1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/crypto/aes-sw.c
Simon Tatham fca13a17b1 Break up crypto modules containing HW acceleration.
This applies to all of AES, SHA-1, SHA-256 and SHA-512. All those
source files previously contained multiple implementations of the
algorithm, enabled or disabled by ifdefs detecting whether they would
work on a given compiler. And in order to get advanced machine
instructions like AES-NI or NEON crypto into the output file when the
compile flags hadn't enabled them, we had to do nasty stuff with
compiler-specific pragmas or attributes.

Now we can do the detection at cmake time, and enable advanced
instructions in the more sensible way, by compile-time flags. So I've
broken up each of these modules into lots of sub-pieces: a file called
(e.g.) 'foo-common.c' containing common definitions across all
implementations (such as round constants), one called 'foo-select.c'
containing the top-level vtable(s), and a separate file for each
implementation exporting just the vtable(s) for that implementation.

One advantage of this is that it depends a lot less on compiler-
specific bodgery. My particular least favourite part of the previous
setup was the part where I had to _manually_ define some Arm ACLE
feature macros before including <arm_neon.h>, so that it would define
the intrinsics I wanted. Now I'm enabling interesting architecture
features in the normal way, on the compiler command line, there's no
need for that kind of trick: the right feature macros are already
defined and <arm_neon.h> does the right thing.

Another change in this reorganisation is that I've stopped assuming
there's just one hardware implementation per platform. Previously, the
accelerated vtables were called things like sha256_hw, and varied
between FOO-NI and NEON depending on platform; and the selection code
would simply ask 'is hw available? if so, use hw, else sw'. Now, each
HW acceleration strategy names its vtable its own way, and the
selection vtable has a whole list of possibilities to iterate over
looking for a supported one. So if someone feels like writing a second
accelerated implementation of something for a given platform - for
example, I've heard you can use plain NEON to speed up AES somewhat
even without the crypto extension - then it will now have somewhere to
drop in alongside the existing ones.
2021-04-21 21:55:26 +01:00

1041 lines
46 KiB
C

/*
* Software implementation of AES.
*
* This implementation uses a bit-sliced representation. Instead of
* the obvious approach of storing the cipher state so that each byte
* (or field element, or entry in the cipher matrix) occupies 8
* contiguous bits in a machine integer somewhere, we organise the
* cipher state as an array of 8 integers, in such a way that each
* logical byte of the cipher state occupies one bit in each integer,
* all at the same position. This allows us to do parallel logic on
* all bytes of the state by doing bitwise operations between the 8
* integers; in particular, the S-box (SubBytes) lookup is done this
* way, which takes about 110 operations - but for those 110 bitwise
* ops you get 64 S-box lookups, not just one.
*/
#include "ssh.h"
#include "aes.h"
#include "mpint_i.h" /* we reuse the BignumInt system */
static bool aes_sw_available(void)
{
/* Software AES is always available */
return true;
}
#define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2)
#ifdef BITSLICED_DEBUG
/* Dump function that undoes the bitslicing transform, so you can see
* the logical data represented by a set of slice words. */
static inline void dumpslices_uint16_t(
const char *prefix, const uint16_t slices[8])
{
printf("%-30s", prefix);
for (unsigned byte = 0; byte < 16; byte++) {
unsigned byteval = 0;
for (unsigned bit = 0; bit < 8; bit++)
byteval |= (1 & (slices[bit] >> byte)) << bit;
printf("%02x", byteval);
}
printf("\n");
}
static inline void dumpslices_BignumInt(
const char *prefix, const BignumInt slices[8])
{
printf("%-30s", prefix);
for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) {
for (unsigned byte = 0; byte < 16; byte++) {
unsigned byteval = 0;
for (unsigned bit = 0; bit < 8; bit++)
byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit;
printf("%02x", byteval);
}
if (iter+1 < SLICE_PARALLELISM)
printf(" ");
}
printf("\n");
}
#else
#define dumpslices_uintN_t(prefix, slices) ((void)0)
#define dumpslices_BignumInt(prefix, slices) ((void)0)
#endif
/* -----
* Bit-slicing transformation: convert between an array of 16 uint8_t
* and an array of 8 uint16_t, so as to interchange the bit index
* within each element and the element index within the array. (That
* is, bit j of input[i] == bit i of output[j].
*/
#define SWAPWORDS(shift) do \
{ \
uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1); \
uint64_t diff = ((i0 >> shift) ^ i1) & mask; \
i0 ^= diff << shift; \
i1 ^= diff; \
} while (0)
#define SWAPINWORD(i, bigshift, smallshift) do \
{ \
uint64_t mask = ~(uint64_t)0; \
mask /= ((1ULL << bigshift) + 1); \
mask /= ((1ULL << smallshift) + 1); \
mask <<= smallshift; \
unsigned shift = bigshift - smallshift; \
uint64_t diff = ((i >> shift) ^ i) & mask; \
i ^= diff ^ (diff << shift); \
} while (0)
#define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do \
{ \
uint64_t i0 = GET_64BIT_LSB_FIRST(bytes); \
uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8); \
SWAPINWORD(i0, 8, 1); \
SWAPINWORD(i1, 8, 1); \
SWAPINWORD(i0, 16, 2); \
SWAPINWORD(i1, 16, 2); \
SWAPINWORD(i0, 32, 4); \
SWAPINWORD(i1, 32, 4); \
SWAPWORDS(8); \
slices[0] assign_op (uintN_t)((i0 >> 0) & 0xFFFF) << (shift); \
slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift); \
slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift); \
slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift); \
slices[1] assign_op (uintN_t)((i1 >> 0) & 0xFFFF) << (shift); \
slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift); \
slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift); \
slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift); \
} while (0)
#define FROM_BITSLICES(bytes, slices, shift) do \
{ \
uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF); \
i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF); \
i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF); \
i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF); \
uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF); \
i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF); \
i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF); \
i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF); \
SWAPWORDS(8); \
SWAPINWORD(i0, 32, 4); \
SWAPINWORD(i1, 32, 4); \
SWAPINWORD(i0, 16, 2); \
SWAPINWORD(i1, 16, 2); \
SWAPINWORD(i0, 8, 1); \
SWAPINWORD(i1, 8, 1); \
PUT_64BIT_LSB_FIRST(bytes, i0); \
PUT_64BIT_LSB_FIRST((bytes) + 8, i1); \
} while (0)
/* -----
* Some macros that will be useful repeatedly.
*/
/* Iterate a unary transformation over all 8 slices. */
#define ITERATE(MACRO, output, input, uintN_t) do \
{ \
MACRO(output[0], input[0], uintN_t); \
MACRO(output[1], input[1], uintN_t); \
MACRO(output[2], input[2], uintN_t); \
MACRO(output[3], input[3], uintN_t); \
MACRO(output[4], input[4], uintN_t); \
MACRO(output[5], input[5], uintN_t); \
MACRO(output[6], input[6], uintN_t); \
MACRO(output[7], input[7], uintN_t); \
} while (0)
/* Simply add (i.e. XOR) two whole sets of slices together. */
#define BITSLICED_ADD(output, lhs, rhs) do \
{ \
output[0] = lhs[0] ^ rhs[0]; \
output[1] = lhs[1] ^ rhs[1]; \
output[2] = lhs[2] ^ rhs[2]; \
output[3] = lhs[3] ^ rhs[3]; \
output[4] = lhs[4] ^ rhs[4]; \
output[5] = lhs[5] ^ rhs[5]; \
output[6] = lhs[6] ^ rhs[6]; \
output[7] = lhs[7] ^ rhs[7]; \
} while (0)
/* -----
* The AES S-box, in pure bitwise logic so that it can be run in
* parallel on whole words full of bit-sliced field elements.
*
* Source: 'A new combinational logic minimization technique with
* applications to cryptology', https://eprint.iacr.org/2009/191
*
* As a minor speed optimisation, I use a modified version of the
* S-box which omits the additive constant 0x63, i.e. this S-box
* consists of only the field inversion and linear map components.
* Instead, the addition of the constant is deferred until after the
* subsequent ShiftRows and MixColumns stages, so that it happens at
* the same time as adding the next round key - and then we just make
* it _part_ of the round key, so it doesn't cost any extra
* instructions to add.
*
* (Obviously adding a constant to each byte commutes with ShiftRows,
* which only permutes the bytes. It also commutes with MixColumns:
* that's not quite so obvious, but since the effect of MixColumns is
* to multiply a constant polynomial M into each column, it is obvious
* that adding some polynomial K and then multiplying by M is
* equivalent to multiplying by M and then adding the product KM. And
* in fact, since the coefficients of M happen to sum to 1, it turns
* out that KM = K, so we don't even have to change the constant when
* we move it to the far side of MixColumns.)
*
* Of course, one knock-on effect of this is that the use of the S-box
* *during* key setup has to be corrected by manually adding on the
* constant afterwards!
*/
/* Initial linear transformation for the forward S-box, from Fig 2 of
* the paper. */
#define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t) \
uintN_t y14 = input[4] ^ input[2]; \
uintN_t y13 = input[7] ^ input[1]; \
uintN_t y9 = input[7] ^ input[4]; \
uintN_t y8 = input[7] ^ input[2]; \
uintN_t t0 = input[6] ^ input[5]; \
uintN_t y1 = t0 ^ input[0]; \
uintN_t y4 = y1 ^ input[4]; \
uintN_t y12 = y13 ^ y14; \
uintN_t y2 = y1 ^ input[7]; \
uintN_t y5 = y1 ^ input[1]; \
uintN_t y3 = y5 ^ y8; \
uintN_t t1 = input[3] ^ y12; \
uintN_t y15 = t1 ^ input[2]; \
uintN_t y20 = t1 ^ input[6]; \
uintN_t y6 = y15 ^ input[0]; \
uintN_t y10 = y15 ^ t0; \
uintN_t y11 = y20 ^ y9; \
uintN_t y7 = input[0] ^ y11; \
uintN_t y17 = y10 ^ y11; \
uintN_t y19 = y10 ^ y8; \
uintN_t y16 = t0 ^ y11; \
uintN_t y21 = y13 ^ y16; \
uintN_t y18 = input[7] ^ y16; \
/* Make a copy of input[0] under a new name, because the core
* will refer to it, and in the inverse version of the S-box
* the corresponding value will be one of the calculated ones
* and not in input[0] itself. */ \
uintN_t i0 = input[0]; \
/* end */
/* Core nonlinear component, from Fig 3 of the paper. */
#define SBOX_CORE(uintN_t) \
uintN_t t2 = y12 & y15; \
uintN_t t3 = y3 & y6; \
uintN_t t4 = t3 ^ t2; \
uintN_t t5 = y4 & i0; \
uintN_t t6 = t5 ^ t2; \
uintN_t t7 = y13 & y16; \
uintN_t t8 = y5 & y1; \
uintN_t t9 = t8 ^ t7; \
uintN_t t10 = y2 & y7; \
uintN_t t11 = t10 ^ t7; \
uintN_t t12 = y9 & y11; \
uintN_t t13 = y14 & y17; \
uintN_t t14 = t13 ^ t12; \
uintN_t t15 = y8 & y10; \
uintN_t t16 = t15 ^ t12; \
uintN_t t17 = t4 ^ t14; \
uintN_t t18 = t6 ^ t16; \
uintN_t t19 = t9 ^ t14; \
uintN_t t20 = t11 ^ t16; \
uintN_t t21 = t17 ^ y20; \
uintN_t t22 = t18 ^ y19; \
uintN_t t23 = t19 ^ y21; \
uintN_t t24 = t20 ^ y18; \
uintN_t t25 = t21 ^ t22; \
uintN_t t26 = t21 & t23; \
uintN_t t27 = t24 ^ t26; \
uintN_t t28 = t25 & t27; \
uintN_t t29 = t28 ^ t22; \
uintN_t t30 = t23 ^ t24; \
uintN_t t31 = t22 ^ t26; \
uintN_t t32 = t31 & t30; \
uintN_t t33 = t32 ^ t24; \
uintN_t t34 = t23 ^ t33; \
uintN_t t35 = t27 ^ t33; \
uintN_t t36 = t24 & t35; \
uintN_t t37 = t36 ^ t34; \
uintN_t t38 = t27 ^ t36; \
uintN_t t39 = t29 & t38; \
uintN_t t40 = t25 ^ t39; \
uintN_t t41 = t40 ^ t37; \
uintN_t t42 = t29 ^ t33; \
uintN_t t43 = t29 ^ t40; \
uintN_t t44 = t33 ^ t37; \
uintN_t t45 = t42 ^ t41; \
uintN_t z0 = t44 & y15; \
uintN_t z1 = t37 & y6; \
uintN_t z2 = t33 & i0; \
uintN_t z3 = t43 & y16; \
uintN_t z4 = t40 & y1; \
uintN_t z5 = t29 & y7; \
uintN_t z6 = t42 & y11; \
uintN_t z7 = t45 & y17; \
uintN_t z8 = t41 & y10; \
uintN_t z9 = t44 & y12; \
uintN_t z10 = t37 & y3; \
uintN_t z11 = t33 & y4; \
uintN_t z12 = t43 & y13; \
uintN_t z13 = t40 & y5; \
uintN_t z14 = t29 & y2; \
uintN_t z15 = t42 & y9; \
uintN_t z16 = t45 & y14; \
uintN_t z17 = t41 & y8; \
/* end */
/* Final linear transformation for the forward S-box, from Fig 4 of
* the paper. */
#define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t) \
uintN_t t46 = z15 ^ z16; \
uintN_t t47 = z10 ^ z11; \
uintN_t t48 = z5 ^ z13; \
uintN_t t49 = z9 ^ z10; \
uintN_t t50 = z2 ^ z12; \
uintN_t t51 = z2 ^ z5; \
uintN_t t52 = z7 ^ z8; \
uintN_t t53 = z0 ^ z3; \
uintN_t t54 = z6 ^ z7; \
uintN_t t55 = z16 ^ z17; \
uintN_t t56 = z12 ^ t48; \
uintN_t t57 = t50 ^ t53; \
uintN_t t58 = z4 ^ t46; \
uintN_t t59 = z3 ^ t54; \
uintN_t t60 = t46 ^ t57; \
uintN_t t61 = z14 ^ t57; \
uintN_t t62 = t52 ^ t58; \
uintN_t t63 = t49 ^ t58; \
uintN_t t64 = z4 ^ t59; \
uintN_t t65 = t61 ^ t62; \
uintN_t t66 = z1 ^ t63; \
output[7] = t59 ^ t63; \
output[1] = t56 ^ t62; \
output[0] = t48 ^ t60; \
uintN_t t67 = t64 ^ t65; \
output[4] = t53 ^ t66; \
output[3] = t51 ^ t66; \
output[2] = t47 ^ t65; \
output[6] = t64 ^ output[4]; \
output[5] = t55 ^ t67; \
/* end */
#define BITSLICED_SUBBYTES(output, input, uintN_t) do { \
SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t); \
SBOX_CORE(uintN_t); \
SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t); \
} while (0)
/*
* Initial and final linear transformations for the backward S-box. I
* generated these myself, by implementing the linear-transform
* optimisation algorithm in the paper, and applying it to the
* matrices calculated by _their_ top and bottom transformations, pre-
* and post-multiplied as appropriate by the linear map in the inverse
* S_box.
*/
#define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t) \
uintN_t y5 = input[4] ^ input[6]; \
uintN_t y19 = input[3] ^ input[0]; \
uintN_t itmp8 = y5 ^ input[0]; \
uintN_t y4 = itmp8 ^ input[1]; \
uintN_t y9 = input[4] ^ input[3]; \
uintN_t y2 = y9 ^ y4; \
uintN_t itmp9 = y2 ^ input[7]; \
uintN_t y1 = y9 ^ input[0]; \
uintN_t y6 = y5 ^ input[7]; \
uintN_t y18 = y9 ^ input[5]; \
uintN_t y7 = y18 ^ y2; \
uintN_t y16 = y7 ^ y1; \
uintN_t y21 = y7 ^ input[1]; \
uintN_t y3 = input[4] ^ input[7]; \
uintN_t y13 = y16 ^ y21; \
uintN_t y8 = input[4] ^ y6; \
uintN_t y10 = y8 ^ y19; \
uintN_t y14 = y8 ^ y9; \
uintN_t y20 = itmp9 ^ input[2]; \
uintN_t y11 = y9 ^ y20; \
uintN_t i0 = y11 ^ y7; \
uintN_t y15 = i0 ^ y6; \
uintN_t y17 = y16 ^ y15; \
uintN_t y12 = itmp9 ^ input[3]; \
/* end */
#define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \
uintN_t otmp18 = z15 ^ z6; \
uintN_t otmp19 = z13 ^ otmp18; \
uintN_t otmp20 = z12 ^ otmp19; \
uintN_t otmp21 = z16 ^ otmp20; \
uintN_t otmp22 = z8 ^ otmp21; \
uintN_t otmp23 = z0 ^ otmp22; \
uintN_t otmp24 = otmp22 ^ z3; \
uintN_t otmp25 = otmp24 ^ z4; \
uintN_t otmp26 = otmp25 ^ z2; \
uintN_t otmp27 = z1 ^ otmp26; \
uintN_t otmp28 = z14 ^ otmp27; \
uintN_t otmp29 = otmp28 ^ z10; \
output[4] = z2 ^ otmp23; \
output[7] = z5 ^ otmp24; \
uintN_t otmp30 = z11 ^ otmp29; \
output[5] = z13 ^ otmp30; \
uintN_t otmp31 = otmp25 ^ z8; \
output[1] = z7 ^ otmp31; \
uintN_t otmp32 = z11 ^ z9; \
uintN_t otmp33 = z17 ^ otmp32; \
uintN_t otmp34 = otmp30 ^ otmp33; \
output[0] = z15 ^ otmp33; \
uintN_t otmp35 = z12 ^ otmp34; \
output[6] = otmp35 ^ z16; \
uintN_t otmp36 = z1 ^ otmp23; \
uintN_t otmp37 = z5 ^ otmp36; \
output[2] = z4 ^ otmp37; \
uintN_t otmp38 = z11 ^ output[1]; \
uintN_t otmp39 = z2 ^ otmp38; \
uintN_t otmp40 = z17 ^ otmp39; \
uintN_t otmp41 = z0 ^ otmp40; \
uintN_t otmp42 = z5 ^ otmp41; \
uintN_t otmp43 = otmp42 ^ z10; \
uintN_t otmp44 = otmp43 ^ z3; \
output[3] = otmp44 ^ z16; \
/* end */
#define BITSLICED_INVSUBBYTES(output, input, uintN_t) do { \
SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t); \
SBOX_CORE(uintN_t); \
SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t); \
} while (0)
/* -----
* The ShiftRows transformation. This operates independently on each
* bit slice.
*/
#define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do \
{ \
uintN_t mask, mask2, mask3, diff, x = (input); \
/* Rotate rows 2 and 3 by 16 bits */ \
mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
diff = ((x >> 8) ^ x) & mask; \
x ^= diff ^ (diff << 8); \
/* Rotate rows 1 and 3 by 8 bits */ \
mask = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3); \
/* Write output */ \
(output) = x; \
} while (0)
#define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do \
{ \
uintN_t mask, mask2, mask3, diff, x = (input); \
/* Rotate rows 2 and 3 by 16 bits */ \
mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
diff = ((x >> 8) ^ x) & mask; \
x ^= diff ^ (diff << 8); \
/* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \
mask = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \
x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3); \
/* Write output */ \
(output) = x; \
} while (0)
#define BITSLICED_SHIFTROWS(output, input, uintN_t) do \
{ \
ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t); \
} while (0)
#define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do \
{ \
ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t); \
} while (0)
/* -----
* The MixColumns transformation. This has to operate on all eight bit
* slices at once, and also passes data back and forth between the
* bits in an adjacent group of 4 within each slice.
*
* Notation: let F = GF(2)[X]/<X^8+X^4+X^3+X+1> be the finite field
* used in AES, and let R = F[Y]/<Y^4+1> be the ring whose elements
* represent the possible contents of a column of the matrix. I use X
* and Y below in those senses, i.e. X is the value in F that
* represents the byte 0x02, and Y is the value in R that cycles the
* four bytes around by one if you multiply by it.
*/
/* Multiply every column by Y^3, i.e. cycle it round one place to the
* right. Operates on one bit slice at a time; you have to wrap it in
* ITERATE to affect all the data at once. */
#define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do \
{ \
uintN_t mask, mask2, x; \
mask = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF); \
mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF); \
x = input; \
output = ((x << 3) & mask) ^ ((x >> 1) & mask2); \
} while (0)
/* Multiply every column by Y^2. */
#define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do \
{ \
uintN_t mask, mask2, x; \
mask = 0xC * (((uintN_t)~(uintN_t)0) / 0xF); \
mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF); \
x = input; \
output = ((x << 2) & mask) ^ ((x >> 2) & mask2); \
} while (0)
#define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do \
{ \
uintN_t tmp = input; \
BITSLICED_MUL_BY_Y3(tmp, input, uintN_t); \
output = input ^ tmp; \
} while (0)
/* Multiply every column by 1+Y^2. */
#define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do \
{ \
uintN_t tmp = input; \
BITSLICED_MUL_BY_Y2(tmp, input, uintN_t); \
output = input ^ tmp; \
} while (0)
/* Multiply every field element by X. This has to feed data between
* slices, so it does the whole job in one go without needing ITERATE. */
#define BITSLICED_MUL_BY_X(output, input, uintN_t) do \
{ \
uintN_t bit7 = input[7]; \
output[7] = input[6]; \
output[6] = input[5]; \
output[5] = input[4]; \
output[4] = input[3] ^ bit7; \
output[3] = input[2] ^ bit7; \
output[2] = input[1]; \
output[1] = input[0] ^ bit7; \
output[0] = bit7; \
} while (0)
/*
* The MixColumns constant is
* M = X + Y + Y^2 + (X+1)Y^3
* which we construct by rearranging it into
* M = 1 + (1+Y^3) [ X + (1+Y^2) ]
*/
#define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do \
{ \
uintN_t a[8], aX[8], b[8]; \
/* a = input * (1+Y^3) */ \
ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t); \
/* aX = a * X */ \
BITSLICED_MUL_BY_X(aX, a, uintN_t); \
/* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */ \
ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t); \
/* output = input + aX + b (reusing a as a temp */ \
BITSLICED_ADD(a, aX, b); \
BITSLICED_ADD(output, input, a); \
} while (0)
/*
* The InvMixColumns constant, written out longhand, is
* I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3
* We represent this as
* I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3)
*/
#define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do \
{ \
/* We need input * X^i for i=1,...,3 */ \
uintN_t X[8], X2[8], X3[8]; \
BITSLICED_MUL_BY_X(X, input, uintN_t); \
BITSLICED_MUL_BY_X(X2, X, uintN_t); \
BITSLICED_MUL_BY_X(X3, X2, uintN_t); \
/* Sum them all and multiply by 1+Y+Y^2+Y^3. */ \
uintN_t S[8]; \
BITSLICED_ADD(S, input, X); \
BITSLICED_ADD(S, S, X2); \
BITSLICED_ADD(S, S, X3); \
ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t); \
ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t); \
/* Compute the X(Y+Y^2) term. */ \
uintN_t A[8]; \
ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t); \
ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t); \
/* Compute the X^2(Y+Y^3) term. */ \
uintN_t B[8]; \
ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t); \
ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t); \
/* And add all the pieces together. */ \
BITSLICED_ADD(S, S, input); \
BITSLICED_ADD(S, S, A); \
BITSLICED_ADD(output, S, B); \
} while (0)
/* -----
* Put it all together into a cipher round.
*/
/* Dummy macro to get rid of the MixColumns in the final round. */
#define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0)
#define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
static void aes_sliced_round_e_##suffix( \
uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
{ \
BITSLICED_SUBBYTES(output, input, uintN_t); \
BITSLICED_SHIFTROWS(output, output, uintN_t); \
mixcol_macro(output, output, uintN_t); \
BITSLICED_ADD(output, output, roundkey); \
}
ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS)
ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS)
ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS)
ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS)
#define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \
static void aes_sliced_round_d_##suffix( \
uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
{ \
BITSLICED_ADD(output, input, roundkey); \
mixcol_macro(output, output, uintN_t); \
BITSLICED_INVSUBBYTES(output, output, uintN_t); \
BITSLICED_INVSHIFTROWS(output, output, uintN_t); \
}
#if 0 /* no cipher mode we support requires serial decryption */
DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS)
DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS)
#endif
DECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS)
DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS)
/* -----
* Key setup function.
*/
typedef struct aes_sliced_key aes_sliced_key;
struct aes_sliced_key {
BignumInt roundkeys_parallel[MAXROUNDKEYS * 8];
uint16_t roundkeys_serial[MAXROUNDKEYS * 8];
unsigned rounds;
};
static void aes_sliced_key_setup(
aes_sliced_key *sk, const void *vkey, size_t keybits)
{
const unsigned char *key = (const unsigned char *)vkey;
size_t key_words = keybits / 32;
sk->rounds = key_words + 6;
size_t sched_words = (sk->rounds + 1) * 4;
unsigned rconpos = 0;
uint16_t *outslices = sk->roundkeys_serial;
unsigned outshift = 0;
memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial));
uint8_t inblk[16];
memset(inblk, 0, 16);
uint16_t slices[8];
for (size_t i = 0; i < sched_words; i++) {
/*
* Prepare a word of round key in the low 4 bits of each
* integer in slices[].
*/
if (i < key_words) {
memcpy(inblk, key + 4*i, 4);
TO_BITSLICES(slices, inblk, uint16_t, =, 0);
} else {
unsigned wordindex, bitshift;
uint16_t *prevslices;
/* Fetch the (i-1)th key word */
wordindex = i-1;
bitshift = 4 * (wordindex & 3);
prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
for (size_t i = 0; i < 8; i++)
slices[i] = prevslices[i] >> bitshift;
/* Decide what we're doing in this expansion stage */
bool rotate_and_round_constant = (i % key_words == 0);
bool sub = rotate_and_round_constant ||
(key_words == 8 && i % 8 == 4);
if (rotate_and_round_constant) {
for (size_t i = 0; i < 8; i++)
slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF;
}
if (sub) {
/* Apply the SubBytes transform to the key word. But
* here we need to apply the _full_ SubBytes from the
* spec, including the constant which our S-box leaves
* out. */
BITSLICED_SUBBYTES(slices, slices, uint16_t);
slices[0] ^= 0xFFFF;
slices[1] ^= 0xFFFF;
slices[5] ^= 0xFFFF;
slices[6] ^= 0xFFFF;
}
if (rotate_and_round_constant) {
assert(rconpos < lenof(aes_key_setup_round_constants));
uint8_t rcon = aes_key_setup_round_constants[rconpos++];
for (size_t i = 0; i < 8; i++)
slices[i] ^= 1 & (rcon >> i);
}
/* Combine with the (i-Nk)th key word */
wordindex = i - key_words;
bitshift = 4 * (wordindex & 3);
prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
for (size_t i = 0; i < 8; i++)
slices[i] ^= prevslices[i] >> bitshift;
}
/*
* Now copy it into sk.
*/
for (unsigned b = 0; b < 8; b++)
outslices[b] |= (slices[b] & 0xF) << outshift;
outshift += 4;
if (outshift == 16) {
outshift = 0;
outslices += 8;
}
}
smemclr(inblk, sizeof(inblk));
smemclr(slices, sizeof(slices));
/*
* Add the S-box constant to every round key after the first one,
* compensating for it being left out in the main cipher.
*/
for (size_t i = 8; i < 8 * (sched_words/4); i += 8) {
sk->roundkeys_serial[i+0] ^= 0xFFFF;
sk->roundkeys_serial[i+1] ^= 0xFFFF;
sk->roundkeys_serial[i+5] ^= 0xFFFF;
sk->roundkeys_serial[i+6] ^= 0xFFFF;
}
/*
* Replicate that set of round keys into larger integers for the
* parallel versions of the cipher.
*/
for (size_t i = 0; i < 8 * (sched_words / 4); i++) {
sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] *
((BignumInt)~(BignumInt)0 / 0xFFFF);
}
}
/* -----
* The full cipher primitive, including transforming the input and
* output to/from bit-sliced form.
*/
#define ENCRYPT_FN(suffix, uintN_t, nblocks) \
static void aes_sliced_e_##suffix( \
uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
{ \
uintN_t state[8]; \
TO_BITSLICES(state, input, uintN_t, =, 0); \
for (unsigned i = 1; i < nblocks; i++) { \
input += 16; \
TO_BITSLICES(state, input, uintN_t, |=, i*16); \
} \
const uintN_t *keys = sk->roundkeys_##suffix; \
BITSLICED_ADD(state, state, keys); \
keys += 8; \
for (unsigned i = 0; i < sk->rounds-1; i++) { \
aes_sliced_round_e_##suffix(state, state, keys); \
keys += 8; \
} \
aes_sliced_round_e_##suffix##_last(state, state, keys); \
for (unsigned i = 0; i < nblocks; i++) { \
FROM_BITSLICES(output, state, i*16); \
output += 16; \
} \
}
#define DECRYPT_FN(suffix, uintN_t, nblocks) \
static void aes_sliced_d_##suffix( \
uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
{ \
uintN_t state[8]; \
TO_BITSLICES(state, input, uintN_t, =, 0); \
for (unsigned i = 1; i < nblocks; i++) { \
input += 16; \
TO_BITSLICES(state, input, uintN_t, |=, i*16); \
} \
const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds; \
aes_sliced_round_d_##suffix##_first(state, state, keys); \
keys -= 8; \
for (unsigned i = 0; i < sk->rounds-1; i++) { \
aes_sliced_round_d_##suffix(state, state, keys); \
keys -= 8; \
} \
BITSLICED_ADD(state, state, keys); \
for (unsigned i = 0; i < nblocks; i++) { \
FROM_BITSLICES(output, state, i*16); \
output += 16; \
} \
}
ENCRYPT_FN(serial, uint16_t, 1)
#if 0 /* no cipher mode we support requires serial decryption */
DECRYPT_FN(serial, uint16_t, 1)
#endif
ENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
/* -----
* The SSH interface and the cipher modes.
*/
#define SDCTR_WORDS (16 / BIGNUM_INT_BYTES)
typedef struct aes_sw_context aes_sw_context;
struct aes_sw_context {
aes_sliced_key sk;
union {
struct {
/* In CBC mode, the IV is just a copy of the last seen
* cipher block. */
uint8_t prevblk[16];
} cbc;
struct {
/* In SDCTR mode, we keep the counter itself in a form
* that's easy to increment. We also use the parallel
* version of the core AES function, so we'll encrypt
* multiple counter values in one go. That won't align
* nicely with the sizes of data we're asked to encrypt,
* so we must also store a cache of the last set of
* keystream blocks we generated, and our current position
* within that cache. */
BignumInt counter[SDCTR_WORDS];
uint8_t keystream[SLICE_PARALLELISM * 16];
uint8_t *keystream_pos;
} sdctr;
} iv;
ssh_cipher ciph;
};
static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg)
{
aes_sw_context *ctx = snew(aes_sw_context);
ctx->ciph.vt = alg;
return &ctx->ciph;
}
static void aes_sw_free(ssh_cipher *ciph)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
smemclr(ctx, sizeof(*ctx));
sfree(ctx);
}
static void aes_sw_setkey(ssh_cipher *ciph, const void *vkey)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits);
}
static void aes_sw_setiv_cbc(ssh_cipher *ciph, const void *iv)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
memcpy(ctx->iv.cbc.prevblk, iv, 16);
}
static void aes_sw_setiv_sdctr(ssh_cipher *ciph, const void *viv)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
const uint8_t *iv = (const uint8_t *)viv;
/* Import the initial counter value into the internal representation */
for (unsigned i = 0; i < SDCTR_WORDS; i++)
ctx->iv.sdctr.counter[i] =
GET_BIGNUMINT_MSB_FIRST(
iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES);
/* Set keystream_pos to indicate that the keystream cache is
* currently empty */
ctx->iv.sdctr.keystream_pos =
ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
}
typedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched);
static inline void memxor16(void *vout, const void *vlhs, const void *vrhs)
{
uint8_t *out = (uint8_t *)vout;
const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs;
uint64_t w;
w = GET_64BIT_LSB_FIRST(lhs);
w ^= GET_64BIT_LSB_FIRST(rhs);
PUT_64BIT_LSB_FIRST(out, w);
w = GET_64BIT_LSB_FIRST(lhs + 8);
w ^= GET_64BIT_LSB_FIRST(rhs + 8);
PUT_64BIT_LSB_FIRST(out + 8, w);
}
static inline void aes_cbc_sw_encrypt(
ssh_cipher *ciph, void *vblk, int blklen)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
/*
* CBC encryption has to be done serially, because the input to
* each run of the cipher includes the output from the previous
* run.
*/
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
blk < finish; blk += 16) {
/*
* We use the IV array itself as the location for the
* encryption, because there's no reason not to.
*/
/* XOR the new plaintext block into the previous cipher block */
memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk);
/* Run the cipher over the result, which leaves it
* conveniently already stored in ctx->iv */
aes_sliced_e_serial(
ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk);
/* Copy it to the output location */
memcpy(blk, ctx->iv.cbc.prevblk, 16);
}
}
static inline void aes_cbc_sw_decrypt(
ssh_cipher *ciph, void *vblk, int blklen)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
uint8_t *blk = (uint8_t *)vblk;
/*
* CBC decryption can run in parallel, because all the
* _ciphertext_ blocks are already available.
*/
size_t blocks_remaining = blklen / 16;
uint8_t data[SLICE_PARALLELISM * 16];
/* Zeroing the data array is probably overcautious, but it avoids
* technically undefined behaviour from leaving it uninitialised
* if our very first iteration doesn't include enough cipher
* blocks to populate it fully */
memset(data, 0, sizeof(data));
while (blocks_remaining > 0) {
/* Number of blocks we'll handle in this iteration. If we're
* dealing with fewer than the maximum, it doesn't matter -
* it's harmless to run the full parallel cipher function
* anyway. */
size_t blocks = (blocks_remaining < SLICE_PARALLELISM ?
blocks_remaining : SLICE_PARALLELISM);
/* Parallel-decrypt the input, in a separate array so we still
* have the cipher stream available for XORing. */
memcpy(data, blk, 16 * blocks);
aes_sliced_d_parallel(data, data, &ctx->sk);
/* Write the output and update the IV */
for (size_t i = 0; i < blocks; i++) {
uint8_t *decrypted = data + 16*i;
uint8_t *output = blk + 16*i;
memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk);
memcpy(ctx->iv.cbc.prevblk, output, 16);
memcpy(output, decrypted, 16);
}
/* Advance the input pointer. */
blk += 16 * blocks;
blocks_remaining -= blocks;
}
smemclr(data, sizeof(data));
}
static inline void aes_sdctr_sw(
ssh_cipher *ciph, void *vblk, int blklen)
{
aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
/*
* SDCTR encrypt/decrypt loops round one block at a time XORing
* the keystream into the user's data, and periodically has to run
* a parallel encryption operation to get more keystream.
*/
uint8_t *keystream_end =
ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
blk < finish; blk += 16) {
if (ctx->iv.sdctr.keystream_pos == keystream_end) {
/*
* Generate some keystream.
*/
for (uint8_t *block = ctx->iv.sdctr.keystream;
block < keystream_end; block += 16) {
/* Format the counter value into the buffer. */
for (unsigned i = 0; i < SDCTR_WORDS; i++)
PUT_BIGNUMINT_MSB_FIRST(
block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES,
ctx->iv.sdctr.counter[i]);
/* Increment the counter. */
BignumCarry carry = 1;
for (unsigned i = 0; i < SDCTR_WORDS; i++)
BignumADC(ctx->iv.sdctr.counter[i], carry,
ctx->iv.sdctr.counter[i], 0, carry);
}
/* Encrypt all those counter blocks. */
aes_sliced_e_parallel(ctx->iv.sdctr.keystream,
ctx->iv.sdctr.keystream, &ctx->sk);
/* Reset keystream_pos to the start of the buffer. */
ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream;
}
memxor16(blk, blk, ctx->iv.sdctr.keystream_pos);
ctx->iv.sdctr.keystream_pos += 16;
}
}
#define SW_ENC_DEC(len) \
static void aes##len##_sw_cbc_encrypt( \
ssh_cipher *ciph, void *vblk, int blklen) \
{ aes_cbc_sw_encrypt(ciph, vblk, blklen); } \
static void aes##len##_sw_cbc_decrypt( \
ssh_cipher *ciph, void *vblk, int blklen) \
{ aes_cbc_sw_decrypt(ciph, vblk, blklen); } \
static void aes##len##_sw_sdctr( \
ssh_cipher *ciph, void *vblk, int blklen) \
{ aes_sdctr_sw(ciph, vblk, blklen); }
SW_ENC_DEC(128)
SW_ENC_DEC(192)
SW_ENC_DEC(256)
AES_EXTRA(_sw);
AES_ALL_VTABLES(_sw, "unaccelerated");