1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-26 01:32:25 +00:00
putty-source/sshsh256.c
Pavel I. Kryukov f872551cd8 Work around LLVM bug 34980
Clang generates an internal failure if the same function
has different target attributes in definition and declaration.
To work around that, we made a proxy predeclared function
without target attribute.
2018-03-12 20:17:47 +00:00

666 lines
21 KiB
C

/*
* SHA-256 algorithm as described at
*
* http://csrc.nist.gov/cryptval/shs.html
*/
#include "ssh.h"
#include <assert.h>
/* ----------------------------------------------------------------------
* Core SHA256 algorithm: processes 16-word blocks into a message digest.
*/
#define ror(x,y) ( ((x) << (32-y)) | (((uint32)(x)) >> (y)) )
#define shr(x,y) ( (((uint32)(x)) >> (y)) )
#define Ch(x,y,z) ( ((x) & (y)) ^ (~(x) & (z)) )
#define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) )
#define bigsigma0(x) ( ror((x),2) ^ ror((x),13) ^ ror((x),22) )
#define bigsigma1(x) ( ror((x),6) ^ ror((x),11) ^ ror((x),25) )
#define smallsigma0(x) ( ror((x),7) ^ ror((x),18) ^ shr((x),3) )
#define smallsigma1(x) ( ror((x),17) ^ ror((x),19) ^ shr((x),10) )
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len);
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len);
void SHA256_Core_Init(SHA256_State *s) {
s->h[0] = 0x6a09e667;
s->h[1] = 0xbb67ae85;
s->h[2] = 0x3c6ef372;
s->h[3] = 0xa54ff53a;
s->h[4] = 0x510e527f;
s->h[5] = 0x9b05688c;
s->h[6] = 0x1f83d9ab;
s->h[7] = 0x5be0cd19;
}
void SHA256_Block(SHA256_State *s, uint32 *block) {
uint32 w[80];
uint32 a,b,c,d,e,f,g,h;
static const int k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
int t;
for (t = 0; t < 16; t++)
w[t] = block[t];
for (t = 16; t < 64; t++)
w[t] = smallsigma1(w[t-2]) + w[t-7] + smallsigma0(w[t-15]) + w[t-16];
a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
for (t = 0; t < 64; t+=8) {
uint32 t1, t2;
#define ROUND(j,a,b,c,d,e,f,g,h) \
t1 = h + bigsigma1(e) + Ch(e,f,g) + k[j] + w[j]; \
t2 = bigsigma0(a) + Maj(a,b,c); \
d = d + t1; h = t1 + t2;
ROUND(t+0, a,b,c,d,e,f,g,h);
ROUND(t+1, h,a,b,c,d,e,f,g);
ROUND(t+2, g,h,a,b,c,d,e,f);
ROUND(t+3, f,g,h,a,b,c,d,e);
ROUND(t+4, e,f,g,h,a,b,c,d);
ROUND(t+5, d,e,f,g,h,a,b,c);
ROUND(t+6, c,d,e,f,g,h,a,b);
ROUND(t+7, b,c,d,e,f,g,h,a);
}
s->h[0] += a; s->h[1] += b; s->h[2] += c; s->h[3] += d;
s->h[4] += e; s->h[5] += f; s->h[6] += g; s->h[7] += h;
}
/* ----------------------------------------------------------------------
* Outer SHA256 algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA256 algorithm.
*/
#define BLKSIZE 64
void SHA256_Init(SHA256_State *s) {
SHA256_Core_Init(s);
s->blkused = 0;
s->lenhi = s->lenlo = 0;
if (supports_sha_ni())
s->sha256 = &SHA256_ni;
else
s->sha256 = &SHA256_sw;
}
void SHA256_Bytes(SHA256_State *s, const void *p, int len) {
unsigned char *q = (unsigned char *)p;
uint32 lenw = len;
/*
* Update the length field.
*/
s->lenlo += lenw;
s->lenhi += (s->lenlo < lenw);
(*(s->sha256))(s, q, len);
}
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len) {
uint32 wordblock[16];
int i;
if (s->blkused && s->blkused+len < BLKSIZE) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= BLKSIZE) {
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
q += BLKSIZE - s->blkused;
len -= BLKSIZE - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
( ((uint32)s->block[i*4+0]) << 24 ) |
( ((uint32)s->block[i*4+1]) << 16 ) |
( ((uint32)s->block[i*4+2]) << 8 ) |
( ((uint32)s->block[i*4+3]) << 0 );
}
SHA256_Block(s, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void SHA256_Final(SHA256_State *s, unsigned char *digest) {
int i;
int pad;
unsigned char c[64];
uint32 lenhi, lenlo;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3));
lenlo = (s->lenlo << 3);
memset(c, 0, pad);
c[0] = 0x80;
SHA256_Bytes(s, &c, pad);
c[0] = (lenhi >> 24) & 0xFF;
c[1] = (lenhi >> 16) & 0xFF;
c[2] = (lenhi >> 8) & 0xFF;
c[3] = (lenhi >> 0) & 0xFF;
c[4] = (lenlo >> 24) & 0xFF;
c[5] = (lenlo >> 16) & 0xFF;
c[6] = (lenlo >> 8) & 0xFF;
c[7] = (lenlo >> 0) & 0xFF;
SHA256_Bytes(s, &c, 8);
for (i = 0; i < 8; i++) {
digest[i*4+0] = (s->h[i] >> 24) & 0xFF;
digest[i*4+1] = (s->h[i] >> 16) & 0xFF;
digest[i*4+2] = (s->h[i] >> 8) & 0xFF;
digest[i*4+3] = (s->h[i] >> 0) & 0xFF;
}
}
void SHA256_Simple(const void *p, int len, unsigned char *output) {
SHA256_State s;
SHA256_Init(&s);
SHA256_Bytes(&s, p, len);
SHA256_Final(&s, output);
smemclr(&s, sizeof(s));
}
/*
* Thin abstraction for things where hashes are pluggable.
*/
static void *sha256_init(void)
{
SHA256_State *s;
s = snew(SHA256_State);
SHA256_Init(s);
return s;
}
static void *sha256_copy(const void *vold)
{
const SHA256_State *old = (const SHA256_State *)vold;
SHA256_State *s;
s = snew(SHA256_State);
*s = *old;
return s;
}
static void sha256_free(void *handle)
{
SHA256_State *s = handle;
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha256_bytes(void *handle, const void *p, int len)
{
SHA256_State *s = handle;
SHA256_Bytes(s, p, len);
}
static void sha256_final(void *handle, unsigned char *output)
{
SHA256_State *s = handle;
SHA256_Final(s, output);
sha256_free(s);
}
const struct ssh_hash ssh_sha256 = {
sha256_init, sha256_copy, sha256_bytes, sha256_final, sha256_free,
32, "SHA-256"
};
/* ----------------------------------------------------------------------
* The above is the SHA-256 algorithm itself. Now we implement the
* HMAC wrapper on it.
*/
static void *sha256_make_context(void *cipher_ctx)
{
return snewn(3, SHA256_State);
}
static void sha256_free_context(void *handle)
{
smemclr(handle, 3 * sizeof(SHA256_State));
sfree(handle);
}
static void sha256_key_internal(void *handle, unsigned char *key, int len)
{
SHA256_State *keys = (SHA256_State *)handle;
unsigned char foo[64];
int i;
memset(foo, 0x36, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA256_Init(&keys[0]);
SHA256_Bytes(&keys[0], foo, 64);
memset(foo, 0x5C, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA256_Init(&keys[1]);
SHA256_Bytes(&keys[1], foo, 64);
smemclr(foo, 64); /* burn the evidence */
}
static void sha256_key(void *handle, unsigned char *key)
{
sha256_key_internal(handle, key, 32);
}
static void hmacsha256_start(void *handle)
{
SHA256_State *keys = (SHA256_State *)handle;
keys[2] = keys[0]; /* structure copy */
}
static void hmacsha256_bytes(void *handle, unsigned char const *blk, int len)
{
SHA256_State *keys = (SHA256_State *)handle;
SHA256_Bytes(&keys[2], (void *)blk, len);
}
static void hmacsha256_genresult(void *handle, unsigned char *hmac)
{
SHA256_State *keys = (SHA256_State *)handle;
SHA256_State s;
unsigned char intermediate[32];
s = keys[2]; /* structure copy */
SHA256_Final(&s, intermediate);
s = keys[1]; /* structure copy */
SHA256_Bytes(&s, intermediate, 32);
SHA256_Final(&s, hmac);
}
static void sha256_do_hmac(void *handle, unsigned char *blk, int len,
unsigned long seq, unsigned char *hmac)
{
unsigned char seqbuf[4];
PUT_32BIT_MSB_FIRST(seqbuf, seq);
hmacsha256_start(handle);
hmacsha256_bytes(handle, seqbuf, 4);
hmacsha256_bytes(handle, blk, len);
hmacsha256_genresult(handle, hmac);
}
static void sha256_generate(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
sha256_do_hmac(handle, blk, len, seq, blk + len);
}
static int hmacsha256_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[32];
hmacsha256_genresult(handle, correct);
return smemeq(correct, hmac, 32);
}
static int sha256_verify(void *handle, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char correct[32];
sha256_do_hmac(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 32);
}
const struct ssh_mac ssh_hmac_sha256 = {
sha256_make_context, sha256_free_context, sha256_key,
sha256_generate, sha256_verify,
hmacsha256_start, hmacsha256_bytes,
hmacsha256_genresult, hmacsha256_verresult,
"hmac-sha2-256", "hmac-sha2-256-etm@openssh.com",
32, 32,
"HMAC-SHA-256"
};
#ifdef TEST
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int main(void) {
unsigned char digest[32];
int i, j, errors;
struct {
const char *teststring;
unsigned char digest[32];
} tests[] = {
{ "abc", {
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad,
} },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", {
0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1,
} },
};
errors = 0;
for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) {
SHA256_Simple(tests[i].teststring,
strlen(tests[i].teststring), digest);
for (j = 0; j < 32; j++) {
if (digest[j] != tests[i].digest[j]) {
fprintf(stderr,
"\"%s\" digest byte %d should be 0x%02x, is 0x%02x\n",
tests[i].teststring, j, tests[i].digest[j], digest[j]);
errors++;
}
}
}
printf("%d errors\n", errors);
return 0;
}
#endif
#ifdef COMPILER_SUPPORTS_SHA_NI
/*
* Set target architecture for Clang and GCC
*/
#if !defined(__clang__) && defined(__GNUC__)
# pragma GCC target("sha")
# pragma GCC target("sse4.1")
#endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else
# define FUNC_ISA
#endif
#include <wmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h>
#endif
/* SHA256 implementation using new instructions
The code is based on Jeffrey Walton's SHA256 implementation:
https://github.com/noloader/SHA-Intrinsics
*/
FUNC_ISA
static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
if (s->blkused && s->blkused+len < BLKSIZE) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
__m128i STATE0, STATE1;
__m128i MSG, TMP;
__m128i MSG0, MSG1, MSG2, MSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
/* Load initial values */
TMP = _mm_loadu_si128((const __m128i*) &s->h[0]);
STATE1 = _mm_loadu_si128((const __m128i*) &s->h[4]);
TMP = _mm_shuffle_epi32(TMP, 0xB1); /* CDAB */
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); /* EFGH */
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); /* ABEF */
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); /* CDGH */
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= BLKSIZE) {
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
q += BLKSIZE - s->blkused;
len -= BLKSIZE - s->blkused;
/* Save current state */
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
/* Rounds 0-3 */
MSG = _mm_loadu_si128((const __m128i*) (s->block + 0));
MSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*) (s->block + 16));
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*) (s->block + 32));
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*) (s->block + 48));
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 16-19 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 20-23 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 24-27 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 28-31 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 32-35 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 36-39 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 40-43 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 44-47 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 48-51 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 52-55 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 56-59 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 60-63 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Combine state */
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
s->blkused = 0;
}
TMP = _mm_shuffle_epi32(STATE0, 0x1B); /* FEBA */
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); /* DCHG */
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); /* DCBA */
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); /* ABEF */
/* Save state */
_mm_storeu_si128((__m128i*) &s->h[0], STATE0);
_mm_storeu_si128((__m128i*) &s->h[4], STATE1);
memcpy(s->block, q, len);
s->blkused = len;
}
}
/*
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
*/
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len)
{
SHA256_ni_(s, q, len);
}
#else /* COMPILER_SUPPORTS_AES_NI */
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len)
{
assert(0);
}
#endif /* COMPILER_SUPPORTS_AES_NI */