mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
acc21c4c0f
Those were a reasonable abbreviation when the code almost never had to deal with little-endian numbers, but they've crept into enough places now (e.g. the ECC formatting) that I think I'd now prefer that every use of the integer read/write macros was clearly marked with its endianness. So all uses of GET_??BIT and PUT_??BIT are now qualified. The special versions in x11fwd.c, which used variable endianness because so does the X11 protocol, are suffixed _X11 to make that clear, and where that pushed line lengths over 80 characters I've taken the opportunity to name a local variable to remind me of what that extra parameter actually does.
1194 lines
37 KiB
C
1194 lines
37 KiB
C
/*
|
|
* Platform-independent bits of X11 forwarding.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
|
|
#include "putty.h"
|
|
#include "ssh.h"
|
|
#include "sshchan.h"
|
|
#include "tree234.h"
|
|
|
|
#define GET_16BIT_X11(endian, cp) \
|
|
(endian=='B' ? GET_16BIT_MSB_FIRST(cp) : GET_16BIT_LSB_FIRST(cp))
|
|
|
|
#define PUT_16BIT_X11(endian, cp, val) \
|
|
(endian=='B' ? PUT_16BIT_MSB_FIRST(cp, val) : PUT_16BIT_LSB_FIRST(cp, val))
|
|
|
|
const char *const x11_authnames[] = {
|
|
"", "MIT-MAGIC-COOKIE-1", "XDM-AUTHORIZATION-1"
|
|
};
|
|
|
|
struct XDMSeen {
|
|
unsigned int time;
|
|
unsigned char clientid[6];
|
|
};
|
|
|
|
typedef struct X11Connection {
|
|
unsigned char firstpkt[12]; /* first X data packet */
|
|
tree234 *authtree;
|
|
struct X11Display *disp;
|
|
char *auth_protocol;
|
|
unsigned char *auth_data;
|
|
int data_read, auth_plen, auth_psize, auth_dlen, auth_dsize;
|
|
bool verified;
|
|
bool input_wanted;
|
|
bool no_data_sent_to_x_client;
|
|
char *peer_addr;
|
|
int peer_port;
|
|
SshChannel *c; /* channel structure held by SSH backend */
|
|
Socket *s;
|
|
|
|
Plug plug;
|
|
Channel chan;
|
|
} X11Connection;
|
|
|
|
static int xdmseen_cmp(void *a, void *b)
|
|
{
|
|
struct XDMSeen *sa = a, *sb = b;
|
|
return sa->time > sb->time ? 1 :
|
|
sa->time < sb->time ? -1 :
|
|
memcmp(sa->clientid, sb->clientid, sizeof(sa->clientid));
|
|
}
|
|
|
|
struct X11FakeAuth *x11_invent_fake_auth(tree234 *authtree, int authtype)
|
|
{
|
|
struct X11FakeAuth *auth = snew(struct X11FakeAuth);
|
|
int i;
|
|
|
|
/*
|
|
* This function has the job of inventing a set of X11 fake auth
|
|
* data, and adding it to 'authtree'. We must preserve the
|
|
* property that for any given actual authorisation attempt, _at
|
|
* most one_ thing in the tree can possibly match it.
|
|
*
|
|
* For MIT-MAGIC-COOKIE-1, that's not too difficult: the match
|
|
* criterion is simply that the entire cookie is correct, so we
|
|
* just have to make sure we don't make up two cookies the same.
|
|
* (Vanishingly unlikely, but we check anyway to be sure, and go
|
|
* round again inventing a new cookie if add234 tells us the one
|
|
* we thought of is already in use.)
|
|
*
|
|
* For XDM-AUTHORIZATION-1, it's a little more fiddly. The setup
|
|
* with XA1 is that half the cookie is used as a DES key with
|
|
* which to CBC-encrypt an assortment of stuff. Happily, the stuff
|
|
* encrypted _begins_ with the other half of the cookie, and the
|
|
* IV is always zero, which means that any valid XA1 authorisation
|
|
* attempt for a given cookie must begin with the same cipher
|
|
* block, consisting of the DES ECB encryption of the first half
|
|
* of the cookie using the second half as a key. So we compute
|
|
* that cipher block here and now, and use it as the sorting key
|
|
* for distinguishing XA1 entries in the tree.
|
|
*/
|
|
|
|
if (authtype == X11_MIT) {
|
|
auth->proto = X11_MIT;
|
|
|
|
/* MIT-MAGIC-COOKIE-1. Cookie size is 128 bits (16 bytes). */
|
|
auth->datalen = 16;
|
|
auth->data = snewn(auth->datalen, unsigned char);
|
|
auth->xa1_firstblock = NULL;
|
|
|
|
while (1) {
|
|
random_read(auth->data, auth->datalen);
|
|
if (add234(authtree, auth) == auth)
|
|
break;
|
|
}
|
|
|
|
auth->xdmseen = NULL;
|
|
} else {
|
|
assert(authtype == X11_XDM);
|
|
auth->proto = X11_XDM;
|
|
|
|
/* XDM-AUTHORIZATION-1. Cookie size is 16 bytes; byte 8 is zero. */
|
|
auth->datalen = 16;
|
|
auth->data = snewn(auth->datalen, unsigned char);
|
|
auth->xa1_firstblock = snewn(8, unsigned char);
|
|
memset(auth->xa1_firstblock, 0, 8);
|
|
|
|
while (1) {
|
|
random_read(auth->data, 15);
|
|
auth->data[15] = auth->data[8];
|
|
auth->data[8] = 0;
|
|
|
|
memcpy(auth->xa1_firstblock, auth->data, 8);
|
|
des_encrypt_xdmauth(auth->data + 9, auth->xa1_firstblock, 8);
|
|
if (add234(authtree, auth) == auth)
|
|
break;
|
|
}
|
|
|
|
auth->xdmseen = newtree234(xdmseen_cmp);
|
|
}
|
|
auth->protoname = dupstr(x11_authnames[auth->proto]);
|
|
auth->datastring = snewn(auth->datalen * 2 + 1, char);
|
|
for (i = 0; i < auth->datalen; i++)
|
|
sprintf(auth->datastring + i*2, "%02x",
|
|
auth->data[i]);
|
|
|
|
auth->disp = NULL;
|
|
auth->share_cs = NULL;
|
|
auth->share_chan = NULL;
|
|
|
|
return auth;
|
|
}
|
|
|
|
void x11_free_fake_auth(struct X11FakeAuth *auth)
|
|
{
|
|
if (auth->data)
|
|
smemclr(auth->data, auth->datalen);
|
|
sfree(auth->data);
|
|
sfree(auth->protoname);
|
|
sfree(auth->datastring);
|
|
sfree(auth->xa1_firstblock);
|
|
if (auth->xdmseen != NULL) {
|
|
struct XDMSeen *seen;
|
|
while ((seen = delpos234(auth->xdmseen, 0)) != NULL)
|
|
sfree(seen);
|
|
freetree234(auth->xdmseen);
|
|
}
|
|
sfree(auth);
|
|
}
|
|
|
|
int x11_authcmp(void *av, void *bv)
|
|
{
|
|
struct X11FakeAuth *a = (struct X11FakeAuth *)av;
|
|
struct X11FakeAuth *b = (struct X11FakeAuth *)bv;
|
|
|
|
if (a->proto < b->proto)
|
|
return -1;
|
|
else if (a->proto > b->proto)
|
|
return +1;
|
|
|
|
if (a->proto == X11_MIT) {
|
|
if (a->datalen < b->datalen)
|
|
return -1;
|
|
else if (a->datalen > b->datalen)
|
|
return +1;
|
|
|
|
return memcmp(a->data, b->data, a->datalen);
|
|
} else {
|
|
assert(a->proto == X11_XDM);
|
|
|
|
return memcmp(a->xa1_firstblock, b->xa1_firstblock, 8);
|
|
}
|
|
}
|
|
|
|
struct X11Display *x11_setup_display(const char *display, Conf *conf,
|
|
char **error_msg)
|
|
{
|
|
struct X11Display *disp = snew(struct X11Display);
|
|
char *localcopy;
|
|
|
|
*error_msg = NULL;
|
|
|
|
if (!display || !*display) {
|
|
localcopy = platform_get_x_display();
|
|
if (!localcopy || !*localcopy) {
|
|
sfree(localcopy);
|
|
localcopy = dupstr(":0"); /* plausible default for any platform */
|
|
}
|
|
} else
|
|
localcopy = dupstr(display);
|
|
|
|
/*
|
|
* Parse the display name.
|
|
*
|
|
* We expect this to have one of the following forms:
|
|
*
|
|
* - the standard X format which looks like
|
|
* [ [ protocol '/' ] host ] ':' displaynumber [ '.' screennumber ]
|
|
* (X11 also permits a double colon to indicate DECnet, but
|
|
* that's not our problem, thankfully!)
|
|
*
|
|
* - only seen in the wild on MacOS (so far): a pathname to a
|
|
* Unix-domain socket, which will typically and confusingly
|
|
* end in ":0", and which I'm currently distinguishing from
|
|
* the standard scheme by noting that it starts with '/'.
|
|
*/
|
|
if (localcopy[0] == '/') {
|
|
disp->unixsocketpath = localcopy;
|
|
disp->unixdomain = true;
|
|
disp->hostname = NULL;
|
|
disp->displaynum = -1;
|
|
disp->screennum = 0;
|
|
disp->addr = NULL;
|
|
} else {
|
|
char *colon, *dot, *slash;
|
|
char *protocol, *hostname;
|
|
|
|
colon = host_strrchr(localcopy, ':');
|
|
if (!colon) {
|
|
*error_msg = dupprintf("display name '%s' has no ':number'"
|
|
" suffix", localcopy);
|
|
|
|
sfree(disp);
|
|
sfree(localcopy);
|
|
return NULL;
|
|
}
|
|
|
|
*colon++ = '\0';
|
|
dot = strchr(colon, '.');
|
|
if (dot)
|
|
*dot++ = '\0';
|
|
|
|
disp->displaynum = atoi(colon);
|
|
if (dot)
|
|
disp->screennum = atoi(dot);
|
|
else
|
|
disp->screennum = 0;
|
|
|
|
protocol = NULL;
|
|
hostname = localcopy;
|
|
if (colon > localcopy) {
|
|
slash = strchr(localcopy, '/');
|
|
if (slash) {
|
|
*slash++ = '\0';
|
|
protocol = localcopy;
|
|
hostname = slash;
|
|
}
|
|
}
|
|
|
|
disp->hostname = *hostname ? dupstr(hostname) : NULL;
|
|
|
|
if (protocol)
|
|
disp->unixdomain = (!strcmp(protocol, "local") ||
|
|
!strcmp(protocol, "unix"));
|
|
else if (!*hostname || !strcmp(hostname, "unix"))
|
|
disp->unixdomain = platform_uses_x11_unix_by_default;
|
|
else
|
|
disp->unixdomain = false;
|
|
|
|
if (!disp->hostname && !disp->unixdomain)
|
|
disp->hostname = dupstr("localhost");
|
|
|
|
disp->unixsocketpath = NULL;
|
|
disp->addr = NULL;
|
|
|
|
sfree(localcopy);
|
|
}
|
|
|
|
/*
|
|
* Look up the display hostname, if we need to.
|
|
*/
|
|
if (!disp->unixdomain) {
|
|
const char *err;
|
|
|
|
disp->port = 6000 + disp->displaynum;
|
|
disp->addr = name_lookup(disp->hostname, disp->port,
|
|
&disp->realhost, conf, ADDRTYPE_UNSPEC,
|
|
NULL, NULL);
|
|
|
|
if ((err = sk_addr_error(disp->addr)) != NULL) {
|
|
*error_msg = dupprintf("unable to resolve host name '%s' in "
|
|
"display name", disp->hostname);
|
|
|
|
sk_addr_free(disp->addr);
|
|
sfree(disp->hostname);
|
|
sfree(disp->unixsocketpath);
|
|
sfree(disp);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try upgrading an IP-style localhost display to a Unix-socket
|
|
* display (as the standard X connection libraries do).
|
|
*/
|
|
if (!disp->unixdomain && sk_address_is_local(disp->addr)) {
|
|
SockAddr *ux = platform_get_x11_unix_address(NULL, disp->displaynum);
|
|
const char *err = sk_addr_error(ux);
|
|
if (!err) {
|
|
/* Create trial connection to see if there is a useful Unix-domain
|
|
* socket */
|
|
Socket *s = sk_new(sk_addr_dup(ux), 0, false, false,
|
|
false, false, nullplug);
|
|
err = sk_socket_error(s);
|
|
sk_close(s);
|
|
}
|
|
if (err) {
|
|
sk_addr_free(ux);
|
|
} else {
|
|
sk_addr_free(disp->addr);
|
|
disp->unixdomain = true;
|
|
disp->addr = ux;
|
|
/* Fill in the rest in a moment */
|
|
}
|
|
}
|
|
|
|
if (disp->unixdomain) {
|
|
if (!disp->addr)
|
|
disp->addr = platform_get_x11_unix_address(disp->unixsocketpath,
|
|
disp->displaynum);
|
|
if (disp->unixsocketpath)
|
|
disp->realhost = dupstr(disp->unixsocketpath);
|
|
else
|
|
disp->realhost = dupprintf("unix:%d", disp->displaynum);
|
|
disp->port = 0;
|
|
}
|
|
|
|
/*
|
|
* Fetch the local authorisation details.
|
|
*/
|
|
disp->localauthproto = X11_NO_AUTH;
|
|
disp->localauthdata = NULL;
|
|
disp->localauthdatalen = 0;
|
|
platform_get_x11_auth(disp, conf);
|
|
|
|
return disp;
|
|
}
|
|
|
|
void x11_free_display(struct X11Display *disp)
|
|
{
|
|
sfree(disp->hostname);
|
|
sfree(disp->unixsocketpath);
|
|
if (disp->localauthdata)
|
|
smemclr(disp->localauthdata, disp->localauthdatalen);
|
|
sfree(disp->localauthdata);
|
|
sk_addr_free(disp->addr);
|
|
sfree(disp);
|
|
}
|
|
|
|
#define XDM_MAXSKEW 20*60 /* 20 minute clock skew should be OK */
|
|
|
|
static const char *x11_verify(unsigned long peer_ip, int peer_port,
|
|
tree234 *authtree, char *proto,
|
|
unsigned char *data, int dlen,
|
|
struct X11FakeAuth **auth_ret)
|
|
{
|
|
struct X11FakeAuth match_dummy; /* for passing to find234 */
|
|
struct X11FakeAuth *auth;
|
|
|
|
/*
|
|
* First, do a lookup in our tree to find the only authorisation
|
|
* record that _might_ match.
|
|
*/
|
|
if (!strcmp(proto, x11_authnames[X11_MIT])) {
|
|
/*
|
|
* Just look up the whole cookie that was presented to us,
|
|
* which x11_authcmp will compare against the cookies we
|
|
* currently believe in.
|
|
*/
|
|
match_dummy.proto = X11_MIT;
|
|
match_dummy.datalen = dlen;
|
|
match_dummy.data = data;
|
|
} else if (!strcmp(proto, x11_authnames[X11_XDM])) {
|
|
/*
|
|
* Look up the first cipher block, against the stored first
|
|
* cipher blocks for the XDM-AUTHORIZATION-1 cookies we
|
|
* currently know. (See comment in x11_invent_fake_auth.)
|
|
*/
|
|
match_dummy.proto = X11_XDM;
|
|
match_dummy.xa1_firstblock = data;
|
|
} else {
|
|
return "Unsupported authorisation protocol";
|
|
}
|
|
|
|
if ((auth = find234(authtree, &match_dummy, 0)) == NULL)
|
|
return "Authorisation not recognised";
|
|
|
|
/*
|
|
* If we're using MIT-MAGIC-COOKIE-1, that was all we needed. If
|
|
* we're doing XDM-AUTHORIZATION-1, though, we have to check the
|
|
* rest of the auth data.
|
|
*/
|
|
if (auth->proto == X11_XDM) {
|
|
unsigned long t;
|
|
time_t tim;
|
|
int i;
|
|
struct XDMSeen *seen, *ret;
|
|
|
|
if (dlen != 24)
|
|
return "XDM-AUTHORIZATION-1 data was wrong length";
|
|
if (peer_port == -1)
|
|
return "cannot do XDM-AUTHORIZATION-1 without remote address data";
|
|
des_decrypt_xdmauth(auth->data+9, data, 24);
|
|
if (memcmp(auth->data, data, 8) != 0)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* cookie wrong */
|
|
if (GET_32BIT_MSB_FIRST(data+8) != peer_ip)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* IP wrong */
|
|
if ((int)GET_16BIT_MSB_FIRST(data+12) != peer_port)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* port wrong */
|
|
t = GET_32BIT_MSB_FIRST(data+14);
|
|
for (i = 18; i < 24; i++)
|
|
if (data[i] != 0) /* zero padding wrong */
|
|
return "XDM-AUTHORIZATION-1 data failed check";
|
|
tim = time(NULL);
|
|
if (((unsigned long)t - (unsigned long)tim
|
|
+ XDM_MAXSKEW) > 2*XDM_MAXSKEW)
|
|
return "XDM-AUTHORIZATION-1 time stamp was too far out";
|
|
seen = snew(struct XDMSeen);
|
|
seen->time = t;
|
|
memcpy(seen->clientid, data+8, 6);
|
|
assert(auth->xdmseen != NULL);
|
|
ret = add234(auth->xdmseen, seen);
|
|
if (ret != seen) {
|
|
sfree(seen);
|
|
return "XDM-AUTHORIZATION-1 data replayed";
|
|
}
|
|
/* While we're here, purge entries too old to be replayed. */
|
|
for (;;) {
|
|
seen = index234(auth->xdmseen, 0);
|
|
assert(seen != NULL);
|
|
if (t - seen->time <= XDM_MAXSKEW)
|
|
break;
|
|
sfree(delpos234(auth->xdmseen, 0));
|
|
}
|
|
}
|
|
/* implement other protocols here if ever required */
|
|
|
|
*auth_ret = auth;
|
|
return NULL;
|
|
}
|
|
|
|
ptrlen BinarySource_get_string_xauth(BinarySource *src)
|
|
{
|
|
size_t len = get_uint16(src);
|
|
return get_data(src, len);
|
|
}
|
|
#define get_string_xauth(src) \
|
|
BinarySource_get_string_xauth(BinarySource_UPCAST(src))
|
|
|
|
void BinarySink_put_stringpl_xauth(BinarySink *bs, ptrlen pl)
|
|
{
|
|
assert((pl.len >> 16) == 0);
|
|
put_uint16(bs, pl.len);
|
|
put_datapl(bs, pl);
|
|
}
|
|
#define put_stringpl_xauth(bs, ptrlen) \
|
|
BinarySink_put_stringpl_xauth(BinarySink_UPCAST(bs),ptrlen)
|
|
|
|
void x11_get_auth_from_authfile(struct X11Display *disp,
|
|
const char *authfilename)
|
|
{
|
|
FILE *authfp;
|
|
char *buf;
|
|
int size;
|
|
BinarySource src[1];
|
|
int family, protocol;
|
|
ptrlen addr, protoname, data;
|
|
char *displaynum_string;
|
|
int displaynum;
|
|
bool ideal_match = false;
|
|
char *ourhostname;
|
|
|
|
/* A maximally sized (wildly implausible) .Xauthority record
|
|
* consists of a 16-bit integer to start with, then four strings,
|
|
* each of which has a 16-bit length field followed by that many
|
|
* bytes of data (i.e. up to 0xFFFF bytes). */
|
|
const size_t MAX_RECORD_SIZE = 2 + 4 * (2+0xFFFF);
|
|
|
|
/* We'll want a buffer of twice that size (see below). */
|
|
const size_t BUF_SIZE = 2 * MAX_RECORD_SIZE;
|
|
|
|
/*
|
|
* Normally we should look for precisely the details specified in
|
|
* `disp'. However, there's an oddity when the display is local:
|
|
* displays like "localhost:0" usually have their details stored
|
|
* in a Unix-domain-socket record (even if there isn't actually a
|
|
* real Unix-domain socket available, as with OpenSSH's proxy X11
|
|
* server).
|
|
*
|
|
* This is apparently a fudge to get round the meaninglessness of
|
|
* "localhost" in a shared-home-directory context -- xauth entries
|
|
* for Unix-domain sockets already disambiguate this by storing
|
|
* the *local* hostname in the conveniently-blank hostname field,
|
|
* but IP "localhost" records couldn't do this. So, typically, an
|
|
* IP "localhost" entry in the auth database isn't present and if
|
|
* it were it would be ignored.
|
|
*
|
|
* However, we don't entirely trust that (say) Windows X servers
|
|
* won't rely on a straight "localhost" entry, bad idea though
|
|
* that is; so if we can't find a Unix-domain-socket entry we'll
|
|
* fall back to an IP-based entry if we can find one.
|
|
*/
|
|
bool localhost = !disp->unixdomain && sk_address_is_local(disp->addr);
|
|
|
|
authfp = fopen(authfilename, "rb");
|
|
if (!authfp)
|
|
return;
|
|
|
|
ourhostname = get_hostname();
|
|
|
|
/*
|
|
* Allocate enough space to hold two maximally sized records, so
|
|
* that a full record can start anywhere in the first half. That
|
|
* way we avoid the accidentally-quadratic algorithm that would
|
|
* arise if we moved everything to the front of the buffer after
|
|
* consuming each record; instead, we only move everything to the
|
|
* front after our current position gets past the half-way mark.
|
|
* Before then, there's no need to move anyway; so this guarantees
|
|
* linear time, in that every byte written into this buffer moves
|
|
* at most once (because every move is from the second half of the
|
|
* buffer to the first half).
|
|
*/
|
|
buf = snewn(BUF_SIZE, char);
|
|
size = fread(buf, 1, BUF_SIZE, authfp);
|
|
BinarySource_BARE_INIT(src, buf, size);
|
|
|
|
while (!ideal_match) {
|
|
bool match = false;
|
|
|
|
if (src->pos >= MAX_RECORD_SIZE) {
|
|
size -= src->pos;
|
|
memcpy(buf, buf + src->pos, size);
|
|
size += fread(buf + size, 1, BUF_SIZE - size, authfp);
|
|
BinarySource_BARE_INIT(src, buf, size);
|
|
}
|
|
|
|
family = get_uint16(src);
|
|
addr = get_string_xauth(src);
|
|
displaynum_string = mkstr(get_string_xauth(src));
|
|
displaynum = displaynum_string[0] ? atoi(displaynum_string) : -1;
|
|
sfree(displaynum_string);
|
|
protoname = get_string_xauth(src);
|
|
data = get_string_xauth(src);
|
|
if (get_err(src))
|
|
break;
|
|
|
|
/*
|
|
* Now we have a full X authority record in memory. See
|
|
* whether it matches the display we're trying to
|
|
* authenticate to.
|
|
*
|
|
* The details we've just read should be interpreted as
|
|
* follows:
|
|
*
|
|
* - 'family' is the network address family used to
|
|
* connect to the display. 0 means IPv4; 6 means IPv6;
|
|
* 256 means Unix-domain sockets.
|
|
*
|
|
* - 'addr' is the network address itself. For IPv4 and
|
|
* IPv6, this is a string of binary data of the
|
|
* appropriate length (respectively 4 and 16 bytes)
|
|
* representing the address in big-endian format, e.g.
|
|
* 7F 00 00 01 means IPv4 localhost. For Unix-domain
|
|
* sockets, this is the host name of the machine on
|
|
* which the Unix-domain display resides (so that an
|
|
* .Xauthority file on a shared file system can contain
|
|
* authority entries for Unix-domain displays on
|
|
* several machines without them clashing).
|
|
*
|
|
* - 'displaynum' is the display number. An empty display
|
|
* number is a wildcard for any display number.
|
|
*
|
|
* - 'protoname' is the authorisation protocol, encoded as
|
|
* its canonical string name (i.e. "MIT-MAGIC-COOKIE-1",
|
|
* "XDM-AUTHORIZATION-1" or something we don't recognise).
|
|
*
|
|
* - 'data' is the actual authorisation data, stored in
|
|
* binary form.
|
|
*/
|
|
|
|
if (disp->displaynum < 0 ||
|
|
(displaynum >= 0 && disp->displaynum != displaynum))
|
|
continue; /* not the one */
|
|
|
|
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
|
|
if (ptrlen_eq_string(protoname, x11_authnames[protocol]))
|
|
break;
|
|
if (protocol == lenof(x11_authnames))
|
|
continue; /* don't recognise this protocol, look for another */
|
|
|
|
switch (family) {
|
|
case 0: /* IPv4 */
|
|
if (!disp->unixdomain &&
|
|
sk_addrtype(disp->addr) == ADDRTYPE_IPV4) {
|
|
char buf[4];
|
|
sk_addrcopy(disp->addr, buf);
|
|
if (addr.len == 4 && !memcmp(addr.ptr, buf, 4)) {
|
|
match = true;
|
|
/* If this is a "localhost" entry, note it down
|
|
* but carry on looking for a Unix-domain entry. */
|
|
ideal_match = !localhost;
|
|
}
|
|
}
|
|
break;
|
|
case 6: /* IPv6 */
|
|
if (!disp->unixdomain &&
|
|
sk_addrtype(disp->addr) == ADDRTYPE_IPV6) {
|
|
char buf[16];
|
|
sk_addrcopy(disp->addr, buf);
|
|
if (addr.len == 16 && !memcmp(addr.ptr, buf, 16)) {
|
|
match = true;
|
|
ideal_match = !localhost;
|
|
}
|
|
}
|
|
break;
|
|
case 256: /* Unix-domain / localhost */
|
|
if ((disp->unixdomain || localhost)
|
|
&& ourhostname && ptrlen_eq_string(addr, ourhostname)) {
|
|
/* A matching Unix-domain socket is always the best
|
|
* match. */
|
|
match = true;
|
|
ideal_match = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (match) {
|
|
/* Current best guess -- may be overridden if !ideal_match */
|
|
disp->localauthproto = protocol;
|
|
sfree(disp->localauthdata); /* free previous guess, if any */
|
|
disp->localauthdata = snewn(data.len, unsigned char);
|
|
memcpy(disp->localauthdata, data.ptr, data.len);
|
|
disp->localauthdatalen = data.len;
|
|
}
|
|
}
|
|
|
|
fclose(authfp);
|
|
smemclr(buf, 2 * MAX_RECORD_SIZE);
|
|
sfree(buf);
|
|
sfree(ourhostname);
|
|
}
|
|
|
|
void x11_format_auth_for_authfile(
|
|
BinarySink *bs, SockAddr *addr, int display_no,
|
|
ptrlen authproto, ptrlen authdata)
|
|
{
|
|
if (sk_address_is_special_local(addr)) {
|
|
char *ourhostname = get_hostname();
|
|
put_uint16(bs, 256); /* indicates Unix-domain socket */
|
|
put_stringpl_xauth(bs, ptrlen_from_asciz(ourhostname));
|
|
sfree(ourhostname);
|
|
} else if (sk_addrtype(addr) == ADDRTYPE_IPV4) {
|
|
char ipv4buf[4];
|
|
sk_addrcopy(addr, ipv4buf);
|
|
put_uint16(bs, 0); /* indicates IPv4 */
|
|
put_stringpl_xauth(bs, make_ptrlen(ipv4buf, 4));
|
|
} else if (sk_addrtype(addr) == ADDRTYPE_IPV6) {
|
|
char ipv6buf[16];
|
|
sk_addrcopy(addr, ipv6buf);
|
|
put_uint16(bs, 6); /* indicates IPv6 */
|
|
put_stringpl_xauth(bs, make_ptrlen(ipv6buf, 16));
|
|
} else {
|
|
unreachable("Bad address type in x11_format_auth_for_authfile");
|
|
}
|
|
|
|
{
|
|
char *numberbuf = dupprintf("%d", display_no);
|
|
put_stringpl_xauth(bs, ptrlen_from_asciz(numberbuf));
|
|
sfree(numberbuf);
|
|
}
|
|
|
|
put_stringpl_xauth(bs, authproto);
|
|
put_stringpl_xauth(bs, authdata);
|
|
}
|
|
|
|
static void x11_log(Plug *p, int type, SockAddr *addr, int port,
|
|
const char *error_msg, int error_code)
|
|
{
|
|
/* We have no interface to the logging module here, so we drop these. */
|
|
}
|
|
|
|
static void x11_send_init_error(struct X11Connection *conn,
|
|
const char *err_message);
|
|
|
|
static void x11_closing(Plug *plug, const char *error_msg, int error_code,
|
|
bool calling_back)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
if (error_msg) {
|
|
/*
|
|
* Socket error. If we're still at the connection setup stage,
|
|
* construct an X11 error packet passing on the problem.
|
|
*/
|
|
if (xconn->no_data_sent_to_x_client) {
|
|
char *err_message = dupprintf("unable to connect to forwarded "
|
|
"X server: %s", error_msg);
|
|
x11_send_init_error(xconn, err_message);
|
|
sfree(err_message);
|
|
}
|
|
|
|
/*
|
|
* Whether we did that or not, now we slam the connection
|
|
* shut.
|
|
*/
|
|
sshfwd_initiate_close(xconn->c, error_msg);
|
|
} else {
|
|
/*
|
|
* Ordinary EOF received on socket. Send an EOF on the SSH
|
|
* channel.
|
|
*/
|
|
if (xconn->c)
|
|
sshfwd_write_eof(xconn->c);
|
|
}
|
|
}
|
|
|
|
static void x11_receive(Plug *plug, int urgent, char *data, int len)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
xconn->no_data_sent_to_x_client = false;
|
|
sshfwd_write(xconn->c, data, len);
|
|
}
|
|
|
|
static void x11_sent(Plug *plug, int bufsize)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
sshfwd_unthrottle(xconn->c, bufsize);
|
|
}
|
|
|
|
/*
|
|
* When setting up X forwarding, we should send the screen number
|
|
* from the specified local display. This function extracts it from
|
|
* the display string.
|
|
*/
|
|
int x11_get_screen_number(char *display)
|
|
{
|
|
int n;
|
|
|
|
n = host_strcspn(display, ":");
|
|
if (!display[n])
|
|
return 0;
|
|
n = strcspn(display, ".");
|
|
if (!display[n])
|
|
return 0;
|
|
return atoi(display + n + 1);
|
|
}
|
|
|
|
static const PlugVtable X11Connection_plugvt = {
|
|
x11_log,
|
|
x11_closing,
|
|
x11_receive,
|
|
x11_sent,
|
|
NULL
|
|
};
|
|
|
|
static void x11_chan_free(Channel *chan);
|
|
static int x11_send(Channel *chan, bool is_stderr, const void *vdata, int len);
|
|
static void x11_send_eof(Channel *chan);
|
|
static void x11_set_input_wanted(Channel *chan, bool wanted);
|
|
static char *x11_log_close_msg(Channel *chan);
|
|
|
|
static const struct ChannelVtable X11Connection_channelvt = {
|
|
x11_chan_free,
|
|
chan_remotely_opened_confirmation,
|
|
chan_remotely_opened_failure,
|
|
x11_send,
|
|
x11_send_eof,
|
|
x11_set_input_wanted,
|
|
x11_log_close_msg,
|
|
chan_default_want_close,
|
|
chan_no_exit_status,
|
|
chan_no_exit_signal,
|
|
chan_no_exit_signal_numeric,
|
|
chan_no_run_shell,
|
|
chan_no_run_command,
|
|
chan_no_run_subsystem,
|
|
chan_no_enable_x11_forwarding,
|
|
chan_no_enable_agent_forwarding,
|
|
chan_no_allocate_pty,
|
|
chan_no_set_env,
|
|
chan_no_send_break,
|
|
chan_no_send_signal,
|
|
chan_no_change_window_size,
|
|
chan_no_request_response,
|
|
};
|
|
|
|
/*
|
|
* Called to set up the X11Connection structure, though this does not
|
|
* yet connect to an actual server.
|
|
*/
|
|
Channel *x11_new_channel(tree234 *authtree, SshChannel *c,
|
|
const char *peeraddr, int peerport,
|
|
bool connection_sharing_possible)
|
|
{
|
|
struct X11Connection *xconn;
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
xconn = snew(struct X11Connection);
|
|
xconn->plug.vt = &X11Connection_plugvt;
|
|
xconn->chan.vt = &X11Connection_channelvt;
|
|
xconn->chan.initial_fixed_window_size =
|
|
(connection_sharing_possible ? 128 : 0);
|
|
xconn->auth_protocol = NULL;
|
|
xconn->authtree = authtree;
|
|
xconn->verified = false;
|
|
xconn->data_read = 0;
|
|
xconn->input_wanted = true;
|
|
xconn->no_data_sent_to_x_client = true;
|
|
xconn->c = c;
|
|
|
|
/*
|
|
* We don't actually open a local socket to the X server just yet,
|
|
* because we don't know which one it is. Instead, we'll wait
|
|
* until we see the incoming authentication data, which may tell
|
|
* us what display to connect to, or whether we have to divert
|
|
* this X forwarding channel to a connection-sharing downstream
|
|
* rather than handling it ourself.
|
|
*/
|
|
xconn->disp = NULL;
|
|
xconn->s = NULL;
|
|
|
|
/*
|
|
* Stash the peer address we were given in its original text form.
|
|
*/
|
|
xconn->peer_addr = peeraddr ? dupstr(peeraddr) : NULL;
|
|
xconn->peer_port = peerport;
|
|
|
|
return &xconn->chan;
|
|
}
|
|
|
|
static void x11_chan_free(Channel *chan)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
if (xconn->auth_protocol) {
|
|
sfree(xconn->auth_protocol);
|
|
sfree(xconn->auth_data);
|
|
}
|
|
|
|
if (xconn->s)
|
|
sk_close(xconn->s);
|
|
|
|
sfree(xconn->peer_addr);
|
|
sfree(xconn);
|
|
}
|
|
|
|
static void x11_set_input_wanted(Channel *chan, bool wanted)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
xconn->input_wanted = wanted;
|
|
if (xconn->s)
|
|
sk_set_frozen(xconn->s, !xconn->input_wanted);
|
|
}
|
|
|
|
static void x11_send_init_error(struct X11Connection *xconn,
|
|
const char *err_message)
|
|
{
|
|
char *full_message;
|
|
int msglen, msgsize;
|
|
unsigned char *reply;
|
|
|
|
full_message = dupprintf("%s X11 proxy: %s\n", appname, err_message);
|
|
|
|
msglen = strlen(full_message);
|
|
reply = snewn(8 + msglen+1 + 4, unsigned char); /* include zero */
|
|
msgsize = (msglen + 3) & ~3;
|
|
reply[0] = 0; /* failure */
|
|
reply[1] = msglen; /* length of reason string */
|
|
memcpy(reply + 2, xconn->firstpkt + 2, 4); /* major/minor proto vsn */
|
|
PUT_16BIT_X11(xconn->firstpkt[0], reply + 6, msgsize >> 2);/* data len */
|
|
memset(reply + 8, 0, msgsize);
|
|
memcpy(reply + 8, full_message, msglen);
|
|
sshfwd_write(xconn->c, reply, 8 + msgsize);
|
|
sshfwd_write_eof(xconn->c);
|
|
xconn->no_data_sent_to_x_client = false;
|
|
sfree(reply);
|
|
sfree(full_message);
|
|
}
|
|
|
|
static bool x11_parse_ip(const char *addr_string, unsigned long *ip)
|
|
{
|
|
|
|
/*
|
|
* See if we can make sense of this string as an IPv4 address, for
|
|
* XDM-AUTHORIZATION-1 purposes.
|
|
*/
|
|
int i[4];
|
|
if (addr_string &&
|
|
4 == sscanf(addr_string, "%d.%d.%d.%d", i+0, i+1, i+2, i+3)) {
|
|
*ip = (i[0] << 24) | (i[1] << 16) | (i[2] << 8) | i[3];
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called to send data down the raw connection.
|
|
*/
|
|
static int x11_send(Channel *chan, bool is_stderr, const void *vdata, int len)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
const char *data = (const char *)vdata;
|
|
|
|
/*
|
|
* Read the first packet.
|
|
*/
|
|
while (len > 0 && xconn->data_read < 12)
|
|
xconn->firstpkt[xconn->data_read++] = (unsigned char) (len--, *data++);
|
|
if (xconn->data_read < 12)
|
|
return 0;
|
|
|
|
/*
|
|
* If we have not allocated the auth_protocol and auth_data
|
|
* strings, do so now.
|
|
*/
|
|
if (!xconn->auth_protocol) {
|
|
char endian = xconn->firstpkt[0];
|
|
xconn->auth_plen = GET_16BIT_X11(endian, xconn->firstpkt + 6);
|
|
xconn->auth_dlen = GET_16BIT_X11(endian, xconn->firstpkt + 8);
|
|
xconn->auth_psize = (xconn->auth_plen + 3) & ~3;
|
|
xconn->auth_dsize = (xconn->auth_dlen + 3) & ~3;
|
|
/* Leave room for a terminating zero, to make our lives easier. */
|
|
xconn->auth_protocol = snewn(xconn->auth_psize + 1, char);
|
|
xconn->auth_data = snewn(xconn->auth_dsize, unsigned char);
|
|
}
|
|
|
|
/*
|
|
* Read the auth_protocol and auth_data strings.
|
|
*/
|
|
while (len > 0 &&
|
|
xconn->data_read < 12 + xconn->auth_psize)
|
|
xconn->auth_protocol[xconn->data_read++ - 12] = (len--, *data++);
|
|
while (len > 0 &&
|
|
xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
|
|
xconn->auth_data[xconn->data_read++ - 12 -
|
|
xconn->auth_psize] = (unsigned char) (len--, *data++);
|
|
if (xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
|
|
return 0;
|
|
|
|
/*
|
|
* If we haven't verified the authorisation, do so now.
|
|
*/
|
|
if (!xconn->verified) {
|
|
const char *err;
|
|
struct X11FakeAuth *auth_matched = NULL;
|
|
unsigned long peer_ip;
|
|
int peer_port;
|
|
int protomajor, protominor;
|
|
void *greeting;
|
|
int greeting_len;
|
|
unsigned char *socketdata;
|
|
int socketdatalen;
|
|
char new_peer_addr[32];
|
|
int new_peer_port;
|
|
char endian = xconn->firstpkt[0];
|
|
|
|
protomajor = GET_16BIT_X11(endian, xconn->firstpkt + 2);
|
|
protominor = GET_16BIT_X11(endian, xconn->firstpkt + 4);
|
|
|
|
assert(!xconn->s);
|
|
|
|
xconn->auth_protocol[xconn->auth_plen] = '\0'; /* ASCIZ */
|
|
|
|
peer_ip = 0; /* placate optimiser */
|
|
if (x11_parse_ip(xconn->peer_addr, &peer_ip))
|
|
peer_port = xconn->peer_port;
|
|
else
|
|
peer_port = -1; /* signal no peer address data available */
|
|
|
|
err = x11_verify(peer_ip, peer_port,
|
|
xconn->authtree, xconn->auth_protocol,
|
|
xconn->auth_data, xconn->auth_dlen, &auth_matched);
|
|
if (err) {
|
|
x11_send_init_error(xconn, err);
|
|
return 0;
|
|
}
|
|
assert(auth_matched);
|
|
|
|
/*
|
|
* If this auth points to a connection-sharing downstream
|
|
* rather than an X display we know how to connect to
|
|
* directly, pass it off to the sharing module now. (This will
|
|
* have the side effect of freeing xconn.)
|
|
*/
|
|
if (auth_matched->share_cs) {
|
|
sshfwd_x11_sharing_handover(xconn->c, auth_matched->share_cs,
|
|
auth_matched->share_chan,
|
|
xconn->peer_addr, xconn->peer_port,
|
|
xconn->firstpkt[0],
|
|
protomajor, protominor, data, len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now we know we're going to accept the connection, and what
|
|
* X display to connect to. Actually connect to it.
|
|
*/
|
|
xconn->chan.initial_fixed_window_size = 0;
|
|
sshfwd_window_override_removed(xconn->c);
|
|
xconn->disp = auth_matched->disp;
|
|
xconn->s = new_connection(sk_addr_dup(xconn->disp->addr),
|
|
xconn->disp->realhost, xconn->disp->port,
|
|
false, true, false, false, &xconn->plug,
|
|
sshfwd_get_conf(xconn->c));
|
|
if ((err = sk_socket_error(xconn->s)) != NULL) {
|
|
char *err_message = dupprintf("unable to connect to"
|
|
" forwarded X server: %s", err);
|
|
x11_send_init_error(xconn, err_message);
|
|
sfree(err_message);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a new connection header containing our replacement
|
|
* auth data.
|
|
*/
|
|
socketdatalen = 0; /* placate compiler warning */
|
|
socketdata = sk_getxdmdata(xconn->s, &socketdatalen);
|
|
if (socketdata && socketdatalen==6) {
|
|
sprintf(new_peer_addr, "%d.%d.%d.%d", socketdata[0],
|
|
socketdata[1], socketdata[2], socketdata[3]);
|
|
new_peer_port = GET_16BIT_MSB_FIRST(socketdata + 4);
|
|
} else {
|
|
strcpy(new_peer_addr, "0.0.0.0");
|
|
new_peer_port = 0;
|
|
}
|
|
|
|
greeting = x11_make_greeting(xconn->firstpkt[0],
|
|
protomajor, protominor,
|
|
xconn->disp->localauthproto,
|
|
xconn->disp->localauthdata,
|
|
xconn->disp->localauthdatalen,
|
|
new_peer_addr, new_peer_port,
|
|
&greeting_len);
|
|
|
|
sk_write(xconn->s, greeting, greeting_len);
|
|
|
|
smemclr(greeting, greeting_len);
|
|
sfree(greeting);
|
|
|
|
/*
|
|
* Now we're done.
|
|
*/
|
|
xconn->verified = true;
|
|
}
|
|
|
|
/*
|
|
* After initialisation, just copy data simply.
|
|
*/
|
|
|
|
return sk_write(xconn->s, data, len);
|
|
}
|
|
|
|
static void x11_send_eof(Channel *chan)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
if (xconn->s) {
|
|
sk_write_eof(xconn->s);
|
|
} else {
|
|
/*
|
|
* If EOF is received from the X client before we've got to
|
|
* the point of actually connecting to an X server, then we
|
|
* should send an EOF back to the client so that the
|
|
* forwarded channel will be terminated.
|
|
*/
|
|
if (xconn->c)
|
|
sshfwd_write_eof(xconn->c);
|
|
}
|
|
}
|
|
|
|
static char *x11_log_close_msg(Channel *chan)
|
|
{
|
|
return dupstr("Forwarded X11 connection terminated");
|
|
}
|
|
|
|
/*
|
|
* Utility functions used by connection sharing to convert textual
|
|
* representations of an X11 auth protocol name + hex cookie into our
|
|
* usual integer protocol id and binary auth data.
|
|
*/
|
|
int x11_identify_auth_proto(ptrlen protoname)
|
|
{
|
|
int protocol;
|
|
|
|
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
|
|
if (ptrlen_eq_string(protoname, x11_authnames[protocol]))
|
|
return protocol;
|
|
return -1;
|
|
}
|
|
|
|
void *x11_dehexify(ptrlen hexpl, int *outlen)
|
|
{
|
|
int len, i;
|
|
unsigned char *ret;
|
|
|
|
len = hexpl.len / 2;
|
|
ret = snewn(len, unsigned char);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
char bytestr[3];
|
|
unsigned val = 0;
|
|
bytestr[0] = ((const char *)hexpl.ptr)[2*i];
|
|
bytestr[1] = ((const char *)hexpl.ptr)[2*i+1];
|
|
bytestr[2] = '\0';
|
|
sscanf(bytestr, "%x", &val);
|
|
ret[i] = val;
|
|
}
|
|
|
|
*outlen = len;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Construct an X11 greeting packet, including making up the right
|
|
* authorisation data.
|
|
*/
|
|
void *x11_make_greeting(int endian, int protomajor, int protominor,
|
|
int auth_proto, const void *auth_data, int auth_len,
|
|
const char *peer_addr, int peer_port,
|
|
int *outlen)
|
|
{
|
|
unsigned char *greeting;
|
|
unsigned char realauthdata[64];
|
|
const char *authname;
|
|
const unsigned char *authdata;
|
|
int authnamelen, authnamelen_pad;
|
|
int authdatalen, authdatalen_pad;
|
|
int greeting_len;
|
|
|
|
authname = x11_authnames[auth_proto];
|
|
authnamelen = strlen(authname);
|
|
authnamelen_pad = (authnamelen + 3) & ~3;
|
|
|
|
if (auth_proto == X11_MIT) {
|
|
authdata = auth_data;
|
|
authdatalen = auth_len;
|
|
} else if (auth_proto == X11_XDM && auth_len == 16) {
|
|
time_t t;
|
|
unsigned long peer_ip = 0;
|
|
|
|
x11_parse_ip(peer_addr, &peer_ip);
|
|
|
|
authdata = realauthdata;
|
|
authdatalen = 24;
|
|
memset(realauthdata, 0, authdatalen);
|
|
memcpy(realauthdata, auth_data, 8);
|
|
PUT_32BIT_MSB_FIRST(realauthdata+8, peer_ip);
|
|
PUT_16BIT_MSB_FIRST(realauthdata+12, peer_port);
|
|
t = time(NULL);
|
|
PUT_32BIT_MSB_FIRST(realauthdata+14, t);
|
|
|
|
des_encrypt_xdmauth((char *)auth_data + 9, realauthdata, authdatalen);
|
|
} else {
|
|
authdata = realauthdata;
|
|
authdatalen = 0;
|
|
}
|
|
|
|
authdatalen_pad = (authdatalen + 3) & ~3;
|
|
greeting_len = 12 + authnamelen_pad + authdatalen_pad;
|
|
|
|
greeting = snewn(greeting_len, unsigned char);
|
|
memset(greeting, 0, greeting_len);
|
|
greeting[0] = endian;
|
|
PUT_16BIT_X11(endian, greeting+2, protomajor);
|
|
PUT_16BIT_X11(endian, greeting+4, protominor);
|
|
PUT_16BIT_X11(endian, greeting+6, authnamelen);
|
|
PUT_16BIT_X11(endian, greeting+8, authdatalen);
|
|
memcpy(greeting+12, authname, authnamelen);
|
|
memcpy(greeting+12+authnamelen_pad, authdata, authdatalen);
|
|
|
|
smemclr(realauthdata, sizeof(realauthdata));
|
|
|
|
*outlen = greeting_len;
|
|
return greeting;
|
|
}
|