 0;
qm1 = copybn(key->q);
decbn(qm1);
ed = modmul(key->exponent, key->private_exponent, qm1);
cmp = bignum_cmp(ed, One);
sfree(ed);
if (cmp != 0)
return 0;
/*
* Ensure p > q.
*/
if (bignum_cmp(key->p, key->q) <= 0)
return 0;
/*
* Ensure iqmp * q is congruent to 1, modulo p.
*/
n = modmul(key->iqmp, key->q, key->p);
cmp = bignum_cmp(n, One);
sfree(n);
if (cmp != 0)
return 0;
return 1;
}
/* Public key blob as used by Pageant: exponent before modulus. */
unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
{
int length, pos;
unsigned char *ret;
length = (ssh1_bignum_length(key->modulus) +
ssh1_bignum_length(key->exponent) + 4);
ret = snewn(length, unsigned char);
PUT_32BIT(ret, bignum_bitcount(key->modulus));
pos = 4;
pos += ssh1_write_bignum(ret + pos, key->exponent);
pos += ssh1_write_bignum(ret + pos, key->modulus);
*len = length;
return ret;
}
/* Given a public blob, determine its length. */
int rsa_public_blob_len(void *data)
{
unsigned char *p = (unsigned char *)data;
p += 4; /* length word */
p += ssh1_read_bignum(p, NULL); /* exponent */
p += ssh1_read_bignum(p, NULL); /* modulus */
return p - (unsigned char *)data;
}
void freersakey(struct RSAKey *key)
{
if (key->modulus)
freebn(key->modulus);
if (key->exponent)
freebn(key->exponent);
if (key->private_exponent)
freebn(key->private_exponent);
if (key->comment)
sfree(key->comment);
}
/* ----------------------------------------------------------------------
* Implementation of the ssh-rsa signing key type.
*/
static void getstring(char **data, int *datalen, char **p, int *length)
{
*p = NULL;
if (*datalen < 4)
return;
*length = GET_32BIT(*data);
*datalen -= 4;
*data += 4;
if (*datalen < *length)
return;
*p = *data;
*data += *length;
*datalen -= *length;
}
static Bignum getmp(char **data, int *datalen)
{
char *p;
int length;
Bignum b;
getstring(data, datalen, &p, &length);
if (!p)
return NULL;
b = bignum_from_bytes((unsigned char *)p, length);
return b;
}
static void *rsa2_newkey(char *data, int len)
{
char *p;
int slen;
struct RSAKey *rsa;
rsa = snew(struct RSAKey);
if (!rsa)
return NULL;
getstring(&data, &len, &p, &slen);
if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
sfree(rsa);
return NULL;
}
rsa->exponent = getmp(&data, &len);
rsa->modulus = getmp(&data, &len);
rsa->private_exponent = NULL;
rsa->comment = NULL;
return rsa;
}
static void rsa2_freekey(void *key)
{
struct RSAKey *rsa = (struct RSAKey *) key;
freersakey(rsa);
sfree(rsa);
}
static char *rsa2_fmtkey(void *key)
{
struct RSAKey *rsa = (struct RSAKey *) key;
char *p;
int len;
len = rsastr_len(rsa);
p = snewn(len, char);
rsastr_fmt(p, rsa);
return p;
}
static unsigned char *rsa2_public_blob(void *key, int *len)
{
struct RSAKey *rsa = (struct RSAKey *) key;
int elen, mlen, bloblen;
int i;
unsigned char *blob, *p;
elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
/*
* string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
* (three length fields, 12+7=19).
*/
bloblen = 19 + elen + mlen;
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, 7);
p += 4;
memcpy(p, "ssh-rsa", 7);
p += 7;
PUT_32BIT(p, elen);
p += 4;
for (i = elen; i--;)
*p++ = bignum_byte(rsa->exponent, i);
PUT_32BIT(p, mlen);
p += 4;
for (i = mlen; i--;)
*p++ = bignum_byte(rsa->modulus, i);
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static unsigned char *rsa2_private_blob(void *key, int *len)
{
struct RSAKey *rsa = (struct RSAKey *) key;
int dlen, plen, qlen, ulen, bloblen;
int i;
unsigned char *blob, *p;
dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
plen = (bignum_bitcount(rsa->p) + 8) / 8;
qlen = (bignum_bitcount(rsa->q) + 8) / 8;
ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
/*
* mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
* sum of lengths.
*/
bloblen = 16 + dlen + plen + qlen + ulen;
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, dlen);
p += 4;
for (i = dlen; i--;)
*p++ = bignum_byte(rsa->private_exponent, i);
PUT_32BIT(p, plen);
p += 4;
for (i = plen; i--;)
*p++ = bignum_byte(rsa->p, i);
PUT_32BIT(p, qlen);
p += 4;
for (i = qlen; i--;)
*p++ = bignum_byte(rsa->q, i);
PUT_32BIT(p, ulen);
p += 4;
for (i = ulen; i--;)
*p++ = bignum_byte(rsa->iqmp, i);
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
unsigned char *priv_blob, int priv_len)
{
struct RSAKey *rsa;
char *pb = (char *) priv_blob;
rsa = rsa2_newkey((char *) pub_blob, pub_len);
rsa->private_exponent = getmp(&pb, &priv_len);
rsa->p = getmp(&pb, &priv_len);
rsa->q = getmp(&pb, &priv_len);
rsa->iqmp = getmp(&pb, &priv_len);
if (!rsa_verify(rsa)) {
rsa2_freekey(rsa);
return NULL;
}
return rsa;
}
static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
{
char **b = (char **) blob;
struct RSAKey *rsa;
rsa = snew(struct RSAKey);
if (!rsa)
return NULL;
rsa->comment = NULL;
rsa->modulus = getmp(b, len);
rsa->exponent = getmp(b, len);
rsa->private_exponent = getmp(b, len);
rsa->iqmp = getmp(b, len);
rsa->p = getmp(b, len);
rsa->q = getmp(b, len);
if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
!rsa->iqmp || !rsa->p || !rsa->q) {
sfree(rsa->modulus);
sfree(rsa->exponent);
sfree(rsa->private_exponent);
sfree(rsa->iqmp);
sfree(rsa->p);
sfree(rsa->q);
sfree(rsa);
return NULL;
}
return rsa;
}
static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
struct RSAKey *rsa = (struct RSAKey *) key;
int bloblen, i;
bloblen =
ssh2_bignum_length(rsa->modulus) +
ssh2_bignum_length(rsa->exponent) +
ssh2_bignum_length(rsa->private_exponent) +
ssh2_bignum_length(rsa->iqmp) +
ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
if (bloblen > len)
return bloblen;
bloblen = 0;
#define ENC(x) \
PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
ENC(rsa->modulus);
ENC(rsa->exponent);
ENC(rsa->private_exponent);
ENC(rsa->iqmp);
ENC(rsa->p);
ENC(rsa->q);
return bloblen;
}
static char *rsa2_fingerprint(void *key)
{
struct RSAKey *rsa = (struct RSAKey *) key;
struct MD5Context md5c;
unsigned char digest[16], lenbuf[4];
char buffer[16 * 3 + 40];
char *ret;
int numlen, i;
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
#define ADD_BIGNUM(bignum) \
numlen = (bignum_bitcount(bignum)+8)/8; \
PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
for (i = numlen; i-- ;) { \
unsigned char c = bignum_byte(bignum, i); \
MD5Update(&md5c, &c, 1); \
}
ADD_BIGNUM(rsa->exponent);
ADD_BIGNUM(rsa->modulus);
#undef ADD_BIGNUM
MD5Final(digest, &md5c);
sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
for (i = 0; i < 16; i++)
sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
digest[i]);
ret = snewn(strlen(buffer) + 1, char);
if (ret)
strcpy(ret, buffer);
return ret;
}
/*
* This is the magic ASN.1/DER prefix that goes in the decoded
* signature, between the string of FFs and the actual SHA hash
* value. The meaning of it is:
*
* 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
*
* 30 21 -- a constructed SEQUENCE of length 0x21
* 30 09 -- a constructed sub-SEQUENCE of length 9
* 06 05 -- an object identifier, length 5
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
* 05 00 -- NULL
* 04 14 -- a primitive OCTET STRING of length 0x14
* [0x14 bytes of hash data follows]
*
* The object id in the middle there is listed as `id-sha1' in
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
* ASN module for PKCS #1) and its expanded form is as follows:
*
* id-sha1 OBJECT IDENTIFIER ::= {
* iso(1) identified-organization(3) oiw(14) secsig(3)
* algorithms(2) 26 }
*/
static const unsigned char asn1_weird_stuff[] = {
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
};
#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
static int rsa2_verifysig(void *key, char *sig, int siglen,
char *data, int datalen)
{
struct RSAKey *rsa = (struct RSAKey *) key;
Bignum in, out;
char *p;
int slen;
int bytes, i, j, ret;
unsigned char hash[20];
getstring(&sig, &siglen, &p, &slen);
if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
return 0;
}
in = getmp(&sig, &siglen);
out = modpow(in, rsa->exponent, rsa->modulus);
freebn(in);
ret = 1;
bytes = bignum_bitcount(rsa->modulus) / 8;
/* Top (partial) byte should be zero. */
if (bignum_byte(out, bytes - 1) != 0)
ret = 0;
/* First whole byte should be 1. */
if (bignum_byte(out, bytes - 2) != 1)
ret = 0;
/* Most of the rest should be FF. */
for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
if (bignum_byte(out, i) != 0xFF)
ret = 0;
}
/* Then we expect to see the asn1_weird_stuff. */
for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
if (bignum_byte(out, i) != asn1_weird_stuff[j])
ret = 0;
}
/* Finally, we expect to see the SHA-1 hash of the signed data. */
SHA_Simple(data, datalen, hash);
for (i = 19, j = 0; i >= 0; i--, j++) {
if (bignum_byte(out, i) != hash[j])
ret = 0;
}
return ret;
}
static unsigned char *rsa2_sign(void *key, char *data, int datalen,
int *siglen)
{
struct RSAKey *rsa = (struct RSAKey *) key;
unsigned char *bytes;
int nbytes;
unsigned char hash[20];
Bignum in, out;
int i, j;
SHA_Simple(data, datalen, hash);
nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
bytes = snewn(nbytes, unsigned char);
bytes[0] = 1;
for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
bytes[i] = 0xFF;
for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
bytes[i] = asn1_weird_stuff[j];
for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
bytes[i] = hash[j];
in = bignum_from_bytes(bytes, nbytes);
sfree(bytes);
out = rsa_privkey_op(in, rsa);
freebn(in);
nbytes = (bignum_bitcount(out) + 7) / 8;
bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
PUT_32BIT(bytes, 7);
memcpy(bytes + 4, "ssh-rsa", 7);
PUT_32BIT(bytes + 4 + 7, nbytes);
for (i = 0; i < nbytes; i++)
bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
freebn(out);
*siglen = 4 + 7 + 4 + nbytes;
return bytes;
}
const struct ssh_signkey ssh_rsa = {
rsa2_newkey,
rsa2_freekey,
rsa2_fmtkey,
rsa2_public_blob,
rsa2_private_blob,
rsa2_createkey,
rsa2_openssh_createkey,
rsa2_openssh_fmtkey,
rsa2_fingerprint,
rsa2_verifysig,
rsa2_sign,
"ssh-rsa",
"rsa2"
};