mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
a5bcf3d384
The "rsa-sha2-256" and "rsa-sha2-512" algorithms, as defined by RFC 8332, differ in one detail from "ssh-rsa" in addition to the change of hash function. They also specify that the signature integer should be encoded using the same number of bytes as the key modulus, even if that means giving it a leading zero byte (or even more than one). I hadn't noticed this, and had assumed that unrelated details wouldn't have changed. But they had. Thanks to Ilia Mirkin for pointing this out. Nobody has previously reported a problem, so very likely most servers are forgiving of people making this mistake! But now it's been pointed out, we should comply with the spec. (Especially since the new spec is more sensible, and only historical inertia justified sticking to the old one.)
1188 lines
34 KiB
C
1188 lines
34 KiB
C
/*
|
|
* RSA implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "mpint.h"
|
|
#include "misc.h"
|
|
|
|
void BinarySource_get_rsa_ssh1_pub(
|
|
BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
|
|
{
|
|
unsigned bits;
|
|
mp_int *e, *m;
|
|
|
|
bits = get_uint32(src);
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
e = get_mp_ssh1(src);
|
|
m = get_mp_ssh1(src);
|
|
} else {
|
|
m = get_mp_ssh1(src);
|
|
e = get_mp_ssh1(src);
|
|
}
|
|
|
|
if (rsa) {
|
|
rsa->bits = bits;
|
|
rsa->exponent = e;
|
|
rsa->modulus = m;
|
|
rsa->bytes = (mp_get_nbits(m) + 7) / 8;
|
|
} else {
|
|
mp_free(e);
|
|
mp_free(m);
|
|
}
|
|
}
|
|
|
|
void BinarySource_get_rsa_ssh1_priv(
|
|
BinarySource *src, RSAKey *rsa)
|
|
{
|
|
rsa->private_exponent = get_mp_ssh1(src);
|
|
}
|
|
|
|
key_components *rsa_components(RSAKey *rsa)
|
|
{
|
|
key_components *kc = key_components_new();
|
|
key_components_add_text(kc, "key_type", "RSA");
|
|
key_components_add_mp(kc, "public_modulus", rsa->modulus);
|
|
key_components_add_mp(kc, "public_exponent", rsa->exponent);
|
|
if (rsa->private_exponent) {
|
|
key_components_add_mp(kc, "private_exponent", rsa->private_exponent);
|
|
key_components_add_mp(kc, "private_p", rsa->p);
|
|
key_components_add_mp(kc, "private_q", rsa->q);
|
|
key_components_add_mp(kc, "private_inverse_q_mod_p", rsa->iqmp);
|
|
}
|
|
return kc;
|
|
}
|
|
|
|
RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src)
|
|
{
|
|
RSAKey *rsa = snew(RSAKey);
|
|
memset(rsa, 0, sizeof(RSAKey));
|
|
|
|
get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST);
|
|
get_rsa_ssh1_priv(src, rsa);
|
|
|
|
/* SSH-1 names p and q the other way round, i.e. we have the
|
|
* inverse of p mod q and not of q mod p. We swap the names,
|
|
* because our internal RSA wants iqmp. */
|
|
rsa->iqmp = get_mp_ssh1(src);
|
|
rsa->q = get_mp_ssh1(src);
|
|
rsa->p = get_mp_ssh1(src);
|
|
|
|
return rsa;
|
|
}
|
|
|
|
void duprsakey(RSAKey *dst, const RSAKey *src)
|
|
{
|
|
dst->bits = src->bits;
|
|
dst->bytes = src->bytes;
|
|
dst->modulus = mp_copy(src->modulus);
|
|
dst->exponent = mp_copy(src->exponent);
|
|
dst->private_exponent = src->private_exponent ?
|
|
mp_copy(src->private_exponent) : NULL;
|
|
dst->p = mp_copy(src->p);
|
|
dst->q = mp_copy(src->q);
|
|
dst->iqmp = mp_copy(src->iqmp);
|
|
dst->comment = src->comment ? dupstr(src->comment) : NULL;
|
|
dst->sshk.vt = src->sshk.vt;
|
|
}
|
|
|
|
bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (key->bytes < length + 4)
|
|
return false; /* RSA key too short! */
|
|
|
|
memmove(data + key->bytes - length, data, length);
|
|
data[0] = 0;
|
|
data[1] = 2;
|
|
|
|
size_t npad = key->bytes - length - 3;
|
|
/*
|
|
* Generate a sequence of nonzero padding bytes. We do this in a
|
|
* reasonably uniform way and without having to loop round
|
|
* retrying the random number generation, by first generating an
|
|
* integer in [0,2^n) for an appropriately large n; then we
|
|
* repeatedly multiply by 255 to give an integer in [0,255*2^n),
|
|
* extract the top 8 bits to give an integer in [0,255), and mask
|
|
* those bits off before multiplying up again for the next digit.
|
|
* This gives us a sequence of numbers in [0,255), and of course
|
|
* adding 1 to each of them gives numbers in [1,256) as we wanted.
|
|
*
|
|
* (You could imagine this being a sort of fixed-point operation:
|
|
* given a uniformly random binary _fraction_, multiplying it by k
|
|
* and subtracting off the integer part will yield you a sequence
|
|
* of integers each in [0,k). I'm just doing that scaled up by a
|
|
* power of 2 to avoid the fractions.)
|
|
*/
|
|
size_t random_bits = (npad + 16) * 8;
|
|
mp_int *randval = mp_new(random_bits + 8);
|
|
mp_int *tmp = mp_random_bits(random_bits);
|
|
mp_copy_into(randval, tmp);
|
|
mp_free(tmp);
|
|
for (i = 2; i < key->bytes - length - 1; i++) {
|
|
mp_mul_integer_into(randval, randval, 255);
|
|
uint8_t byte = mp_get_byte(randval, random_bits / 8);
|
|
assert(byte != 255);
|
|
data[i] = byte + 1;
|
|
mp_reduce_mod_2to(randval, random_bits);
|
|
}
|
|
mp_free(randval);
|
|
data[key->bytes - length - 1] = 0;
|
|
|
|
b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
|
|
|
|
b2 = mp_modpow(b1, key->exponent, key->modulus);
|
|
|
|
p = data;
|
|
for (i = key->bytes; i--;) {
|
|
*p++ = mp_get_byte(b2, i);
|
|
}
|
|
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
|
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
|
* Uses Chinese Remainder Theorem to speed computation up over the
|
|
* obvious implementation of a single big modpow.
|
|
*/
|
|
static mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
|
|
mp_int *p, mp_int *q, mp_int *iqmp)
|
|
{
|
|
mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
|
|
mp_int *diff, *multiplier, *ret0, *ret;
|
|
|
|
/*
|
|
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
|
* exponentiating mod p and mod q respectively. Of course, since p
|
|
* and q are prime, phi(p) == p-1 and similarly for q.
|
|
*/
|
|
pm1 = mp_copy(p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
qm1 = mp_copy(q);
|
|
mp_sub_integer_into(qm1, qm1, 1);
|
|
pexp = mp_mod(exp, pm1);
|
|
qexp = mp_mod(exp, qm1);
|
|
|
|
/*
|
|
* Do the two modpows.
|
|
*/
|
|
mp_int *base_mod_p = mp_mod(base, p);
|
|
presult = mp_modpow(base_mod_p, pexp, p);
|
|
mp_free(base_mod_p);
|
|
mp_int *base_mod_q = mp_mod(base, q);
|
|
qresult = mp_modpow(base_mod_q, qexp, q);
|
|
mp_free(base_mod_q);
|
|
|
|
/*
|
|
* Recombine the results. We want a value which is congruent to
|
|
* qresult mod q, and to presult mod p.
|
|
*
|
|
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
|
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
|
* (which is congruent to qresult mod both primes), and add on
|
|
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
|
* to presult mod p without affecting its value mod q.
|
|
*
|
|
* (If presult-qresult < 0, we add p to it to keep it positive.)
|
|
*/
|
|
unsigned presult_too_small = mp_cmp_hs(qresult, presult);
|
|
mp_cond_add_into(presult, presult, p, presult_too_small);
|
|
|
|
diff = mp_sub(presult, qresult);
|
|
multiplier = mp_mul(iqmp, q);
|
|
ret0 = mp_mul(multiplier, diff);
|
|
mp_add_into(ret0, ret0, qresult);
|
|
|
|
/*
|
|
* Finally, reduce the result mod n.
|
|
*/
|
|
ret = mp_mod(ret0, mod);
|
|
|
|
/*
|
|
* Free all the intermediate results before returning.
|
|
*/
|
|
mp_free(pm1);
|
|
mp_free(qm1);
|
|
mp_free(pexp);
|
|
mp_free(qexp);
|
|
mp_free(presult);
|
|
mp_free(qresult);
|
|
mp_free(diff);
|
|
mp_free(multiplier);
|
|
mp_free(ret0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Wrapper on crt_modpow that looks up all the right values from an
|
|
* RSAKey.
|
|
*/
|
|
static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
|
|
{
|
|
return crt_modpow(input, key->private_exponent,
|
|
key->modulus, key->p, key->q, key->iqmp);
|
|
}
|
|
|
|
mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
|
|
{
|
|
return rsa_privkey_op(input, key);
|
|
}
|
|
|
|
bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
|
|
strbuf *outbuf)
|
|
{
|
|
strbuf *data = strbuf_new_nm();
|
|
bool success = false;
|
|
BinarySource src[1];
|
|
|
|
{
|
|
mp_int *b = rsa_ssh1_decrypt(input, key);
|
|
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
|
|
put_byte(data, mp_get_byte(b, i));
|
|
}
|
|
mp_free(b);
|
|
}
|
|
|
|
BinarySource_BARE_INIT(src, data->u, data->len);
|
|
|
|
/* Check PKCS#1 formatting prefix */
|
|
if (get_byte(src) != 0) goto out;
|
|
if (get_byte(src) != 2) goto out;
|
|
while (1) {
|
|
unsigned char byte = get_byte(src);
|
|
if (get_err(src)) goto out;
|
|
if (byte == 0)
|
|
break;
|
|
}
|
|
|
|
/* Everything else is the payload */
|
|
success = true;
|
|
put_data(outbuf, get_ptr(src), get_avail(src));
|
|
|
|
out:
|
|
strbuf_free(data);
|
|
return success;
|
|
}
|
|
|
|
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
|
|
{
|
|
if (sb->len > 0)
|
|
put_byte(sb, ',');
|
|
put_data(sb, "0x", 2);
|
|
char *hex = mp_get_hex(x);
|
|
size_t hexlen = strlen(hex);
|
|
put_data(sb, hex, hexlen);
|
|
smemclr(hex, hexlen);
|
|
sfree(hex);
|
|
}
|
|
|
|
char *rsastr_fmt(RSAKey *key)
|
|
{
|
|
strbuf *sb = strbuf_new();
|
|
|
|
append_hex_to_strbuf(sb, key->exponent);
|
|
append_hex_to_strbuf(sb, key->modulus);
|
|
|
|
return strbuf_to_str(sb);
|
|
}
|
|
|
|
/*
|
|
* Generate a fingerprint string for the key. Compatible with the
|
|
* OpenSSH fingerprint code.
|
|
*/
|
|
char *rsa_ssh1_fingerprint(RSAKey *key)
|
|
{
|
|
unsigned char digest[16];
|
|
strbuf *out;
|
|
int i;
|
|
|
|
/*
|
|
* The hash preimage for SSH-1 key fingerprinting consists of the
|
|
* modulus and exponent _without_ any preceding length field -
|
|
* just the minimum number of bytes to represent each integer,
|
|
* stored big-endian, concatenated with no marker at the division
|
|
* between them.
|
|
*/
|
|
|
|
ssh_hash *hash = ssh_hash_new(&ssh_md5);
|
|
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
|
|
put_byte(hash, mp_get_byte(key->modulus, i));
|
|
for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
|
|
put_byte(hash, mp_get_byte(key->exponent, i));
|
|
ssh_hash_final(hash, digest);
|
|
|
|
out = strbuf_new();
|
|
put_fmt(out, "%"SIZEu" ", mp_get_nbits(key->modulus));
|
|
for (i = 0; i < 16; i++)
|
|
put_fmt(out, "%s%02x", i ? ":" : "", digest[i]);
|
|
if (key->comment)
|
|
put_fmt(out, " %s", key->comment);
|
|
return strbuf_to_str(out);
|
|
}
|
|
|
|
/*
|
|
* Wrap the output of rsa_ssh1_fingerprint up into the same kind of
|
|
* structure that comes from ssh2_all_fingerprints.
|
|
*/
|
|
char **rsa_ssh1_fake_all_fingerprints(RSAKey *key)
|
|
{
|
|
char **fingerprints = snewn(SSH_N_FPTYPES, char *);
|
|
for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
|
|
fingerprints[i] = NULL;
|
|
fingerprints[SSH_FPTYPE_MD5] = rsa_ssh1_fingerprint(key);
|
|
return fingerprints;
|
|
}
|
|
|
|
/*
|
|
* Verify that the public data in an RSA key matches the private
|
|
* data. We also check the private data itself: we ensure that p >
|
|
* q and that iqmp really is the inverse of q mod p.
|
|
*/
|
|
bool rsa_verify(RSAKey *key)
|
|
{
|
|
mp_int *n, *ed, *pm1, *qm1;
|
|
unsigned ok = 1;
|
|
|
|
/* Preliminary checks: p,q can't be 0 or 1. (Of course no other
|
|
* very small value is any good either, but these are the values
|
|
* we _must_ check for to avoid assertion failures further down
|
|
* this function.) */
|
|
if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2)))
|
|
return false;
|
|
|
|
/* n must equal pq. */
|
|
n = mp_mul(key->p, key->q);
|
|
ok &= mp_cmp_eq(n, key->modulus);
|
|
mp_free(n);
|
|
|
|
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
|
pm1 = mp_copy(key->p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
ed = mp_modmul(key->exponent, key->private_exponent, pm1);
|
|
mp_free(pm1);
|
|
ok &= mp_eq_integer(ed, 1);
|
|
mp_free(ed);
|
|
|
|
qm1 = mp_copy(key->q);
|
|
mp_sub_integer_into(qm1, qm1, 1);
|
|
ed = mp_modmul(key->exponent, key->private_exponent, qm1);
|
|
mp_free(qm1);
|
|
ok &= mp_eq_integer(ed, 1);
|
|
mp_free(ed);
|
|
|
|
/*
|
|
* Ensure p > q.
|
|
*
|
|
* I have seen key blobs in the wild which were generated with
|
|
* p < q, so instead of rejecting the key in this case we
|
|
* should instead flip them round into the canonical order of
|
|
* p > q. This also involves regenerating iqmp.
|
|
*/
|
|
mp_int *p_new = mp_max(key->p, key->q);
|
|
mp_int *q_new = mp_min(key->p, key->q);
|
|
mp_free(key->p);
|
|
mp_free(key->q);
|
|
mp_free(key->iqmp);
|
|
key->p = p_new;
|
|
key->q = q_new;
|
|
key->iqmp = mp_invert(key->q, key->p);
|
|
|
|
return ok;
|
|
}
|
|
|
|
void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
|
|
RsaSsh1Order order)
|
|
{
|
|
put_uint32(bs, mp_get_nbits(key->modulus));
|
|
if (order == RSA_SSH1_EXPONENT_FIRST) {
|
|
put_mp_ssh1(bs, key->exponent);
|
|
put_mp_ssh1(bs, key->modulus);
|
|
} else {
|
|
put_mp_ssh1(bs, key->modulus);
|
|
put_mp_ssh1(bs, key->exponent);
|
|
}
|
|
}
|
|
|
|
void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key)
|
|
{
|
|
rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST);
|
|
put_mp_ssh1(bs, key->private_exponent);
|
|
put_mp_ssh1(bs, key->iqmp);
|
|
put_mp_ssh1(bs, key->q);
|
|
put_mp_ssh1(bs, key->p);
|
|
}
|
|
|
|
/* Given an SSH-1 public key blob, determine its length. */
|
|
int rsa_ssh1_public_blob_len(ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
|
|
BinarySource_BARE_INIT_PL(src, data);
|
|
|
|
/* Expect a length word, then exponent and modulus. (It doesn't
|
|
* even matter which order.) */
|
|
get_uint32(src);
|
|
mp_free(get_mp_ssh1(src));
|
|
mp_free(get_mp_ssh1(src));
|
|
|
|
if (get_err(src))
|
|
return -1;
|
|
|
|
/* Return the number of bytes consumed. */
|
|
return src->pos;
|
|
}
|
|
|
|
void freersapriv(RSAKey *key)
|
|
{
|
|
if (key->private_exponent) {
|
|
mp_free(key->private_exponent);
|
|
key->private_exponent = NULL;
|
|
}
|
|
if (key->p) {
|
|
mp_free(key->p);
|
|
key->p = NULL;
|
|
}
|
|
if (key->q) {
|
|
mp_free(key->q);
|
|
key->q = NULL;
|
|
}
|
|
if (key->iqmp) {
|
|
mp_free(key->iqmp);
|
|
key->iqmp = NULL;
|
|
}
|
|
}
|
|
|
|
void freersakey(RSAKey *key)
|
|
{
|
|
freersapriv(key);
|
|
if (key->modulus) {
|
|
mp_free(key->modulus);
|
|
key->modulus = NULL;
|
|
}
|
|
if (key->exponent) {
|
|
mp_free(key->exponent);
|
|
key->exponent = NULL;
|
|
}
|
|
if (key->comment) {
|
|
sfree(key->comment);
|
|
key->comment = NULL;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Implementation of the ssh-rsa signing key type family.
|
|
*/
|
|
|
|
struct ssh2_rsa_extra {
|
|
unsigned signflags;
|
|
};
|
|
|
|
static void rsa2_freekey(ssh_key *key); /* forward reference */
|
|
|
|
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
RSAKey *rsa;
|
|
|
|
BinarySource_BARE_INIT_PL(src, data);
|
|
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
|
|
return NULL;
|
|
|
|
rsa = snew(RSAKey);
|
|
rsa->sshk.vt = self;
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->private_exponent = NULL;
|
|
rsa->p = rsa->q = rsa->iqmp = NULL;
|
|
rsa->comment = NULL;
|
|
|
|
if (get_err(src)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_freekey(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
freersakey(rsa);
|
|
sfree(rsa);
|
|
}
|
|
|
|
static char *rsa2_cache_str(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
return rsastr_fmt(rsa);
|
|
}
|
|
|
|
static key_components *rsa2_components(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
return rsa_components(rsa);
|
|
}
|
|
|
|
static bool rsa2_has_private(ssh_key *key)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
return rsa->private_exponent != NULL;
|
|
}
|
|
|
|
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_stringz(bs, "ssh-rsa");
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
}
|
|
|
|
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
|
|
ptrlen pub, ptrlen priv)
|
|
{
|
|
BinarySource src[1];
|
|
ssh_key *sshk;
|
|
RSAKey *rsa;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
|
|
rsa = container_of(sshk, RSAKey, sshk);
|
|
BinarySource_BARE_INIT_PL(src, priv);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
|
|
BinarySource *src)
|
|
{
|
|
RSAKey *rsa;
|
|
|
|
rsa = snew(RSAKey);
|
|
rsa->sshk.vt = &ssh_rsa;
|
|
rsa->comment = NULL;
|
|
|
|
rsa->modulus = get_mp_ssh2(src);
|
|
rsa->exponent = get_mp_ssh2(src);
|
|
rsa->private_exponent = get_mp_ssh2(src);
|
|
rsa->iqmp = get_mp_ssh2(src);
|
|
rsa->p = get_mp_ssh2(src);
|
|
rsa->q = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) || !rsa_verify(rsa)) {
|
|
rsa2_freekey(&rsa->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &rsa->sshk;
|
|
}
|
|
|
|
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
|
|
put_mp_ssh2(bs, rsa->modulus);
|
|
put_mp_ssh2(bs, rsa->exponent);
|
|
put_mp_ssh2(bs, rsa->private_exponent);
|
|
put_mp_ssh2(bs, rsa->iqmp);
|
|
put_mp_ssh2(bs, rsa->p);
|
|
put_mp_ssh2(bs, rsa->q);
|
|
}
|
|
|
|
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
|
|
{
|
|
ssh_key *sshk;
|
|
RSAKey *rsa;
|
|
int ret;
|
|
|
|
sshk = rsa2_new_pub(self, pub);
|
|
if (!sshk)
|
|
return -1;
|
|
|
|
rsa = container_of(sshk, RSAKey, sshk);
|
|
ret = mp_get_nbits(rsa->modulus);
|
|
rsa2_freekey(&rsa->sshk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
|
|
unsigned flags, const char **protocol_id_out)
|
|
{
|
|
const ssh_hashalg *halg;
|
|
const char *protocol_id;
|
|
|
|
if (flags & SSH_AGENT_RSA_SHA2_256) {
|
|
halg = &ssh_sha256;
|
|
protocol_id = "rsa-sha2-256";
|
|
} else if (flags & SSH_AGENT_RSA_SHA2_512) {
|
|
halg = &ssh_sha512;
|
|
protocol_id = "rsa-sha2-512";
|
|
} else {
|
|
halg = &ssh_sha1;
|
|
protocol_id = "ssh-rsa";
|
|
}
|
|
|
|
if (protocol_id_out)
|
|
*protocol_id_out = protocol_id;
|
|
|
|
return halg;
|
|
}
|
|
|
|
static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
|
|
{
|
|
if (halg == &ssh_sha1) {
|
|
/*
|
|
* This is the magic ASN.1/DER prefix that goes in the decoded
|
|
* signature, between the string of FFs and the actual SHA-1
|
|
* hash value. The meaning of it is:
|
|
*
|
|
* 00 -- this marks the end of the FFs; not part of the ASN.1
|
|
* bit itself
|
|
*
|
|
* 30 21 -- a constructed SEQUENCE of length 0x21
|
|
* 30 09 -- a constructed sub-SEQUENCE of length 9
|
|
* 06 05 -- an object identifier, length 5
|
|
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
|
|
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
|
|
* 05 00 -- NULL
|
|
* 04 14 -- a primitive OCTET STRING of length 0x14
|
|
* [0x14 bytes of hash data follows]
|
|
*
|
|
* The object id in the middle there is listed as `id-sha1' in
|
|
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
|
|
* (the ASN module for PKCS #1) and its expanded form is as
|
|
* follows:
|
|
*
|
|
* id-sha1 OBJECT IDENTIFIER ::= {
|
|
* iso(1) identified-organization(3) oiw(14) secsig(3)
|
|
* algorithms(2) 26 }
|
|
*/
|
|
static const unsigned char sha1_asn1_prefix[] = {
|
|
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
|
|
}
|
|
|
|
if (halg == &ssh_sha256) {
|
|
/*
|
|
* A similar piece of ASN.1 used for signatures using SHA-256,
|
|
* in the same format but differing only in various length
|
|
* fields and OID.
|
|
*/
|
|
static const unsigned char sha256_asn1_prefix[] = {
|
|
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
|
|
0x05, 0x00, 0x04, 0x20,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
|
|
}
|
|
|
|
if (halg == &ssh_sha512) {
|
|
/*
|
|
* And one more for SHA-512.
|
|
*/
|
|
static const unsigned char sha512_asn1_prefix[] = {
|
|
0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
|
|
0x05, 0x00, 0x04, 0x40,
|
|
};
|
|
return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
|
|
}
|
|
|
|
unreachable("bad hash algorithm for RSA PKCS#1");
|
|
}
|
|
|
|
static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
|
|
{
|
|
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
|
|
return halg->hlen + asn1_prefix.len + 2;
|
|
}
|
|
|
|
static unsigned char *rsa_pkcs1_signature_string(
|
|
size_t nbytes, const ssh_hashalg *halg, ptrlen data)
|
|
{
|
|
size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
|
|
assert(nbytes >= fixed_parts);
|
|
size_t padding = nbytes - fixed_parts;
|
|
|
|
ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
|
|
|
|
unsigned char *bytes = snewn(nbytes, unsigned char);
|
|
|
|
bytes[0] = 0;
|
|
bytes[1] = 1;
|
|
|
|
memset(bytes + 2, 0xFF, padding);
|
|
|
|
memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);
|
|
|
|
ssh_hash *h = ssh_hash_new(halg);
|
|
put_datapl(h, data);
|
|
ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
BinarySource src[1];
|
|
ptrlen type, in_pl;
|
|
mp_int *in, *out;
|
|
|
|
const struct ssh2_rsa_extra *extra =
|
|
(const struct ssh2_rsa_extra *)key->vt->extra;
|
|
|
|
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(extra->signflags, NULL);
|
|
|
|
/* Start by making sure the key is even long enough to encode a
|
|
* signature. If not, everything fails to verify. */
|
|
size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
|
|
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
|
|
return false;
|
|
|
|
BinarySource_BARE_INIT_PL(src, sig);
|
|
type = get_string(src);
|
|
/*
|
|
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
|
|
* signature is 'without lengths or padding'. That is, we _don't_
|
|
* expect the usual leading zero byte if the topmost bit of the
|
|
* first byte is set. (However, because of the possibility of
|
|
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
|
|
* there.) So we can't use get_mp_ssh2, which enforces that
|
|
* leading-byte scheme; instead we use get_string and
|
|
* mp_from_bytes_be, which will tolerate anything.
|
|
*/
|
|
in_pl = get_string(src);
|
|
if (get_err(src) || !ptrlen_eq_string(type, key->vt->ssh_id))
|
|
return false;
|
|
|
|
in = mp_from_bytes_be(in_pl);
|
|
out = mp_modpow(in, rsa->exponent, rsa->modulus);
|
|
mp_free(in);
|
|
|
|
unsigned diff = 0;
|
|
|
|
unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
mp_free(out);
|
|
|
|
return diff == 0;
|
|
}
|
|
|
|
static void rsa2_sign(ssh_key *key, ptrlen data,
|
|
unsigned flags, BinarySink *bs)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
unsigned char *bytes;
|
|
size_t nbytes;
|
|
mp_int *in, *out;
|
|
const ssh_hashalg *halg;
|
|
const char *sign_alg_name;
|
|
|
|
const struct ssh2_rsa_extra *extra =
|
|
(const struct ssh2_rsa_extra *)key->vt->extra;
|
|
flags |= extra->signflags;
|
|
|
|
halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
|
|
|
|
nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
|
|
|
|
bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
|
|
in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
|
|
smemclr(bytes, nbytes);
|
|
sfree(bytes);
|
|
|
|
out = rsa_privkey_op(in, rsa);
|
|
mp_free(in);
|
|
|
|
put_stringz(bs, sign_alg_name);
|
|
if (flags == 0) {
|
|
/*
|
|
* Original "ssh-rsa", per RFC 4253 section 6.6, stores the
|
|
* signature integer in a string without padding - not even
|
|
* the leading zero byte that an ordinary SSH-2 mpint would
|
|
* require to avoid looking like two's complement.
|
|
*
|
|
* "The value for 'rsa_signature_blob' is encoded as a string
|
|
* containing s (which is an integer, without lengths or
|
|
* padding, unsigned, and in network byte order)."
|
|
*/
|
|
nbytes = (mp_get_nbits(out) + 7) / 8;
|
|
} else {
|
|
/*
|
|
* The SHA-256 and SHA-512 signature systems, per RFC 8332
|
|
* section 3, should be padded to the length of the key
|
|
* modulus.
|
|
*
|
|
* "The value for 'rsa_signature_blob' is encoded as a string
|
|
* that contains an octet string S (which is the output of
|
|
* RSASSA-PKCS1-v1_5) and that has the same length (in octets)
|
|
* as the RSA modulus."
|
|
*
|
|
* Awkwardly, RFC 8332 doesn't say whether that means the
|
|
* 'raw' length of the RSA modulus (that is, ceil(n/8) for an
|
|
* n-bit key) or the length it would occupy as an SSH-2 mpint.
|
|
* My interpretation is the former.
|
|
*/
|
|
nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
|
|
}
|
|
put_uint32(bs, nbytes);
|
|
for (size_t i = 0; i < nbytes; i++)
|
|
put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
|
|
|
|
mp_free(out);
|
|
}
|
|
|
|
static char *rsa2_invalid(ssh_key *key, unsigned flags)
|
|
{
|
|
RSAKey *rsa = container_of(key, RSAKey, sshk);
|
|
size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
|
|
const char *sign_alg_name;
|
|
const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
|
|
if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
|
|
return dupprintf(
|
|
"%"SIZEu"-bit RSA key is too short to generate %s signatures",
|
|
bits, sign_alg_name);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned ssh_rsa_supported_flags(const ssh_keyalg *self)
|
|
{
|
|
return SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512;
|
|
}
|
|
|
|
static const char *ssh_rsa_alternate_ssh_id(
|
|
const ssh_keyalg *self, unsigned flags)
|
|
{
|
|
if (flags & SSH_AGENT_RSA_SHA2_512)
|
|
return ssh_rsa_sha512.ssh_id;
|
|
if (flags & SSH_AGENT_RSA_SHA2_256)
|
|
return ssh_rsa_sha256.ssh_id;
|
|
return self->ssh_id;
|
|
}
|
|
|
|
static char *rsa2_alg_desc(const ssh_keyalg *self) { return dupstr("RSA"); }
|
|
|
|
static const struct ssh2_rsa_extra
|
|
rsa_extra = { 0 },
|
|
rsa_sha256_extra = { SSH_AGENT_RSA_SHA2_256 },
|
|
rsa_sha512_extra = { SSH_AGENT_RSA_SHA2_512 };
|
|
|
|
#define COMMON_KEYALG_FIELDS \
|
|
.new_pub = rsa2_new_pub, \
|
|
.new_priv = rsa2_new_priv, \
|
|
.new_priv_openssh = rsa2_new_priv_openssh, \
|
|
.freekey = rsa2_freekey, \
|
|
.invalid = rsa2_invalid, \
|
|
.sign = rsa2_sign, \
|
|
.verify = rsa2_verify, \
|
|
.public_blob = rsa2_public_blob, \
|
|
.private_blob = rsa2_private_blob, \
|
|
.openssh_blob = rsa2_openssh_blob, \
|
|
.has_private = rsa2_has_private, \
|
|
.cache_str = rsa2_cache_str, \
|
|
.components = rsa2_components, \
|
|
.base_key = nullkey_base_key, \
|
|
.pubkey_bits = rsa2_pubkey_bits, \
|
|
.alg_desc = rsa2_alg_desc, \
|
|
.variable_size = nullkey_variable_size_yes, \
|
|
.cache_id = "rsa2"
|
|
|
|
const ssh_keyalg ssh_rsa = {
|
|
COMMON_KEYALG_FIELDS,
|
|
.ssh_id = "ssh-rsa",
|
|
.supported_flags = ssh_rsa_supported_flags,
|
|
.alternate_ssh_id = ssh_rsa_alternate_ssh_id,
|
|
.extra = &rsa_extra,
|
|
};
|
|
|
|
const ssh_keyalg ssh_rsa_sha256 = {
|
|
COMMON_KEYALG_FIELDS,
|
|
.ssh_id = "rsa-sha2-256",
|
|
.supported_flags = nullkey_supported_flags,
|
|
.alternate_ssh_id = nullkey_alternate_ssh_id,
|
|
.extra = &rsa_sha256_extra,
|
|
};
|
|
|
|
const ssh_keyalg ssh_rsa_sha512 = {
|
|
COMMON_KEYALG_FIELDS,
|
|
.ssh_id = "rsa-sha2-512",
|
|
.supported_flags = nullkey_supported_flags,
|
|
.alternate_ssh_id = nullkey_alternate_ssh_id,
|
|
.extra = &rsa_sha512_extra,
|
|
};
|
|
|
|
RSAKey *ssh_rsakex_newkey(ptrlen data)
|
|
{
|
|
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
|
|
if (!sshk)
|
|
return NULL;
|
|
return container_of(sshk, RSAKey, sshk);
|
|
}
|
|
|
|
void ssh_rsakex_freekey(RSAKey *key)
|
|
{
|
|
rsa2_freekey(&key->sshk);
|
|
}
|
|
|
|
int ssh_rsakex_klen(RSAKey *rsa)
|
|
{
|
|
return mp_get_nbits(rsa->modulus);
|
|
}
|
|
|
|
static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
|
|
void *vdata, int datalen)
|
|
{
|
|
unsigned char *data = (unsigned char *)vdata;
|
|
unsigned count = 0;
|
|
|
|
ssh_hash *s = ssh_hash_new(h);
|
|
|
|
while (datalen > 0) {
|
|
int i, max = (datalen > h->hlen ? h->hlen : datalen);
|
|
unsigned char hash[MAX_HASH_LEN];
|
|
|
|
ssh_hash_reset(s);
|
|
assert(h->hlen <= MAX_HASH_LEN);
|
|
put_data(s, seed, seedlen);
|
|
put_uint32(s, count);
|
|
ssh_hash_digest(s, hash);
|
|
count++;
|
|
|
|
for (i = 0; i < max; i++)
|
|
data[i] ^= hash[i];
|
|
|
|
data += max;
|
|
datalen -= max;
|
|
}
|
|
|
|
ssh_hash_free(s);
|
|
}
|
|
|
|
strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int k, i;
|
|
char *p;
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Here we encrypt using RSAES-OAEP. Essentially this means:
|
|
*
|
|
* - we have a SHA-based `mask generation function' which
|
|
* creates a pseudo-random stream of mask data
|
|
* deterministically from an input chunk of data.
|
|
*
|
|
* - we have a random chunk of data called a seed.
|
|
*
|
|
* - we use the seed to generate a mask which we XOR with our
|
|
* plaintext.
|
|
*
|
|
* - then we use _the masked plaintext_ to generate a mask
|
|
* which we XOR with the seed.
|
|
*
|
|
* - then we concatenate the masked seed and the masked
|
|
* plaintext, and RSA-encrypt that lot.
|
|
*
|
|
* The result is that the data input to the encryption function
|
|
* is random-looking and (hopefully) contains no exploitable
|
|
* structure such as PKCS1-v1_5 does.
|
|
*
|
|
* For a precise specification, see RFC 3447, section 7.1.1.
|
|
* Some of the variable names below are derived from that, so
|
|
* it'd probably help to read it anyway.
|
|
*/
|
|
|
|
/* k denotes the length in octets of the RSA modulus. */
|
|
k = (7 + mp_get_nbits(rsa->modulus)) / 8;
|
|
|
|
/* The length of the input data must be at most k - 2hLen - 2. */
|
|
assert(in.len > 0 && in.len <= k - 2*HLEN - 2);
|
|
|
|
/* The length of the output data wants to be precisely k. */
|
|
strbuf *toret = strbuf_new_nm();
|
|
int outlen = k;
|
|
unsigned char *out = strbuf_append(toret, outlen);
|
|
|
|
/*
|
|
* Now perform EME-OAEP encoding. First set up all the unmasked
|
|
* output data.
|
|
*/
|
|
/* Leading byte zero. */
|
|
out[0] = 0;
|
|
/* At position 1, the seed: HLEN bytes of random data. */
|
|
random_read(out + 1, HLEN);
|
|
/* At position 1+HLEN, the data block DB, consisting of: */
|
|
/* The hash of the label (we only support an empty label here) */
|
|
hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1);
|
|
/* A bunch of zero octets */
|
|
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
|
|
/* A single 1 octet, followed by the input message data. */
|
|
out[outlen - in.len - 1] = 1;
|
|
memcpy(out + outlen - in.len, in.ptr, in.len);
|
|
|
|
/*
|
|
* Now use the seed data to mask the block DB.
|
|
*/
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/*
|
|
* And now use the masked DB to mask the seed itself.
|
|
*/
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
|
|
/*
|
|
* Now `out' contains precisely the data we want to
|
|
* RSA-encrypt.
|
|
*/
|
|
b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
|
|
b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
|
|
p = (char *)out;
|
|
for (i = outlen; i--;) {
|
|
*p++ = mp_get_byte(b2, i);
|
|
}
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
return toret;
|
|
}
|
|
|
|
mp_int *ssh_rsakex_decrypt(
|
|
RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
|
|
{
|
|
mp_int *b1, *b2;
|
|
int outlen, i;
|
|
unsigned char *out;
|
|
unsigned char labelhash[64];
|
|
BinarySource src[1];
|
|
const int HLEN = h->hlen;
|
|
|
|
/*
|
|
* Decryption side of the RSA key exchange operation.
|
|
*/
|
|
|
|
/* The length of the encrypted data should be exactly the length
|
|
* in octets of the RSA modulus.. */
|
|
outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
|
|
if (ciphertext.len != outlen)
|
|
return NULL;
|
|
|
|
/* Do the RSA decryption, and extract the result into a byte array. */
|
|
b1 = mp_from_bytes_be(ciphertext);
|
|
b2 = rsa_privkey_op(b1, rsa);
|
|
out = snewn(outlen, unsigned char);
|
|
for (i = 0; i < outlen; i++)
|
|
out[i] = mp_get_byte(b2, outlen-1-i);
|
|
mp_free(b1);
|
|
mp_free(b2);
|
|
|
|
/* Do the OAEP masking operations, in the reverse order from encryption */
|
|
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
|
|
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
|
|
|
|
/* Check the leading byte is zero. */
|
|
if (out[0] != 0) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Check the label hash at position 1+HLEN */
|
|
assert(HLEN <= lenof(labelhash));
|
|
hash_simple(h, PTRLEN_LITERAL(""), labelhash);
|
|
if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
/* Expect zero bytes followed by a 1 byte */
|
|
for (i = 1 + 2 * HLEN; i < outlen; i++) {
|
|
if (out[i] == 1) {
|
|
i++; /* skip over the 1 byte */
|
|
break;
|
|
} else if (out[i] != 0) {
|
|
sfree(out);
|
|
return NULL;
|
|
}
|
|
}
|
|
/* And what's left is the input message data, which should be
|
|
* encoded as an ordinary SSH-2 mpint. */
|
|
BinarySource_BARE_INIT(src, out + i, outlen - i);
|
|
b1 = get_mp_ssh2(src);
|
|
sfree(out);
|
|
if (get_err(src) || get_avail(src) != 0) {
|
|
mp_free(b1);
|
|
return NULL;
|
|
}
|
|
|
|
/* Success! */
|
|
return b1;
|
|
}
|
|
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
|
|
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
|
|
|
|
static const ssh_kex ssh_rsa_kex_sha1 = {
|
|
.name = "rsa1024-sha1",
|
|
.main_type = KEXTYPE_RSA,
|
|
.hash = &ssh_sha1,
|
|
.extra = &ssh_rsa_kex_extra_sha1,
|
|
};
|
|
|
|
static const ssh_kex ssh_rsa_kex_sha256 = {
|
|
.name = "rsa2048-sha256",
|
|
.main_type = KEXTYPE_RSA,
|
|
.hash = &ssh_sha256,
|
|
.extra = &ssh_rsa_kex_extra_sha256,
|
|
};
|
|
|
|
static const ssh_kex *const rsa_kex_list[] = {
|
|
&ssh_rsa_kex_sha256,
|
|
&ssh_rsa_kex_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };
|