1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/keygen/rsa.c
Simon Tatham 8f0f5b69c0 Move key-generation code into its own subdir.
Including mpunsafe.{h,c}, which should be an extra defence against
inadvertently using it outside the keygen library.
2021-04-22 18:09:13 +01:00

293 lines
9.0 KiB
C

/*
* RSA key generation.
*/
#include <assert.h>
#include "ssh.h"
#include "sshkeygen.h"
#include "mpint.h"
#define RSA_EXPONENT 65537
#define NFIRSTBITS 13
static void invent_firstbits(unsigned *one, unsigned *two,
unsigned min_separation);
typedef struct RSAPrimeDetails RSAPrimeDetails;
struct RSAPrimeDetails {
bool strong;
int bits, bitsm1m1, bitsm1, bitsp1;
unsigned firstbits;
ProgressPhase phase_main, phase_m1m1, phase_m1, phase_p1;
};
#define STRONG_MARGIN (20 + NFIRSTBITS)
static RSAPrimeDetails setup_rsa_prime(
int bits, bool strong, PrimeGenerationContext *pgc, ProgressReceiver *prog)
{
RSAPrimeDetails pd;
pd.bits = bits;
if (strong) {
pd.bitsm1 = (bits - STRONG_MARGIN) / 2;
pd.bitsp1 = (bits - STRONG_MARGIN) - pd.bitsm1;
pd.bitsm1m1 = (pd.bitsm1 - STRONG_MARGIN) / 2;
if (pd.bitsm1m1 < STRONG_MARGIN) {
/* Absurdly small prime, but we should at least not crash. */
strong = false;
}
}
pd.strong = strong;
if (pd.strong) {
pd.phase_m1m1 = primegen_add_progress_phase(pgc, prog, pd.bitsm1m1);
pd.phase_m1 = primegen_add_progress_phase(pgc, prog, pd.bitsm1);
pd.phase_p1 = primegen_add_progress_phase(pgc, prog, pd.bitsp1);
}
pd.phase_main = primegen_add_progress_phase(pgc, prog, pd.bits);
return pd;
}
static mp_int *generate_rsa_prime(
RSAPrimeDetails pd, PrimeGenerationContext *pgc, ProgressReceiver *prog)
{
mp_int *m1m1 = NULL, *m1 = NULL, *p1 = NULL, *p = NULL;
PrimeCandidateSource *pcs;
if (pd.strong) {
progress_start_phase(prog, pd.phase_m1m1);
pcs = pcs_new_with_firstbits(pd.bitsm1m1, pd.firstbits, NFIRSTBITS);
m1m1 = primegen_generate(pgc, pcs, prog);
progress_report_phase_complete(prog);
progress_start_phase(prog, pd.phase_m1);
pcs = pcs_new_with_firstbits(pd.bitsm1, pd.firstbits, NFIRSTBITS);
pcs_require_residue_1_mod_prime(pcs, m1m1);
m1 = primegen_generate(pgc, pcs, prog);
progress_report_phase_complete(prog);
progress_start_phase(prog, pd.phase_p1);
pcs = pcs_new_with_firstbits(pd.bitsp1, pd.firstbits, NFIRSTBITS);
p1 = primegen_generate(pgc, pcs, prog);
progress_report_phase_complete(prog);
}
progress_start_phase(prog, pd.phase_main);
pcs = pcs_new_with_firstbits(pd.bits, pd.firstbits, NFIRSTBITS);
pcs_avoid_residue_small(pcs, RSA_EXPONENT, 1);
if (pd.strong) {
pcs_require_residue_1_mod_prime(pcs, m1);
mp_int *p1_minus_1 = mp_copy(p1);
mp_sub_integer_into(p1_minus_1, p1, 1);
pcs_require_residue(pcs, p1, p1_minus_1);
mp_free(p1_minus_1);
}
p = primegen_generate(pgc, pcs, prog);
progress_report_phase_complete(prog);
if (m1m1)
mp_free(m1m1);
if (m1)
mp_free(m1);
if (p1)
mp_free(p1);
return p;
}
int rsa_generate(RSAKey *key, int bits, bool strong,
PrimeGenerationContext *pgc, ProgressReceiver *prog)
{
key->sshk.vt = &ssh_rsa;
/*
* We don't generate e; we just use a standard one always.
*/
mp_int *exponent = mp_from_integer(RSA_EXPONENT);
/*
* Generate p and q: primes with combined length `bits', not
* congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
* and e to be coprime, and (q-1) and e to be coprime, but in
* general that's slightly more fiddly to arrange. By choosing
* a prime e, we can simplify the criterion.)
*
* We give a min_separation of 2 to invent_firstbits(), ensuring
* that the two primes won't be very close to each other. (The
* chance of them being _dangerously_ close is negligible - even
* more so than an attacker guessing a whole 256-bit session key -
* but it doesn't cost much to make sure.)
*/
int qbits = bits / 2;
int pbits = bits - qbits;
assert(pbits >= qbits);
RSAPrimeDetails pd = setup_rsa_prime(pbits, strong, pgc, prog);
RSAPrimeDetails qd = setup_rsa_prime(qbits, strong, pgc, prog);
progress_ready(prog);
invent_firstbits(&pd.firstbits, &qd.firstbits, 2);
mp_int *p = generate_rsa_prime(pd, pgc, prog);
mp_int *q = generate_rsa_prime(qd, pgc, prog);
/*
* Ensure p > q, by swapping them if not.
*
* We only need to do this if the two primes were generated with
* the same number of bits (i.e. if the requested key size is
* even) - otherwise it's already guaranteed!
*/
if (pbits == qbits) {
mp_cond_swap(p, q, mp_cmp_hs(q, p));
} else {
assert(mp_cmp_hs(p, q));
}
/*
* Now we have p, q and e. All we need to do now is work out
* the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
* and (q^-1 mod p).
*/
mp_int *modulus = mp_mul(p, q);
mp_int *pm1 = mp_copy(p);
mp_sub_integer_into(pm1, pm1, 1);
mp_int *qm1 = mp_copy(q);
mp_sub_integer_into(qm1, qm1, 1);
mp_int *phi_n = mp_mul(pm1, qm1);
mp_free(pm1);
mp_free(qm1);
mp_int *private_exponent = mp_invert(exponent, phi_n);
mp_free(phi_n);
mp_int *iqmp = mp_invert(q, p);
/*
* Populate the returned structure.
*/
key->modulus = modulus;
key->exponent = exponent;
key->private_exponent = private_exponent;
key->p = p;
key->q = q;
key->iqmp = iqmp;
key->bits = mp_get_nbits(modulus);
key->bytes = (key->bits + 7) / 8;
return 1;
}
/*
* Invent a pair of values suitable for use as the 'firstbits' values
* for the two RSA primes, such that their product is at least 2, and
* such that their difference is also at least min_separation.
*
* This is used for generating RSA keys which have exactly the
* specified number of bits rather than one fewer - if you generate an
* a-bit and a b-bit number completely at random and multiply them
* together, you could end up with either an (ab-1)-bit number or an
* (ab)-bit number. The former happens log(2)*2-1 of the time (about
* 39%) and, though actually harmless, every time it occurs it has a
* non-zero probability of sparking a user email along the lines of
* 'Hey, I asked PuTTYgen for a 2048-bit key and I only got 2047 bits!
* Bug!'
*/
static inline unsigned firstbits_b_min(
unsigned a, unsigned lo, unsigned hi, unsigned min_separation)
{
/* To get a large enough product, b must be at least this much */
unsigned b_min = (2*lo*lo + a - 1) / a;
/* Now enforce a<b, optionally with minimum separation */
if (b_min < a + min_separation)
b_min = a + min_separation;
/* And cap at the upper limit */
if (b_min > hi)
b_min = hi;
return b_min;
}
static void invent_firstbits(unsigned *one, unsigned *two,
unsigned min_separation)
{
/*
* We'll pick 12 initial bits (number selected at random) for each
* prime, not counting the leading 1. So we want to return two
* values in the range [2^12,2^13) whose product is at least 2^25.
*
* Strategy: count up all the viable pairs, then select a random
* number in that range and use it to pick a pair.
*
* To keep things simple, we'll ensure a < b, and randomly swap
* them at the end.
*/
const unsigned lo = 1<<12, hi = 1<<13, minproduct = 2*lo*lo;
unsigned a, b;
/*
* Count up the number of prefixes of b that would be valid for
* each prefix of a.
*/
mp_int *total = mp_new(32);
for (a = lo; a < hi; a++) {
unsigned b_min = firstbits_b_min(a, lo, hi, min_separation);
mp_add_integer_into(total, total, hi - b_min);
}
/*
* Make up a random number in the range [0,2*total).
*/
mp_int *mlo = mp_from_integer(0), *mhi = mp_new(32);
mp_lshift_fixed_into(mhi, total, 1);
mp_int *randval = mp_random_in_range(mlo, mhi);
mp_free(mlo);
mp_free(mhi);
/*
* Use the low bit of randval as our swap indicator, leaving the
* rest of it in the range [0,total).
*/
unsigned swap = mp_get_bit(randval, 0);
mp_rshift_fixed_into(randval, randval, 1);
/*
* Now do the same counting loop again to make the actual choice.
*/
a = b = 0;
for (unsigned a_candidate = lo; a_candidate < hi; a_candidate++) {
unsigned b_min = firstbits_b_min(a_candidate, lo, hi, min_separation);
unsigned limit = hi - b_min;
unsigned b_candidate = b_min + mp_get_integer(randval);
unsigned use_it = 1 ^ mp_hs_integer(randval, limit);
a ^= (a ^ a_candidate) & -use_it;
b ^= (b ^ b_candidate) & -use_it;
mp_sub_integer_into(randval, randval, limit);
}
mp_free(randval);
mp_free(total);
/*
* Check everything came out right.
*/
assert(lo <= a);
assert(a < hi);
assert(lo <= b);
assert(b < hi);
assert(a * b >= minproduct);
assert(b >= a + min_separation);
/*
* Last-minute optional swap of a and b.
*/
unsigned diff = (a ^ b) & (-swap);
a ^= diff;
b ^= diff;
*one = a;
*two = b;
}