mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
98200d1bfe
DIT, for 'Data-Independent Timing', is a bit you can set in the processor state on sufficiently new Arm CPUs, which promises that a long list of instructions will deliberately avoid varying their timing based on the input register values. Just what you want for keeping your constant-time crypto primitives constant-time. As far as I'm aware, no CPU has _yet_ implemented any data-dependent optimisations, so DIT is a safety precaution against them doing so in future. It would be embarrassing to be caught without it if a future CPU does do that, so we now turn on DIT in the PuTTY process state. I've put a call to the new enable_dit() function at the start of every main() and WinMain() belonging to a program that might do cryptography (even testcrypt, in case someone uses it for something!), and in case I missed one there, also added a second call at the first moment that any cryptography-using part of the code looks as if it might become active: when an instance of the SSH protocol object is configured, when the system PRNG is initialised, and when selecting any cryptographic authentication protocol in an HTTP or SOCKS proxy connection. With any luck those precautions between them should ensure it's on whenever we need it. Arm's own recommendation is that you should carefully choose the granularity at which you enable and disable DIT: there's a potential time cost to turning it on and off (I'm not sure what, but plausibly something of the order of a pipeline flush), so it's a performance hit to do it _inside_ each individual crypto function, but if CPUs start supporting significant data-dependent optimisation in future, then it will also become a noticeable performance hit to just leave it on across the whole process. So you'd like to do it somewhere in the middle: for example, you might turn on DIT once around the whole process of verifying and decrypting an SSH packet, instead of once for decryption and once for MAC. With all respect to that recommendation as a strategy for maximum performance, I'm not following it here. I turn on DIT at the start of the PuTTY process, and then leave it on. Rationale: 1. PuTTY is not otherwise a performance-critical application: it's not likely to max out your CPU for any purpose _other_ than cryptography. The most CPU-intensive non-cryptographic thing I can imagine a PuTTY process doing is the complicated computation of font rendering in the terminal, and that will normally be cached (you don't recompute each glyph from its outline and hints for every time you display it). 2. I think a bigger risk lies in accidental side channels from having DIT turned off when it should have been on. I can imagine lots of causes for that. Missing a crypto operation in some unswept corner of the code; confusing control flow (like my coroutine macros) jumping with DIT clear into the middle of a region of code that expected DIT to have been set at the beginning; having a reference counter of DIT requests and getting it out of sync. In a more sophisticated programming language, it might be possible to avoid the risk in #2 by cleverness with the type system. For example, in Rust, you could have a zero-sized type that acts as a proof token for DIT being enabled (it would be constructed by a function that also sets DIT, have a Drop implementation that clears DIT, and be !Send so you couldn't use it in a thread other than the one where DIT was set), and then you could require all the actual crypto functions to take a DitToken as an extra parameter, at zero runtime cost. Then "oops I forgot to set DIT around this piece of crypto" would become a compile error. Even so, you'd have to take some care with coroutine-structured code (what happens if a Rust async function yields while holding a DIT token?) and with nesting (if you have two DIT tokens, you don't want dropping the inner one to clear DIT while the outer one is still there to wrongly convince callees that it's set). Maybe in Rust you could get this all to work reliably. But not in C! DIT is an optional feature of the Arm architecture, so we must first test to see if it's supported. This is done the same way as we already do for the various Arm crypto accelerators: on ELF-based systems, check the appropriate bit in the 'hwcap' words in the ELF aux vector; on Mac, look for an appropriate sysctl flag. On Windows I don't know of a way to query the DIT feature, _or_ of a way to write the necessary enabling instruction in an MSVC-compatible way. I've _heard_ that it might not be necessary, because Windows might just turn on DIT unconditionally and leave it on, in an even more extreme version of my own strategy. I don't have a source for that - I heard it by word of mouth - but I _hope_ it's true, because that would suit me very well! Certainly I can't write code to enable DIT without knowing (a) how to do it, (b) how to know if it's safe. Nonetheless, I've put the enable_dit() call in all the right places in the Windows main programs as well as the Unix and cross-platform code, so that if I later find out that I _can_ put in an explicit enable of DIT in some way, I'll only have to arrange to set HAVE_ARM_DIT and compile the enable_dit() function appropriately.
2068 lines
60 KiB
C
2068 lines
60 KiB
C
/*
|
|
* testsc: run PuTTY's crypto primitives under instrumentation that
|
|
* checks for cache and timing side channels.
|
|
*
|
|
* The idea is: cryptographic code should avoid leaking secret data
|
|
* through timing information, or through traces of its activity left
|
|
* in the caches.
|
|
*
|
|
* (This property is sometimes called 'constant-time', although really
|
|
* that's a misnomer. It would be impossible to avoid the execution
|
|
* time varying for any number of reasons outside the code's control,
|
|
* such as the prior contents of caches and branch predictors,
|
|
* temperature-based CPU throttling, system load, etc. And in any case
|
|
* you don't _need_ the execution time to be literally constant: you
|
|
* just need it to be independent of your secrets. It can vary as much
|
|
* as it likes based on anything else.)
|
|
*
|
|
* To avoid this, you need to ensure that various aspects of the
|
|
* code's behaviour do not depend on the secret data. The control
|
|
* flow, for a start - no conditional branches based on secrets - and
|
|
* also the memory access pattern (no using secret data as an index
|
|
* into a lookup table). A couple of other kinds of CPU instruction
|
|
* also can't be trusted to run in constant time: we check for
|
|
* register-controlled shifts and hardware divisions. (But, again,
|
|
* it's perfectly fine to _use_ those instructions in the course of
|
|
* crypto code. You just can't use a secret as any time-affecting
|
|
* operand.)
|
|
*
|
|
* This test program works by running the same crypto primitive
|
|
* multiple times, with different secret input data. The relevant
|
|
* details of each run is logged to a file via the DynamoRIO-based
|
|
* instrumentation system living in the subdirectory test/sclog. Then
|
|
* we check over all the files and ensure they're identical.
|
|
*
|
|
* This program itself (testsc) is built by the ordinary PuTTY
|
|
* makefiles. But run by itself, it will do nothing useful: it needs
|
|
* to be run under DynamoRIO, with the sclog instrumentation library.
|
|
*
|
|
* Here's an example of how I built it:
|
|
*
|
|
* Download the DynamoRIO source. I did this by cloning
|
|
* https://github.com/DynamoRIO/dynamorio.git, and at the time of
|
|
* writing this, 259c182a75ce80112bcad329c97ada8d56ba854d was the head
|
|
* commit.
|
|
*
|
|
* In the DynamoRIO checkout:
|
|
*
|
|
* mkdir build
|
|
* cd build
|
|
* cmake -G Ninja ..
|
|
* ninja
|
|
*
|
|
* Now set the shell variable DRBUILD to be the location of the build
|
|
* directory you did that in. (Or not, if you prefer, but the example
|
|
* build commands below will assume that that's where the DynamoRIO
|
|
* libraries, headers and runtime can be found.)
|
|
*
|
|
* Then, in test/sclog:
|
|
*
|
|
* cmake -G Ninja -DCMAKE_PREFIX_PATH=$DRBUILD/cmake .
|
|
* ninja
|
|
*
|
|
* Finally, to run the actual test, set SCTMP to some temp directory
|
|
* you don't mind filling with large temp files (several GB at a
|
|
* time), and in the main PuTTY source directory (assuming that's
|
|
* where testsc has been built):
|
|
*
|
|
* $DRBUILD/bin64/drrun -c test/sclog/libsclog.so -- ./testsc -O $SCTMP
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include "defs.h"
|
|
#include "putty.h"
|
|
#include "ssh.h"
|
|
#include "sshkeygen.h"
|
|
#include "misc.h"
|
|
#include "mpint.h"
|
|
#include "crypto/ecc.h"
|
|
#include "crypto/ntru.h"
|
|
#include "crypto/mlkem.h"
|
|
|
|
static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
|
|
{
|
|
va_list ap;
|
|
fprintf(stderr, "testsc: ");
|
|
va_start(ap, p);
|
|
vfprintf(stderr, p, ap);
|
|
va_end(ap);
|
|
fputc('\n', stderr);
|
|
exit(1);
|
|
}
|
|
|
|
void out_of_memory(void) { fatal_error("out of memory"); }
|
|
|
|
/*
|
|
* A simple deterministic PRNG, without any of the Fortuna
|
|
* complexities, for generating test inputs in a way that's repeatable
|
|
* between runs of the program, even if only a subset of test cases is
|
|
* run.
|
|
*/
|
|
static uint64_t random_counter = 0;
|
|
static const char *random_seedstr = NULL;
|
|
static uint8_t random_buf[MAX_HASH_LEN];
|
|
static size_t random_buf_limit = 0;
|
|
static ssh_hash *random_hash;
|
|
|
|
static void random_seed(const char *seedstr)
|
|
{
|
|
random_seedstr = seedstr;
|
|
random_counter = 0;
|
|
random_buf_limit = 0;
|
|
}
|
|
|
|
static void random_advance_counter(void)
|
|
{
|
|
ssh_hash_reset(random_hash);
|
|
put_asciz(random_hash, random_seedstr);
|
|
put_uint64(random_hash, random_counter);
|
|
random_counter++;
|
|
random_buf_limit = ssh_hash_alg(random_hash)->hlen;
|
|
ssh_hash_digest(random_hash, random_buf);
|
|
}
|
|
|
|
void random_read(void *vbuf, size_t size)
|
|
{
|
|
assert(random_seedstr);
|
|
uint8_t *buf = (uint8_t *)vbuf;
|
|
while (size-- > 0) {
|
|
if (random_buf_limit == 0)
|
|
random_advance_counter();
|
|
*buf++ = random_buf[random_buf_limit--];
|
|
}
|
|
}
|
|
|
|
struct random_state {
|
|
const char *seedstr;
|
|
uint64_t counter;
|
|
size_t limit;
|
|
uint8_t buf[MAX_HASH_LEN];
|
|
};
|
|
|
|
static struct random_state random_get_state(void)
|
|
{
|
|
struct random_state st;
|
|
st.seedstr = random_seedstr;
|
|
st.counter = random_counter;
|
|
st.limit = random_buf_limit;
|
|
memcpy(st.buf, random_buf, sizeof(st.buf));
|
|
return st;
|
|
}
|
|
|
|
static void random_set_state(struct random_state st)
|
|
{
|
|
random_seedstr = st.seedstr;
|
|
random_counter = st.counter;
|
|
random_buf_limit = st.limit;
|
|
memcpy(random_buf, st.buf, sizeof(random_buf));
|
|
}
|
|
|
|
/*
|
|
* Macro that defines a function, and also a volatile function pointer
|
|
* pointing to it. Callers indirect through the function pointer
|
|
* instead of directly calling the function, to ensure that the
|
|
* compiler doesn't try to get clever by eliminating the call
|
|
* completely, or inlining it.
|
|
*
|
|
* This is used to mark functions that DynamoRIO will look for to
|
|
* intercept, and also to inhibit inlining and unrolling where they'd
|
|
* cause a failure of experimental control in the main test.
|
|
*/
|
|
#define VOLATILE_WRAPPED_DEFN(qualifier, rettype, fn, params) \
|
|
qualifier rettype fn##_real params; \
|
|
qualifier rettype (*volatile fn) params = fn##_real; \
|
|
qualifier rettype fn##_real params
|
|
|
|
VOLATILE_WRAPPED_DEFN(, void, log_to_file, (const char *filename))
|
|
{
|
|
/*
|
|
* This function is intercepted by the DynamoRIO side of the
|
|
* mechanism. We use it to send instructions to the DR wrapper,
|
|
* namely, 'please start logging to this file' or 'please stop
|
|
* logging' (if filename == NULL). But we don't have to actually
|
|
* do anything in _this_ program - all the functionality is in the
|
|
* DR wrapper.
|
|
*/
|
|
}
|
|
|
|
static const char *outdir = NULL;
|
|
char *log_filename(const char *basename, size_t index)
|
|
{
|
|
return dupprintf("%s/%s.%04"SIZEu, outdir, basename, index);
|
|
}
|
|
|
|
static char *last_filename;
|
|
static const char *test_basename;
|
|
static size_t test_index = 0;
|
|
void log_start(void)
|
|
{
|
|
last_filename = log_filename(test_basename, test_index++);
|
|
log_to_file(last_filename);
|
|
}
|
|
void log_end(void)
|
|
{
|
|
log_to_file(NULL);
|
|
sfree(last_filename);
|
|
}
|
|
|
|
static bool test_skipped = false;
|
|
|
|
VOLATILE_WRAPPED_DEFN(, intptr_t, dry_run, (void))
|
|
{
|
|
/*
|
|
* This is another function intercepted by DynamoRIO. In this
|
|
* case, DR overrides this function to return 0 rather than 1, so
|
|
* we can use it as a check for whether we're running under
|
|
* instrumentation, or whether this is just a dry run which goes
|
|
* through the motions but doesn't expect to find any log files
|
|
* created.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static void mp_random_bits_into(mp_int *r, size_t bits)
|
|
{
|
|
mp_int *x = mp_random_bits(bits);
|
|
mp_copy_into(r, x);
|
|
mp_free(x);
|
|
}
|
|
|
|
static void mp_random_fill(mp_int *r)
|
|
{
|
|
mp_random_bits_into(r, mp_max_bits(r));
|
|
}
|
|
|
|
VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
|
|
{
|
|
/*
|
|
* looplimit() is the identity function on size_t, but the
|
|
* compiler isn't allowed to rely on it being that. I use it to
|
|
* make loops in the test functions look less attractive to
|
|
* compilers' unrolling heuristics.
|
|
*/
|
|
return x;
|
|
}
|
|
|
|
#if HAVE_AES_NI
|
|
#define IF_AES_NI(x) x
|
|
#else
|
|
#define IF_AES_NI(x)
|
|
#endif
|
|
|
|
#if HAVE_SHA_NI
|
|
#define IF_SHA_NI(x) x
|
|
#else
|
|
#define IF_SHA_NI(x)
|
|
#endif
|
|
|
|
#if HAVE_CLMUL
|
|
#define IF_CLMUL(x) x
|
|
#else
|
|
#define IF_CLMUL(x)
|
|
#endif
|
|
|
|
#if HAVE_NEON_CRYPTO
|
|
#define IF_NEON_CRYPTO(x) x
|
|
#else
|
|
#define IF_NEON_CRYPTO(x)
|
|
#endif
|
|
|
|
#if HAVE_NEON_SHA512
|
|
#define IF_NEON_SHA512(x) x
|
|
#else
|
|
#define IF_NEON_SHA512(x)
|
|
#endif
|
|
|
|
#if HAVE_NEON_PMULL
|
|
#define IF_NEON_PMULL(x) x
|
|
#else
|
|
#define IF_NEON_PMULL(x)
|
|
#endif
|
|
|
|
/* Ciphers that we expect to pass this test. Blowfish and Arcfour are
|
|
* intentionally omitted, because we already know they don't. */
|
|
#define CIPHERS(X, Y) \
|
|
X(Y, ssh_3des_ssh1) \
|
|
X(Y, ssh_3des_ssh2_ctr) \
|
|
X(Y, ssh_3des_ssh2) \
|
|
X(Y, ssh_des) \
|
|
X(Y, ssh_des_sshcom_ssh2) \
|
|
X(Y, ssh_aes256_sdctr) \
|
|
X(Y, ssh_aes256_gcm) \
|
|
X(Y, ssh_aes256_cbc) \
|
|
X(Y, ssh_aes192_sdctr) \
|
|
X(Y, ssh_aes192_gcm) \
|
|
X(Y, ssh_aes192_cbc) \
|
|
X(Y, ssh_aes128_sdctr) \
|
|
X(Y, ssh_aes128_gcm) \
|
|
X(Y, ssh_aes128_cbc) \
|
|
X(Y, ssh_aes256_sdctr_sw) \
|
|
X(Y, ssh_aes256_gcm_sw) \
|
|
X(Y, ssh_aes256_cbc_sw) \
|
|
X(Y, ssh_aes192_sdctr_sw) \
|
|
X(Y, ssh_aes192_gcm_sw) \
|
|
X(Y, ssh_aes192_cbc_sw) \
|
|
X(Y, ssh_aes128_sdctr_sw) \
|
|
X(Y, ssh_aes128_gcm_sw) \
|
|
X(Y, ssh_aes128_cbc_sw) \
|
|
IF_AES_NI(X(Y, ssh_aes256_sdctr_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes256_gcm_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes256_cbc_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes192_sdctr_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes192_gcm_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes192_cbc_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes128_sdctr_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes128_gcm_ni)) \
|
|
IF_AES_NI(X(Y, ssh_aes128_cbc_ni)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes256_sdctr_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes256_gcm_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes256_cbc_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes192_sdctr_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes192_gcm_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes192_cbc_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes128_sdctr_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes128_gcm_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_aes128_cbc_neon)) \
|
|
X(Y, ssh2_chacha20_poly1305) \
|
|
/* end of list */
|
|
|
|
#define CIPHER_TESTLIST(X, name) X(cipher_ ## name)
|
|
|
|
#define SIMPLE_MACS(X, Y) \
|
|
X(Y, ssh_hmac_md5) \
|
|
X(Y, ssh_hmac_sha1) \
|
|
X(Y, ssh_hmac_sha1_buggy) \
|
|
X(Y, ssh_hmac_sha1_96) \
|
|
X(Y, ssh_hmac_sha1_96_buggy) \
|
|
X(Y, ssh_hmac_sha256) \
|
|
X(Y, ssh_hmac_sha512) \
|
|
/* end of list */
|
|
|
|
#define ALL_MACS(X, Y) \
|
|
SIMPLE_MACS(X, Y) \
|
|
X(Y, poly1305) \
|
|
X(Y, aesgcm_sw_sw) \
|
|
X(Y, aesgcm_sw_refpoly) \
|
|
IF_AES_NI(X(Y, aesgcm_ni_sw)) \
|
|
IF_NEON_CRYPTO(X(Y, aesgcm_neon_sw)) \
|
|
IF_CLMUL(X(Y, aesgcm_sw_clmul)) \
|
|
IF_NEON_PMULL(X(Y, aesgcm_sw_neon)) \
|
|
IF_AES_NI(IF_CLMUL(X(Y, aesgcm_ni_clmul))) \
|
|
IF_NEON_CRYPTO(IF_NEON_PMULL(X(Y, aesgcm_neon_neon))) \
|
|
/* end of list */
|
|
|
|
#define MAC_TESTLIST(X, name) X(mac_ ## name)
|
|
|
|
#define HASHES(X, Y) \
|
|
X(Y, ssh_md5) \
|
|
X(Y, ssh_sha1) \
|
|
X(Y, ssh_sha1_sw) \
|
|
X(Y, ssh_sha256) \
|
|
X(Y, ssh_sha256_sw) \
|
|
X(Y, ssh_sha384) \
|
|
X(Y, ssh_sha512) \
|
|
X(Y, ssh_sha384_sw) \
|
|
X(Y, ssh_sha512_sw) \
|
|
IF_SHA_NI(X(Y, ssh_sha256_ni)) \
|
|
IF_SHA_NI(X(Y, ssh_sha1_ni)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_sha256_neon)) \
|
|
IF_NEON_CRYPTO(X(Y, ssh_sha1_neon)) \
|
|
IF_NEON_SHA512(X(Y, ssh_sha384_neon)) \
|
|
IF_NEON_SHA512(X(Y, ssh_sha512_neon)) \
|
|
X(Y, ssh_sha3_224) \
|
|
X(Y, ssh_sha3_256) \
|
|
X(Y, ssh_sha3_384) \
|
|
X(Y, ssh_sha3_512) \
|
|
X(Y, ssh_shake256_114bytes) \
|
|
X(Y, ssh_blake2b) \
|
|
/* end of list */
|
|
|
|
#define HASH_TESTLIST(X, name) X(hash_ ## name)
|
|
|
|
#define TESTLIST(X) \
|
|
X(mp_get_nbits) \
|
|
X(mp_from_decimal) \
|
|
X(mp_from_hex) \
|
|
X(mp_get_decimal) \
|
|
X(mp_get_hex) \
|
|
X(mp_cmp_hs) \
|
|
X(mp_cmp_eq) \
|
|
X(mp_min) \
|
|
X(mp_max) \
|
|
X(mp_select_into) \
|
|
X(mp_cond_swap) \
|
|
X(mp_cond_clear) \
|
|
X(mp_add) \
|
|
X(mp_sub) \
|
|
X(mp_mul) \
|
|
X(mp_rshift_safe) \
|
|
X(mp_divmod) \
|
|
X(mp_nthroot) \
|
|
X(mp_modadd) \
|
|
X(mp_modsub) \
|
|
X(mp_modmul) \
|
|
X(mp_modpow) \
|
|
X(mp_invert_mod_2to) \
|
|
X(mp_invert) \
|
|
X(mp_modsqrt) \
|
|
X(ecc_weierstrass_add) \
|
|
X(ecc_weierstrass_double) \
|
|
X(ecc_weierstrass_add_general) \
|
|
X(ecc_weierstrass_multiply) \
|
|
X(ecc_weierstrass_is_identity) \
|
|
X(ecc_weierstrass_get_affine) \
|
|
X(ecc_weierstrass_decompress) \
|
|
X(ecc_montgomery_diff_add) \
|
|
X(ecc_montgomery_double) \
|
|
X(ecc_montgomery_multiply) \
|
|
X(ecc_montgomery_get_affine) \
|
|
X(ecc_edwards_add) \
|
|
X(ecc_edwards_multiply) \
|
|
X(ecc_edwards_eq) \
|
|
X(ecc_edwards_get_affine) \
|
|
X(ecc_edwards_decompress) \
|
|
CIPHERS(CIPHER_TESTLIST, X) \
|
|
ALL_MACS(MAC_TESTLIST, X) \
|
|
HASHES(HASH_TESTLIST, X) \
|
|
X(argon2) \
|
|
X(primegen_probabilistic) \
|
|
X(ntru) \
|
|
X(mlkem512) \
|
|
X(mlkem768) \
|
|
X(mlkem1024) \
|
|
X(rfc6979_setup) \
|
|
X(rfc6979_attempt) \
|
|
/* end of list */
|
|
|
|
static void test_mp_get_nbits(void)
|
|
{
|
|
mp_int *z = mp_new(512);
|
|
static const size_t bitposns[] = {
|
|
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
|
|
};
|
|
mp_int *prev = mp_from_integer(0);
|
|
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
|
|
mp_int *x = mp_power_2(bitposns[i]);
|
|
mp_add_into(z, x, prev);
|
|
mp_free(prev);
|
|
prev = x;
|
|
log_start();
|
|
mp_get_nbits(z);
|
|
log_end();
|
|
}
|
|
mp_free(prev);
|
|
mp_free(z);
|
|
}
|
|
|
|
static void test_mp_from_decimal(void)
|
|
{
|
|
char dec[64];
|
|
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
|
|
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
|
|
memset(dec, '0', lenof(dec));
|
|
for (size_t j = starts[i]; j < lenof(dec); j++) {
|
|
uint8_t r[4];
|
|
random_read(r, 4);
|
|
dec[j] = '0' + GET_32BIT_MSB_FIRST(r) % 10;
|
|
}
|
|
log_start();
|
|
mp_int *x = mp_from_decimal_pl(make_ptrlen(dec, lenof(dec)));
|
|
log_end();
|
|
mp_free(x);
|
|
}
|
|
}
|
|
|
|
static void test_mp_from_hex(void)
|
|
{
|
|
char hex[64];
|
|
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
|
|
static const char digits[] = "0123456789abcdefABCDEF";
|
|
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
|
|
memset(hex, '0', lenof(hex));
|
|
for (size_t j = starts[i]; j < lenof(hex); j++) {
|
|
uint8_t r[4];
|
|
random_read(r, 4);
|
|
hex[j] = digits[GET_32BIT_MSB_FIRST(r) % lenof(digits)];
|
|
}
|
|
log_start();
|
|
mp_int *x = mp_from_hex_pl(make_ptrlen(hex, lenof(hex)));
|
|
log_end();
|
|
mp_free(x);
|
|
}
|
|
}
|
|
|
|
static void test_mp_string_format(char *(*mp_format)(mp_int *x))
|
|
{
|
|
mp_int *z = mp_new(512);
|
|
static const size_t bitposns[] = {
|
|
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
|
|
};
|
|
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
|
|
mp_random_bits_into(z, bitposns[i]);
|
|
log_start();
|
|
char *formatted = mp_format(z);
|
|
log_end();
|
|
sfree(formatted);
|
|
}
|
|
mp_free(z);
|
|
}
|
|
|
|
static void test_mp_get_decimal(void)
|
|
{
|
|
test_mp_string_format(mp_get_decimal);
|
|
}
|
|
|
|
static void test_mp_get_hex(void)
|
|
{
|
|
test_mp_string_format(mp_get_hex);
|
|
}
|
|
|
|
static void test_mp_cmp(unsigned (*mp_cmp)(mp_int *a, mp_int *b))
|
|
{
|
|
mp_int *a = mp_new(512), *b = mp_new(512);
|
|
static const size_t bitposns[] = {
|
|
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
|
|
};
|
|
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
|
|
mp_random_fill(b);
|
|
mp_int *x = mp_random_bits(bitposns[i]);
|
|
mp_xor_into(a, b, x);
|
|
mp_free(x);
|
|
log_start();
|
|
mp_cmp(a, b);
|
|
log_end();
|
|
}
|
|
mp_free(a);
|
|
mp_free(b);
|
|
}
|
|
|
|
static void test_mp_cmp_hs(void)
|
|
{
|
|
test_mp_cmp(mp_cmp_hs);
|
|
}
|
|
|
|
static void test_mp_cmp_eq(void)
|
|
{
|
|
test_mp_cmp(mp_cmp_eq);
|
|
}
|
|
|
|
static void test_mp_minmax(
|
|
void (*mp_minmax_into)(mp_int *r, mp_int *x, mp_int *y))
|
|
{
|
|
mp_int *a = mp_new(256), *b = mp_new(256);
|
|
for (size_t i = 0; i < looplimit(10); i++) {
|
|
uint8_t lens[2];
|
|
random_read(lens, 2);
|
|
mp_int *x = mp_random_bits(lens[0]);
|
|
mp_copy_into(a, x);
|
|
mp_free(x);
|
|
mp_int *y = mp_random_bits(lens[1]);
|
|
mp_copy_into(a, y);
|
|
mp_free(y);
|
|
log_start();
|
|
mp_minmax_into(a, a, b);
|
|
log_end();
|
|
}
|
|
mp_free(a);
|
|
mp_free(b);
|
|
}
|
|
|
|
static void test_mp_max(void)
|
|
{
|
|
test_mp_minmax(mp_max_into);
|
|
}
|
|
|
|
static void test_mp_min(void)
|
|
{
|
|
test_mp_minmax(mp_min_into);
|
|
}
|
|
|
|
static void test_mp_select_into(void)
|
|
{
|
|
mp_int *a = mp_random_bits(256);
|
|
mp_int *b = mp_random_bits(512);
|
|
mp_int *r = mp_new(384);
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
log_start();
|
|
mp_select_into(r, a, b, i & 1);
|
|
log_end();
|
|
}
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(r);
|
|
}
|
|
|
|
static void test_mp_cond_swap(void)
|
|
{
|
|
mp_int *a = mp_random_bits(512);
|
|
mp_int *b = mp_random_bits(512);
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
log_start();
|
|
mp_cond_swap(a, b, i & 1);
|
|
log_end();
|
|
}
|
|
mp_free(a);
|
|
mp_free(b);
|
|
}
|
|
|
|
static void test_mp_cond_clear(void)
|
|
{
|
|
mp_int *a = mp_random_bits(512);
|
|
mp_int *x = mp_copy(a);
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
mp_copy_into(x, a);
|
|
log_start();
|
|
mp_cond_clear(a, i & 1);
|
|
log_end();
|
|
}
|
|
mp_free(a);
|
|
mp_free(x);
|
|
}
|
|
|
|
static void test_mp_arithmetic(mp_int *(*mp_arith)(mp_int *x, mp_int *y))
|
|
{
|
|
mp_int *a = mp_new(256), *b = mp_new(512);
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
mp_random_fill(a);
|
|
mp_random_fill(b);
|
|
log_start();
|
|
mp_int *r = mp_arith(a, b);
|
|
log_end();
|
|
mp_free(r);
|
|
}
|
|
mp_free(a);
|
|
mp_free(b);
|
|
}
|
|
|
|
static void test_mp_add(void)
|
|
{
|
|
test_mp_arithmetic(mp_add);
|
|
}
|
|
|
|
static void test_mp_sub(void)
|
|
{
|
|
test_mp_arithmetic(mp_sub);
|
|
}
|
|
|
|
static void test_mp_mul(void)
|
|
{
|
|
test_mp_arithmetic(mp_mul);
|
|
}
|
|
|
|
static void test_mp_invert(void)
|
|
{
|
|
test_mp_arithmetic(mp_invert);
|
|
}
|
|
|
|
static void test_mp_rshift_safe(void)
|
|
{
|
|
mp_int *x = mp_random_bits(256);
|
|
|
|
for (size_t i = 0; i < looplimit(mp_max_bits(x)+1); i++) {
|
|
log_start();
|
|
mp_int *r = mp_rshift_safe(x, i);
|
|
log_end();
|
|
mp_free(r);
|
|
}
|
|
|
|
mp_free(x);
|
|
}
|
|
|
|
static void test_mp_divmod(void)
|
|
{
|
|
mp_int *n = mp_new(256), *d = mp_new(256);
|
|
mp_int *q = mp_new(256), *r = mp_new(256);
|
|
|
|
for (size_t i = 0; i < looplimit(32); i++) {
|
|
uint8_t sizes[2];
|
|
random_read(sizes, 2);
|
|
mp_random_bits_into(n, sizes[0]);
|
|
mp_random_bits_into(d, sizes[1]);
|
|
log_start();
|
|
mp_divmod_into(n, d, q, r);
|
|
log_end();
|
|
}
|
|
|
|
mp_free(n);
|
|
mp_free(d);
|
|
mp_free(q);
|
|
mp_free(r);
|
|
}
|
|
|
|
static void test_mp_nthroot(void)
|
|
{
|
|
mp_int *x = mp_new(256), *remainder = mp_new(256);
|
|
|
|
for (size_t i = 0; i < looplimit(32); i++) {
|
|
uint8_t sizes[1];
|
|
random_read(sizes, 1);
|
|
mp_random_bits_into(x, sizes[0]);
|
|
log_start();
|
|
mp_free(mp_nthroot(x, 3, remainder));
|
|
log_end();
|
|
}
|
|
|
|
mp_free(x);
|
|
mp_free(remainder);
|
|
}
|
|
|
|
static void test_mp_modarith(
|
|
mp_int *(*mp_modarith)(mp_int *x, mp_int *y, mp_int *modulus))
|
|
{
|
|
mp_int *base = mp_new(256);
|
|
mp_int *exponent = mp_new(256);
|
|
mp_int *modulus = mp_new(256);
|
|
|
|
for (size_t i = 0; i < looplimit(8); i++) {
|
|
mp_random_fill(base);
|
|
mp_random_fill(exponent);
|
|
mp_random_fill(modulus);
|
|
mp_set_bit(modulus, 0, 1); /* we only support odd moduli */
|
|
|
|
log_start();
|
|
mp_int *out = mp_modarith(base, exponent, modulus);
|
|
log_end();
|
|
|
|
mp_free(out);
|
|
}
|
|
|
|
mp_free(base);
|
|
mp_free(exponent);
|
|
mp_free(modulus);
|
|
}
|
|
|
|
static void test_mp_modadd(void)
|
|
{
|
|
test_mp_modarith(mp_modadd);
|
|
}
|
|
|
|
static void test_mp_modsub(void)
|
|
{
|
|
test_mp_modarith(mp_modsub);
|
|
}
|
|
|
|
static void test_mp_modmul(void)
|
|
{
|
|
test_mp_modarith(mp_modmul);
|
|
}
|
|
|
|
static void test_mp_modpow(void)
|
|
{
|
|
test_mp_modarith(mp_modpow);
|
|
}
|
|
|
|
static void test_mp_invert_mod_2to(void)
|
|
{
|
|
mp_int *x = mp_new(512);
|
|
|
|
for (size_t i = 0; i < looplimit(32); i++) {
|
|
mp_random_fill(x);
|
|
mp_set_bit(x, 0, 1); /* input should be odd */
|
|
|
|
log_start();
|
|
mp_int *out = mp_invert_mod_2to(x, 511);
|
|
log_end();
|
|
|
|
mp_free(out);
|
|
}
|
|
|
|
mp_free(x);
|
|
}
|
|
|
|
static void test_mp_modsqrt(void)
|
|
{
|
|
/* The prime isn't secret in this function (and in any case
|
|
* finding a non-square on the fly would be prohibitively
|
|
* annoying), so I hardcode a fixed one, selected to have a lot of
|
|
* factors of two in p-1 so as to exercise lots of choices in the
|
|
* algorithm. */
|
|
mp_int *p =
|
|
MP_LITERAL(0xb56a517b206a88c73cfa9ec6f704c7030d18212cace82401);
|
|
mp_int *nonsquare = MP_LITERAL(0x5);
|
|
size_t bits = mp_max_bits(p);
|
|
ModsqrtContext *sc = modsqrt_new(p, nonsquare);
|
|
mp_free(p);
|
|
mp_free(nonsquare);
|
|
|
|
mp_int *x = mp_new(bits);
|
|
unsigned success;
|
|
|
|
/* Do one initial call to cause the lazily initialised sub-context
|
|
* to be set up. This will take a while, but it can't be helped. */
|
|
mp_int *unwanted = mp_modsqrt(sc, x, &success);
|
|
mp_free(unwanted);
|
|
|
|
for (size_t i = 0; i < looplimit(8); i++) {
|
|
mp_random_bits_into(x, bits - 1);
|
|
log_start();
|
|
mp_int *out = mp_modsqrt(sc, x, &success);
|
|
log_end();
|
|
mp_free(out);
|
|
}
|
|
|
|
mp_free(x);
|
|
modsqrt_free(sc);
|
|
}
|
|
|
|
static WeierstrassCurve *wcurve(void)
|
|
{
|
|
mp_int *p = MP_LITERAL(0xc19337603dc856acf31e01375a696fdf5451);
|
|
mp_int *a = MP_LITERAL(0x864946f50eecca4cde7abad4865e34be8f67);
|
|
mp_int *b = MP_LITERAL(0x6a5bf56db3a03ba91cfbf3241916c90feeca);
|
|
mp_int *nonsquare = mp_from_integer(3);
|
|
WeierstrassCurve *wc = ecc_weierstrass_curve(p, a, b, nonsquare);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
mp_free(nonsquare);
|
|
return wc;
|
|
}
|
|
|
|
static WeierstrassPoint *wpoint(WeierstrassCurve *wc, size_t index)
|
|
{
|
|
mp_int *x = NULL, *y = NULL;
|
|
WeierstrassPoint *wp;
|
|
switch (index) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
x = MP_LITERAL(0x12345);
|
|
y = MP_LITERAL(0x3c2c799a365b53d003ef37dab65860bf80ae);
|
|
break;
|
|
case 2:
|
|
x = MP_LITERAL(0x4e1c77e3c00f7c3b15869e6a4e5f86b3ee53);
|
|
y = MP_LITERAL(0x5bde01693130591400b5c9d257d8325a44a5);
|
|
break;
|
|
case 3:
|
|
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
|
|
y = MP_LITERAL(0x033d636b855c931cfe679f0b18db164a0d64);
|
|
break;
|
|
case 4:
|
|
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
|
|
y = MP_LITERAL(0xbe55d3f4b86bc38ff4b6622c418e599546ed);
|
|
break;
|
|
default:
|
|
unreachable("only 5 example Weierstrass points defined");
|
|
}
|
|
if (x && y) {
|
|
wp = ecc_weierstrass_point_new(wc, x, y);
|
|
} else {
|
|
wp = ecc_weierstrass_point_new_identity(wc);
|
|
}
|
|
if (x)
|
|
mp_free(x);
|
|
if (y)
|
|
mp_free(y);
|
|
return wp;
|
|
}
|
|
|
|
static void test_ecc_weierstrass_add(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
|
|
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
for (size_t j = 0; j < looplimit(5); j++) {
|
|
if (i == 0 || j == 0 || i == j ||
|
|
(i==3 && j==4) || (i==4 && j==3))
|
|
continue; /* difficult cases */
|
|
|
|
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
|
|
ecc_weierstrass_point_copy_into(a, A);
|
|
ecc_weierstrass_point_copy_into(b, B);
|
|
ecc_weierstrass_point_free(A);
|
|
ecc_weierstrass_point_free(B);
|
|
|
|
log_start();
|
|
WeierstrassPoint *r = ecc_weierstrass_add(a, b);
|
|
log_end();
|
|
ecc_weierstrass_point_free(r);
|
|
}
|
|
}
|
|
ecc_weierstrass_point_free(a);
|
|
ecc_weierstrass_point_free(b);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_double(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
WeierstrassPoint *A = wpoint(wc, i);
|
|
ecc_weierstrass_point_copy_into(a, A);
|
|
ecc_weierstrass_point_free(A);
|
|
|
|
log_start();
|
|
WeierstrassPoint *r = ecc_weierstrass_double(a);
|
|
log_end();
|
|
ecc_weierstrass_point_free(r);
|
|
}
|
|
ecc_weierstrass_point_free(a);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_add_general(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
|
|
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
for (size_t j = 0; j < looplimit(5); j++) {
|
|
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
|
|
ecc_weierstrass_point_copy_into(a, A);
|
|
ecc_weierstrass_point_copy_into(b, B);
|
|
ecc_weierstrass_point_free(A);
|
|
ecc_weierstrass_point_free(B);
|
|
|
|
log_start();
|
|
WeierstrassPoint *r = ecc_weierstrass_add_general(a, b);
|
|
log_end();
|
|
ecc_weierstrass_point_free(r);
|
|
}
|
|
}
|
|
ecc_weierstrass_point_free(a);
|
|
ecc_weierstrass_point_free(b);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_multiply(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
|
|
mp_int *exponent = mp_new(56);
|
|
for (size_t i = 1; i < looplimit(5); i++) {
|
|
WeierstrassPoint *A = wpoint(wc, i);
|
|
ecc_weierstrass_point_copy_into(a, A);
|
|
ecc_weierstrass_point_free(A);
|
|
mp_random_fill(exponent);
|
|
|
|
log_start();
|
|
WeierstrassPoint *r = ecc_weierstrass_multiply(a, exponent);
|
|
log_end();
|
|
|
|
ecc_weierstrass_point_free(r);
|
|
}
|
|
ecc_weierstrass_point_free(a);
|
|
ecc_weierstrass_curve_free(wc);
|
|
mp_free(exponent);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_is_identity(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
|
|
for (size_t i = 1; i < looplimit(5); i++) {
|
|
WeierstrassPoint *A = wpoint(wc, i);
|
|
ecc_weierstrass_point_copy_into(a, A);
|
|
ecc_weierstrass_point_free(A);
|
|
|
|
log_start();
|
|
ecc_weierstrass_is_identity(a);
|
|
log_end();
|
|
}
|
|
ecc_weierstrass_point_free(a);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_get_affine(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
WeierstrassPoint *r = ecc_weierstrass_point_new_identity(wc);
|
|
for (size_t i = 0; i < looplimit(4); i++) {
|
|
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, i+1);
|
|
WeierstrassPoint *R = ecc_weierstrass_add_general(A, B);
|
|
ecc_weierstrass_point_copy_into(r, R);
|
|
ecc_weierstrass_point_free(A);
|
|
ecc_weierstrass_point_free(B);
|
|
ecc_weierstrass_point_free(R);
|
|
|
|
log_start();
|
|
mp_int *x, *y;
|
|
ecc_weierstrass_get_affine(r, &x, &y);
|
|
log_end();
|
|
mp_free(x);
|
|
mp_free(y);
|
|
}
|
|
ecc_weierstrass_point_free(r);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_weierstrass_decompress(void)
|
|
{
|
|
WeierstrassCurve *wc = wcurve();
|
|
|
|
/* As in the mp_modsqrt test, prime the lazy initialisation of the
|
|
* ModsqrtContext */
|
|
mp_int *x = mp_new(144);
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, 0);
|
|
if (a) /* don't care whether this one succeeded */
|
|
ecc_weierstrass_point_free(a);
|
|
|
|
for (size_t p = 0; p < looplimit(2); p++) {
|
|
for (size_t i = 1; i < looplimit(5); i++) {
|
|
WeierstrassPoint *A = wpoint(wc, i);
|
|
mp_int *X;
|
|
ecc_weierstrass_get_affine(A, &X, NULL);
|
|
mp_copy_into(x, X);
|
|
mp_free(X);
|
|
ecc_weierstrass_point_free(A);
|
|
|
|
log_start();
|
|
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, p);
|
|
log_end();
|
|
|
|
ecc_weierstrass_point_free(a);
|
|
}
|
|
}
|
|
mp_free(x);
|
|
ecc_weierstrass_curve_free(wc);
|
|
}
|
|
|
|
static MontgomeryCurve *mcurve(void)
|
|
{
|
|
mp_int *p = MP_LITERAL(0xde978eb1db35236a5792e9f0c04d86000659);
|
|
mp_int *a = MP_LITERAL(0x799b62a612b1b30e1c23cea6d67b2e33c51a);
|
|
mp_int *b = MP_LITERAL(0x944bf9042b56821a8c9e0b49b636c2502b2b);
|
|
MontgomeryCurve *mc = ecc_montgomery_curve(p, a, b);
|
|
mp_free(p);
|
|
mp_free(a);
|
|
mp_free(b);
|
|
return mc;
|
|
}
|
|
|
|
static MontgomeryPoint *mpoint(MontgomeryCurve *wc, size_t index)
|
|
{
|
|
mp_int *x = NULL;
|
|
MontgomeryPoint *mp;
|
|
switch (index) {
|
|
case 0:
|
|
x = MP_LITERAL(31415);
|
|
break;
|
|
case 1:
|
|
x = MP_LITERAL(0x4d352c654c06eecfe19104118857b38398e8);
|
|
break;
|
|
case 2:
|
|
x = MP_LITERAL(0x03fca2a73983bc3434caae3134599cd69cce);
|
|
break;
|
|
case 3:
|
|
x = MP_LITERAL(0xa0fd735ce9b3406498b5f035ee655bda4e15);
|
|
break;
|
|
case 4:
|
|
x = MP_LITERAL(0x7c7f46a00cc286dbe47db39b6d8f5efd920e);
|
|
break;
|
|
case 5:
|
|
x = MP_LITERAL(0x07a6dc30d3b320448e6f8999be417e6b7c6b);
|
|
break;
|
|
case 6:
|
|
x = MP_LITERAL(0x7832da5fc16dfbd358170b2b96896cd3cd06);
|
|
break;
|
|
default:
|
|
unreachable("only 7 example Weierstrass points defined");
|
|
}
|
|
mp = ecc_montgomery_point_new(wc, x);
|
|
mp_free(x);
|
|
return mp;
|
|
}
|
|
|
|
static void test_ecc_montgomery_diff_add(void)
|
|
{
|
|
MontgomeryCurve *wc = mcurve();
|
|
MontgomeryPoint *a = NULL, *b = NULL, *c = NULL;
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
MontgomeryPoint *A = mpoint(wc, i);
|
|
MontgomeryPoint *B = mpoint(wc, i);
|
|
MontgomeryPoint *C = mpoint(wc, i);
|
|
if (!a) {
|
|
a = A;
|
|
b = B;
|
|
c = C;
|
|
} else {
|
|
ecc_montgomery_point_copy_into(a, A);
|
|
ecc_montgomery_point_copy_into(b, B);
|
|
ecc_montgomery_point_copy_into(c, C);
|
|
ecc_montgomery_point_free(A);
|
|
ecc_montgomery_point_free(B);
|
|
ecc_montgomery_point_free(C);
|
|
}
|
|
|
|
log_start();
|
|
MontgomeryPoint *r = ecc_montgomery_diff_add(b, c, a);
|
|
log_end();
|
|
|
|
ecc_montgomery_point_free(r);
|
|
}
|
|
ecc_montgomery_point_free(a);
|
|
ecc_montgomery_point_free(b);
|
|
ecc_montgomery_point_free(c);
|
|
ecc_montgomery_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_montgomery_double(void)
|
|
{
|
|
MontgomeryCurve *wc = mcurve();
|
|
MontgomeryPoint *a = NULL;
|
|
for (size_t i = 0; i < looplimit(7); i++) {
|
|
MontgomeryPoint *A = mpoint(wc, i);
|
|
if (!a) {
|
|
a = A;
|
|
} else {
|
|
ecc_montgomery_point_copy_into(a, A);
|
|
ecc_montgomery_point_free(A);
|
|
}
|
|
|
|
log_start();
|
|
MontgomeryPoint *r = ecc_montgomery_double(a);
|
|
log_end();
|
|
|
|
ecc_montgomery_point_free(r);
|
|
}
|
|
ecc_montgomery_point_free(a);
|
|
ecc_montgomery_curve_free(wc);
|
|
}
|
|
|
|
static void test_ecc_montgomery_multiply(void)
|
|
{
|
|
MontgomeryCurve *wc = mcurve();
|
|
MontgomeryPoint *a = NULL;
|
|
mp_int *exponent = mp_new(56);
|
|
for (size_t i = 0; i < looplimit(7); i++) {
|
|
MontgomeryPoint *A = mpoint(wc, i);
|
|
if (!a) {
|
|
a = A;
|
|
} else {
|
|
ecc_montgomery_point_copy_into(a, A);
|
|
ecc_montgomery_point_free(A);
|
|
}
|
|
mp_random_fill(exponent);
|
|
|
|
log_start();
|
|
MontgomeryPoint *r = ecc_montgomery_multiply(a, exponent);
|
|
log_end();
|
|
|
|
ecc_montgomery_point_free(r);
|
|
}
|
|
ecc_montgomery_point_free(a);
|
|
ecc_montgomery_curve_free(wc);
|
|
mp_free(exponent);
|
|
}
|
|
|
|
static void test_ecc_montgomery_get_affine(void)
|
|
{
|
|
MontgomeryCurve *wc = mcurve();
|
|
MontgomeryPoint *r = NULL;
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
MontgomeryPoint *A = mpoint(wc, i);
|
|
MontgomeryPoint *B = mpoint(wc, i);
|
|
MontgomeryPoint *C = mpoint(wc, i);
|
|
MontgomeryPoint *R = ecc_montgomery_diff_add(B, C, A);
|
|
ecc_montgomery_point_free(A);
|
|
ecc_montgomery_point_free(B);
|
|
ecc_montgomery_point_free(C);
|
|
if (!r) {
|
|
r = R;
|
|
} else {
|
|
ecc_montgomery_point_copy_into(r, R);
|
|
ecc_montgomery_point_free(R);
|
|
}
|
|
|
|
log_start();
|
|
mp_int *x;
|
|
ecc_montgomery_get_affine(r, &x);
|
|
log_end();
|
|
|
|
mp_free(x);
|
|
}
|
|
ecc_montgomery_point_free(r);
|
|
ecc_montgomery_curve_free(wc);
|
|
}
|
|
|
|
static EdwardsCurve *ecurve(void)
|
|
{
|
|
mp_int *p = MP_LITERAL(0xfce2dac1704095de0b5c48876c45063cd475);
|
|
mp_int *d = MP_LITERAL(0xbd4f77401c3b14ae1742a7d1d367adac8f3e);
|
|
mp_int *a = MP_LITERAL(0x51d0845da3fa871aaac4341adea53b861919);
|
|
mp_int *nonsquare = mp_from_integer(2);
|
|
EdwardsCurve *ec = ecc_edwards_curve(p, d, a, nonsquare);
|
|
mp_free(p);
|
|
mp_free(d);
|
|
mp_free(a);
|
|
mp_free(nonsquare);
|
|
return ec;
|
|
}
|
|
|
|
static EdwardsPoint *epoint(EdwardsCurve *wc, size_t index)
|
|
{
|
|
mp_int *x, *y;
|
|
EdwardsPoint *ep;
|
|
switch (index) {
|
|
case 0:
|
|
x = MP_LITERAL(0x0);
|
|
y = MP_LITERAL(0x1);
|
|
break;
|
|
case 1:
|
|
x = MP_LITERAL(0x3d8aef0294a67c1c7e8e185d987716250d7c);
|
|
y = MP_LITERAL(0x27184);
|
|
break;
|
|
case 2:
|
|
x = MP_LITERAL(0xf44ed5b8a6debfd3ab24b7874cd2589fd672);
|
|
y = MP_LITERAL(0xd635d8d15d367881c8a3af472c8fe487bf40);
|
|
break;
|
|
case 3:
|
|
x = MP_LITERAL(0xde114ecc8b944684415ef81126a07269cd30);
|
|
y = MP_LITERAL(0xbe0fd45ff67ebba047ed0ec5a85d22e688a1);
|
|
break;
|
|
case 4:
|
|
x = MP_LITERAL(0x76bd2f90898d271b492c9c20dd7bbfe39fe5);
|
|
y = MP_LITERAL(0xbf1c82698b4a5a12c1057631c1ebdc216ae2);
|
|
break;
|
|
default:
|
|
unreachable("only 5 example Edwards points defined");
|
|
}
|
|
ep = ecc_edwards_point_new(wc, x, y);
|
|
mp_free(x);
|
|
mp_free(y);
|
|
return ep;
|
|
}
|
|
|
|
static void test_ecc_edwards_add(void)
|
|
{
|
|
EdwardsCurve *ec = ecurve();
|
|
EdwardsPoint *a = NULL, *b = NULL;
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
for (size_t j = 0; j < looplimit(5); j++) {
|
|
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
|
|
if (!a) {
|
|
a = A;
|
|
b = B;
|
|
} else {
|
|
ecc_edwards_point_copy_into(a, A);
|
|
ecc_edwards_point_copy_into(b, B);
|
|
ecc_edwards_point_free(A);
|
|
ecc_edwards_point_free(B);
|
|
}
|
|
|
|
log_start();
|
|
EdwardsPoint *r = ecc_edwards_add(a, b);
|
|
log_end();
|
|
|
|
ecc_edwards_point_free(r);
|
|
}
|
|
}
|
|
ecc_edwards_point_free(a);
|
|
ecc_edwards_point_free(b);
|
|
ecc_edwards_curve_free(ec);
|
|
}
|
|
|
|
static void test_ecc_edwards_multiply(void)
|
|
{
|
|
EdwardsCurve *ec = ecurve();
|
|
EdwardsPoint *a = NULL;
|
|
mp_int *exponent = mp_new(56);
|
|
for (size_t i = 1; i < looplimit(5); i++) {
|
|
EdwardsPoint *A = epoint(ec, i);
|
|
if (!a) {
|
|
a = A;
|
|
} else {
|
|
ecc_edwards_point_copy_into(a, A);
|
|
ecc_edwards_point_free(A);
|
|
}
|
|
mp_random_fill(exponent);
|
|
|
|
log_start();
|
|
EdwardsPoint *r = ecc_edwards_multiply(a, exponent);
|
|
log_end();
|
|
|
|
ecc_edwards_point_free(r);
|
|
}
|
|
ecc_edwards_point_free(a);
|
|
ecc_edwards_curve_free(ec);
|
|
mp_free(exponent);
|
|
}
|
|
|
|
static void test_ecc_edwards_eq(void)
|
|
{
|
|
EdwardsCurve *ec = ecurve();
|
|
EdwardsPoint *a = NULL, *b = NULL;
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
for (size_t j = 0; j < looplimit(5); j++) {
|
|
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
|
|
if (!a) {
|
|
a = A;
|
|
b = B;
|
|
} else {
|
|
ecc_edwards_point_copy_into(a, A);
|
|
ecc_edwards_point_copy_into(b, B);
|
|
ecc_edwards_point_free(A);
|
|
ecc_edwards_point_free(B);
|
|
}
|
|
|
|
log_start();
|
|
ecc_edwards_eq(a, b);
|
|
log_end();
|
|
}
|
|
}
|
|
ecc_edwards_point_free(a);
|
|
ecc_edwards_point_free(b);
|
|
ecc_edwards_curve_free(ec);
|
|
}
|
|
|
|
static void test_ecc_edwards_get_affine(void)
|
|
{
|
|
EdwardsCurve *ec = ecurve();
|
|
EdwardsPoint *r = NULL;
|
|
for (size_t i = 0; i < looplimit(4); i++) {
|
|
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, i+1);
|
|
EdwardsPoint *R = ecc_edwards_add(A, B);
|
|
ecc_edwards_point_free(A);
|
|
ecc_edwards_point_free(B);
|
|
if (!r) {
|
|
r = R;
|
|
} else {
|
|
ecc_edwards_point_copy_into(r, R);
|
|
ecc_edwards_point_free(R);
|
|
}
|
|
|
|
log_start();
|
|
mp_int *x, *y;
|
|
ecc_edwards_get_affine(r, &x, &y);
|
|
log_end();
|
|
|
|
mp_free(x);
|
|
mp_free(y);
|
|
}
|
|
ecc_edwards_point_free(r);
|
|
ecc_edwards_curve_free(ec);
|
|
}
|
|
|
|
static void test_ecc_edwards_decompress(void)
|
|
{
|
|
EdwardsCurve *ec = ecurve();
|
|
|
|
/* As in the mp_modsqrt test, prime the lazy initialisation of the
|
|
* ModsqrtContext */
|
|
mp_int *y = mp_new(144);
|
|
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, 0);
|
|
if (a) /* don't care whether this one succeeded */
|
|
ecc_edwards_point_free(a);
|
|
|
|
for (size_t p = 0; p < looplimit(2); p++) {
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
EdwardsPoint *A = epoint(ec, i);
|
|
mp_int *Y;
|
|
ecc_edwards_get_affine(A, NULL, &Y);
|
|
mp_copy_into(y, Y);
|
|
mp_free(Y);
|
|
ecc_edwards_point_free(A);
|
|
|
|
log_start();
|
|
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, p);
|
|
log_end();
|
|
|
|
ecc_edwards_point_free(a);
|
|
}
|
|
}
|
|
mp_free(y);
|
|
ecc_edwards_curve_free(ec);
|
|
}
|
|
|
|
static void test_cipher(const ssh_cipheralg *calg)
|
|
{
|
|
ssh_cipher *c = ssh_cipher_new(calg);
|
|
if (!c) {
|
|
test_skipped = true;
|
|
return;
|
|
}
|
|
const ssh2_macalg *malg = calg->required_mac;
|
|
ssh2_mac *m = NULL;
|
|
if (malg) {
|
|
m = ssh2_mac_new(malg, c);
|
|
if (!m) {
|
|
ssh_cipher_free(c);
|
|
test_skipped = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint8_t *ckey = snewn(calg->padded_keybytes, uint8_t);
|
|
uint8_t *civ = snewn(calg->blksize, uint8_t);
|
|
uint8_t *mkey = malg ? snewn(malg->keylen, uint8_t) : NULL;
|
|
size_t datalen = calg->blksize * 8;
|
|
size_t maclen = malg ? malg->len : 0;
|
|
uint8_t *data = snewn(datalen + maclen, uint8_t);
|
|
size_t lenlen = 4;
|
|
uint8_t *lendata = snewn(lenlen, uint8_t);
|
|
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
random_read(ckey, calg->padded_keybytes);
|
|
if (malg)
|
|
random_read(mkey, malg->keylen);
|
|
random_read(data, datalen);
|
|
random_read(lendata, lenlen);
|
|
if (i == 0) {
|
|
/* Ensure one of our test IVs will cause SDCTR wraparound */
|
|
memset(civ, 0xFF, calg->blksize);
|
|
} else {
|
|
random_read(civ, calg->blksize);
|
|
}
|
|
uint8_t seqbuf[4];
|
|
random_read(seqbuf, 4);
|
|
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
|
|
|
|
log_start();
|
|
ssh_cipher_setkey(c, ckey);
|
|
ssh_cipher_setiv(c, civ);
|
|
if (m)
|
|
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
|
|
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
|
|
ssh_cipher_encrypt_length(c, data, datalen, seq);
|
|
ssh_cipher_encrypt(c, data, datalen);
|
|
if (m) {
|
|
ssh2_mac_generate(m, data, datalen, seq);
|
|
ssh2_mac_verify(m, data, datalen, seq);
|
|
}
|
|
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
|
|
ssh_cipher_decrypt_length(c, data, datalen, seq);
|
|
ssh_cipher_decrypt(c, data, datalen);
|
|
log_end();
|
|
}
|
|
|
|
sfree(ckey);
|
|
sfree(civ);
|
|
sfree(mkey);
|
|
sfree(data);
|
|
sfree(lendata);
|
|
if (m)
|
|
ssh2_mac_free(m);
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
#define CIPHER_TESTFN(Y_unused, cipher) \
|
|
static void test_cipher_##cipher(void) { test_cipher(&cipher); }
|
|
CIPHERS(CIPHER_TESTFN, Y_unused)
|
|
|
|
static void test_mac(const ssh2_macalg *malg, const ssh_cipheralg *calg)
|
|
{
|
|
ssh_cipher *c = NULL;
|
|
if (calg) {
|
|
c = ssh_cipher_new(calg);
|
|
if (!c) {
|
|
test_skipped = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
ssh2_mac *m = ssh2_mac_new(malg, c);
|
|
if (!m) {
|
|
test_skipped = true;
|
|
if (c)
|
|
ssh_cipher_free(c);
|
|
return;
|
|
}
|
|
|
|
size_t ckeylen = calg ? calg->padded_keybytes : 0;
|
|
size_t civlen = calg ? calg->blksize : 0;
|
|
uint8_t *ckey = snewn(ckeylen, uint8_t);
|
|
uint8_t *civ = snewn(civlen, uint8_t);
|
|
uint8_t *mkey = snewn(malg->keylen, uint8_t);
|
|
size_t datalen = 256;
|
|
size_t maclen = malg->len;
|
|
uint8_t *data = snewn(datalen + maclen, uint8_t);
|
|
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
random_read(ckey, ckeylen);
|
|
random_read(civ, civlen);
|
|
random_read(mkey, malg->keylen);
|
|
random_read(data, datalen);
|
|
uint8_t seqbuf[4];
|
|
random_read(seqbuf, 4);
|
|
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
|
|
|
|
log_start();
|
|
if (c) {
|
|
ssh_cipher_setkey(c, ckey);
|
|
ssh_cipher_setiv(c, civ);
|
|
}
|
|
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
|
|
ssh2_mac_generate(m, data, datalen, seq);
|
|
ssh2_mac_verify(m, data, datalen, seq);
|
|
log_end();
|
|
}
|
|
|
|
sfree(ckey);
|
|
sfree(civ);
|
|
sfree(mkey);
|
|
sfree(data);
|
|
ssh2_mac_free(m);
|
|
if (c)
|
|
ssh_cipher_free(c);
|
|
}
|
|
|
|
#define MAC_TESTFN(Y_unused, mac) \
|
|
static void test_mac_##mac(void) { test_mac(&mac, NULL); }
|
|
SIMPLE_MACS(MAC_TESTFN, Y_unused)
|
|
|
|
static void test_mac_poly1305(void)
|
|
{
|
|
test_mac(&ssh2_poly1305, &ssh2_chacha20_poly1305);
|
|
}
|
|
|
|
static void test_mac_aesgcm_sw_sw(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_sw);
|
|
}
|
|
|
|
static void test_mac_aesgcm_sw_refpoly(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_ref_poly, &ssh_aes128_gcm_sw);
|
|
}
|
|
|
|
#if HAVE_AES_NI
|
|
static void test_mac_aesgcm_ni_sw(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_ni);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_NEON_CRYPTO
|
|
static void test_mac_aesgcm_neon_sw(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_neon);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_CLMUL
|
|
static void test_mac_aesgcm_sw_clmul(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_sw);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_NEON_PMULL
|
|
static void test_mac_aesgcm_sw_neon(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_sw);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_AES_NI && HAVE_CLMUL
|
|
static void test_mac_aesgcm_ni_clmul(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_ni);
|
|
}
|
|
#endif
|
|
|
|
#if HAVE_NEON_CRYPTO && HAVE_NEON_PMULL
|
|
static void test_mac_aesgcm_neon_neon(void)
|
|
{
|
|
test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_neon);
|
|
}
|
|
#endif
|
|
|
|
static void test_hash(const ssh_hashalg *halg)
|
|
{
|
|
ssh_hash *h = ssh_hash_new(halg);
|
|
if (!h) {
|
|
test_skipped = true;
|
|
return;
|
|
}
|
|
ssh_hash_free(h);
|
|
|
|
size_t datalen = 256;
|
|
uint8_t *data = snewn(datalen, uint8_t);
|
|
uint8_t *hash = snewn(halg->hlen, uint8_t);
|
|
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
random_read(data, datalen);
|
|
|
|
log_start();
|
|
h = ssh_hash_new(halg);
|
|
put_data(h, data, datalen);
|
|
ssh_hash_final(h, hash);
|
|
log_end();
|
|
}
|
|
|
|
sfree(data);
|
|
sfree(hash);
|
|
}
|
|
|
|
#define HASH_TESTFN(Y_unused, hash) \
|
|
static void test_hash_##hash(void) { test_hash(&hash); }
|
|
HASHES(HASH_TESTFN, Y_unused)
|
|
|
|
struct test {
|
|
const char *testname;
|
|
void (*testfn)(void);
|
|
};
|
|
|
|
static void test_argon2(void)
|
|
{
|
|
/*
|
|
* We can only expect the Argon2i variant to pass this stringent
|
|
* test for no data-dependency, because the other two variants of
|
|
* Argon2 have _deliberate_ data-dependency.
|
|
*/
|
|
size_t inlen = 48+16+24+8;
|
|
uint8_t *indata = snewn(inlen, uint8_t);
|
|
ptrlen password = make_ptrlen(indata, 48);
|
|
ptrlen salt = make_ptrlen(indata+48, 16);
|
|
ptrlen secret = make_ptrlen(indata+48+16, 24);
|
|
ptrlen assoc = make_ptrlen(indata+48+16+24, 8);
|
|
|
|
strbuf *outdata = strbuf_new();
|
|
strbuf_append(outdata, 256);
|
|
|
|
for (size_t i = 0; i < looplimit(16); i++) {
|
|
strbuf_clear(outdata);
|
|
random_read(indata, inlen);
|
|
|
|
log_start();
|
|
argon2(Argon2i, 32, 2, 2, 144, password, salt, secret, assoc, outdata);
|
|
log_end();
|
|
}
|
|
|
|
sfree(indata);
|
|
strbuf_free(outdata);
|
|
}
|
|
|
|
static void test_primegen(const PrimeGenerationPolicy *policy)
|
|
{
|
|
static ProgressReceiver null_progress = { .vt = &null_progress_vt };
|
|
|
|
PrimeGenerationContext *pgc = primegen_new_context(policy);
|
|
|
|
init_smallprimes();
|
|
mp_int *pcopy = mp_new(128);
|
|
|
|
for (size_t i = 0; i < looplimit(2); i++) {
|
|
while (true) {
|
|
random_advance_counter();
|
|
struct random_state st = random_get_state();
|
|
|
|
PrimeCandidateSource *pcs = pcs_new(128);
|
|
pcs_set_oneshot(pcs);
|
|
pcs_ready(pcs);
|
|
mp_int *p = primegen_generate(pgc, pcs, &null_progress);
|
|
|
|
if (p) {
|
|
mp_copy_into(pcopy, p);
|
|
sfree(p);
|
|
|
|
random_set_state(st);
|
|
|
|
log_start();
|
|
PrimeCandidateSource *pcs = pcs_new(128);
|
|
pcs_set_oneshot(pcs);
|
|
pcs_ready(pcs);
|
|
mp_int *q = primegen_generate(pgc, pcs, &null_progress);
|
|
log_end();
|
|
|
|
assert(q);
|
|
assert(mp_cmp_eq(pcopy, q));
|
|
mp_free(q);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_free(pcopy);
|
|
primegen_free_context(pgc);
|
|
}
|
|
|
|
static void test_primegen_probabilistic(void)
|
|
{
|
|
test_primegen(&primegen_probabilistic);
|
|
}
|
|
|
|
static void test_ntru(void)
|
|
{
|
|
unsigned p = 11, q = 59, w = 3;
|
|
uint16_t *pubkey_orig = snewn(p, uint16_t);
|
|
uint16_t *pubkey_check = snewn(p, uint16_t);
|
|
uint16_t *pubkey = snewn(p, uint16_t);
|
|
uint16_t *plaintext = snewn(p, uint16_t);
|
|
uint16_t *ciphertext = snewn(p, uint16_t);
|
|
|
|
strbuf *buffer = strbuf_new();
|
|
strbuf_append(buffer, 16384);
|
|
BinarySource src[1];
|
|
|
|
for (size_t i = 0; i < looplimit(32); i++) {
|
|
while (true) {
|
|
random_advance_counter();
|
|
struct random_state st = random_get_state();
|
|
|
|
NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
|
|
|
|
if (keypair) {
|
|
memcpy(pubkey_orig, ntru_pubkey(keypair),
|
|
p*sizeof(*pubkey_orig));
|
|
ntru_keypair_free(keypair);
|
|
|
|
random_set_state(st);
|
|
|
|
log_start();
|
|
NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
|
|
memcpy(pubkey_check, ntru_pubkey(keypair),
|
|
p*sizeof(*pubkey_check));
|
|
|
|
ntru_gen_short(plaintext, p, w);
|
|
ntru_encrypt(ciphertext, plaintext, pubkey, p, w);
|
|
ntru_decrypt(plaintext, ciphertext, keypair);
|
|
|
|
strbuf_clear(buffer);
|
|
ntru_encode_pubkey(ntru_pubkey(keypair), p, q,
|
|
BinarySink_UPCAST(buffer));
|
|
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
|
|
ntru_decode_pubkey(pubkey, p, q, src);
|
|
|
|
strbuf_clear(buffer);
|
|
ntru_encode_ciphertext(ciphertext, p, q,
|
|
BinarySink_UPCAST(buffer));
|
|
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
|
|
ntru_decode_ciphertext(ciphertext, keypair, src);
|
|
|
|
strbuf_clear(buffer);
|
|
ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(buffer));
|
|
log_end();
|
|
|
|
ntru_keypair_free(keypair);
|
|
|
|
break;
|
|
}
|
|
|
|
assert(!memcmp(pubkey_orig, pubkey_check,
|
|
p*sizeof(*pubkey_check)));
|
|
}
|
|
}
|
|
|
|
sfree(pubkey_orig);
|
|
sfree(pubkey_check);
|
|
sfree(pubkey);
|
|
sfree(plaintext);
|
|
sfree(ciphertext);
|
|
strbuf_free(buffer);
|
|
}
|
|
|
|
static void test_mlkem(const mlkem_params *params)
|
|
{
|
|
char rho[32], sigma[32], z[32], m[32], ek[1568], dk[3168], c[1568];
|
|
char k[32], k2[32];
|
|
|
|
/* rho is a random but public value, so side channels are allowed
|
|
* to reveal it (and undoubtedly will). So we don't vary it
|
|
* between runs. */
|
|
random_read(rho, 32);
|
|
|
|
for (size_t i = 0; i < looplimit(32); i++) {
|
|
random_advance_counter();
|
|
random_read(sigma, 32);
|
|
random_read(z, 32);
|
|
random_read(m, 32);
|
|
|
|
log_start();
|
|
|
|
/* Every other iteration, tamper with the ciphertext so that
|
|
* implicit rejection occurs, because we need to test that
|
|
* that too is done in constant time. */
|
|
unsigned tampering = i & 1;
|
|
|
|
buffer_sink ek_sink[1]; buffer_sink_init(ek_sink, ek, sizeof(ek));
|
|
buffer_sink dk_sink[1]; buffer_sink_init(dk_sink, dk, sizeof(dk));
|
|
buffer_sink c_sink[1]; buffer_sink_init(c_sink, c, sizeof(c));
|
|
buffer_sink k_sink[1]; buffer_sink_init(k_sink, k, sizeof(k));
|
|
mlkem_keygen_rho_sigma(
|
|
BinarySink_UPCAST(ek_sink), BinarySink_UPCAST(dk_sink),
|
|
params, rho, sigma, z);
|
|
ptrlen ek_pl = make_ptrlen(ek, ek_sink->out - ek);
|
|
ptrlen dk_pl = make_ptrlen(dk, dk_sink->out - dk);
|
|
mlkem_encaps_internal(
|
|
BinarySink_UPCAST(c_sink), BinarySink_UPCAST(k_sink),
|
|
params, ek_pl, m);
|
|
dk[0] ^= tampering;
|
|
ptrlen c_pl = make_ptrlen(c, c_sink->out - c);
|
|
buffer_sink_init(k_sink, k2, sizeof(k2));
|
|
bool success = mlkem_decaps(
|
|
BinarySink_UPCAST(k_sink), params, dk_pl, c_pl);
|
|
|
|
log_end();
|
|
|
|
assert(success);
|
|
unsigned eq_expected = tampering ^ 1;
|
|
unsigned eq = smemeq(k, k2, 32);
|
|
assert(eq == eq_expected);
|
|
}
|
|
}
|
|
|
|
static void test_mlkem512(void) { test_mlkem(&mlkem_params_512); }
|
|
static void test_mlkem768(void) { test_mlkem(&mlkem_params_768); }
|
|
static void test_mlkem1024(void) { test_mlkem(&mlkem_params_1024); }
|
|
|
|
static void test_rfc6979_setup(void)
|
|
{
|
|
mp_int *q = mp_new(512);
|
|
mp_int *x = mp_new(512);
|
|
|
|
strbuf *message = strbuf_new();
|
|
strbuf_append(message, 123);
|
|
|
|
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
|
|
|
|
for (size_t i = 0; i < looplimit(20); i++) {
|
|
random_read(message->u, message->len);
|
|
mp_random_fill(q);
|
|
mp_random_fill(x);
|
|
|
|
log_start();
|
|
rfc6979_setup(s, ptrlen_from_strbuf(message));
|
|
log_end();
|
|
}
|
|
|
|
rfc6979_free(s);
|
|
mp_free(q);
|
|
mp_free(x);
|
|
strbuf_free(message);
|
|
}
|
|
|
|
static void test_rfc6979_attempt(void)
|
|
{
|
|
mp_int *q = mp_new(512);
|
|
mp_int *x = mp_new(512);
|
|
|
|
strbuf *message = strbuf_new();
|
|
strbuf_append(message, 123);
|
|
|
|
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
|
|
|
|
for (size_t i = 0; i < looplimit(5); i++) {
|
|
random_read(message->u, message->len);
|
|
mp_random_fill(q);
|
|
mp_random_fill(x);
|
|
|
|
rfc6979_setup(s, ptrlen_from_strbuf(message));
|
|
|
|
for (size_t j = 0; j < looplimit(10); j++) {
|
|
log_start();
|
|
RFC6979Result result = rfc6979_attempt(s);
|
|
mp_free(result.k);
|
|
log_end();
|
|
}
|
|
}
|
|
|
|
rfc6979_free(s);
|
|
mp_free(q);
|
|
mp_free(x);
|
|
strbuf_free(message);
|
|
}
|
|
|
|
static const struct test tests[] = {
|
|
#define STRUCT_TEST(X) { #X, test_##X },
|
|
TESTLIST(STRUCT_TEST)
|
|
#undef STRUCT_TEST
|
|
};
|
|
|
|
void dputs(const char *buf)
|
|
{
|
|
fputs(buf, stderr);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
bool doing_opts = true;
|
|
const char *pname = argv[0];
|
|
uint8_t tests_to_run[lenof(tests)];
|
|
bool keep_outfiles = false;
|
|
bool test_names_given = false;
|
|
|
|
/* One day, perhaps, if I ever get this test to work on Arm, we
|
|
* might actually _check_ DIT is enabled, and check we're sticking
|
|
* to the precise list of DIT-affected instructions */
|
|
enable_dit();
|
|
|
|
memset(tests_to_run, 1, sizeof(tests_to_run));
|
|
random_hash = ssh_hash_new(&ssh_sha256);
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
|
|
if (p[0] == '-' && doing_opts) {
|
|
if (!strcmp(p, "-O")) {
|
|
if (--argc <= 0) {
|
|
fprintf(stderr, "'-O' expects a directory name\n");
|
|
return 1;
|
|
}
|
|
outdir = *++argv;
|
|
} else if (!strcmp(p, "-k") || !strcmp(p, "--keep")) {
|
|
keep_outfiles = true;
|
|
} else if (!strcmp(p, "--")) {
|
|
doing_opts = false;
|
|
} else if (!strcmp(p, "--help")) {
|
|
printf(" usage: drrun -c test/sclog/libsclog.so -- "
|
|
"%s -O <outdir>\n", pname);
|
|
printf("options: -O <outdir> "
|
|
"put log files in the specified directory\n");
|
|
printf(" -k, --keep "
|
|
"do not delete log files for tests that passed\n");
|
|
printf(" also: --help "
|
|
"display this text\n");
|
|
return 0;
|
|
} else {
|
|
fprintf(stderr, "unknown command line option '%s'\n", p);
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (!test_names_given) {
|
|
test_names_given = true;
|
|
memset(tests_to_run, 0, sizeof(tests_to_run));
|
|
}
|
|
bool found_one = false;
|
|
for (size_t i = 0; i < lenof(tests); i++) {
|
|
if (wc_match(p, tests[i].testname)) {
|
|
tests_to_run[i] = 1;
|
|
found_one = true;
|
|
}
|
|
}
|
|
if (!found_one) {
|
|
fprintf(stderr, "no test name matched '%s'\n", p);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_dry_run = dry_run();
|
|
|
|
if (is_dry_run) {
|
|
printf("Dry run (DynamoRIO instrumentation not detected)\n");
|
|
} else {
|
|
/* Print the address of main() in this run. The idea is that
|
|
* if this image is compiled to be position-independent, then
|
|
* PC values in the logs won't match the ones you get if you
|
|
* disassemble the binary, so it'll be harder to match up the
|
|
* log messages to the code. But if you know the address of a
|
|
* fixed (and not inlined) function in both worlds, you can
|
|
* find out the offset between them. */
|
|
printf("Live run, main = %p\n", (void *)main);
|
|
|
|
if (!outdir) {
|
|
fprintf(stderr, "expected -O <outdir> option\n");
|
|
return 1;
|
|
}
|
|
printf("Will write log files to %s\n", outdir);
|
|
}
|
|
|
|
size_t nrun = 0, npass = 0;
|
|
|
|
for (size_t i = 0; i < lenof(tests); i++) {
|
|
bool keep_these_outfiles = true;
|
|
|
|
if (!tests_to_run[i])
|
|
continue;
|
|
const struct test *test = &tests[i];
|
|
printf("Running test %s ... ", test->testname);
|
|
fflush(stdout);
|
|
|
|
test_skipped = false;
|
|
random_seed(test->testname);
|
|
test_basename = test->testname;
|
|
test_index = 0;
|
|
|
|
test->testfn();
|
|
|
|
if (test_skipped) {
|
|
/* Used for e.g. tests of hardware-accelerated crypto when
|
|
* the hardware acceleration isn't available */
|
|
printf("skipped\n");
|
|
continue;
|
|
}
|
|
|
|
nrun++;
|
|
|
|
if (is_dry_run) {
|
|
printf("dry run done\n");
|
|
continue; /* test files won't exist anyway */
|
|
}
|
|
|
|
if (test_index < 2) {
|
|
printf("FAIL: test did not generate multiple output files\n");
|
|
goto test_done;
|
|
}
|
|
|
|
char *firstfile = log_filename(test_basename, 0);
|
|
FILE *firstfp = fopen(firstfile, "rb");
|
|
if (!firstfp) {
|
|
printf("ERR: %s: open: %s\n", firstfile, strerror(errno));
|
|
goto test_done;
|
|
}
|
|
for (size_t i = 1; i < test_index; i++) {
|
|
char *nextfile = log_filename(test_basename, i);
|
|
FILE *nextfp = fopen(nextfile, "rb");
|
|
if (!nextfp) {
|
|
printf("ERR: %s: open: %s\n", nextfile, strerror(errno));
|
|
goto test_done;
|
|
}
|
|
|
|
rewind(firstfp);
|
|
char buf1[4096], bufn[4096];
|
|
bool compare_ok = false;
|
|
while (true) {
|
|
size_t r1 = fread(buf1, 1, sizeof(buf1), firstfp);
|
|
size_t rn = fread(bufn, 1, sizeof(bufn), nextfp);
|
|
if (r1 != rn) {
|
|
printf("FAIL: %s %s: different lengths\n",
|
|
firstfile, nextfile);
|
|
break;
|
|
}
|
|
if (r1 == 0) {
|
|
if (feof(firstfp) && feof(nextfp)) {
|
|
compare_ok = true;
|
|
} else {
|
|
printf("FAIL: %s %s: error at end of file\n",
|
|
firstfile, nextfile);
|
|
}
|
|
break;
|
|
}
|
|
if (memcmp(buf1, bufn, r1) != 0) {
|
|
printf("FAIL: %s %s: different content\n",
|
|
firstfile, nextfile);
|
|
break;
|
|
}
|
|
}
|
|
fclose(nextfp);
|
|
sfree(nextfile);
|
|
if (!compare_ok) {
|
|
goto test_done;
|
|
}
|
|
}
|
|
fclose(firstfp);
|
|
sfree(firstfile);
|
|
|
|
printf("pass\n");
|
|
npass++;
|
|
keep_these_outfiles = keep_outfiles;
|
|
|
|
test_done:
|
|
if (!keep_these_outfiles) {
|
|
for (size_t i = 0; i < test_index; i++) {
|
|
char *file = log_filename(test_basename, i);
|
|
remove(file);
|
|
sfree(file);
|
|
}
|
|
}
|
|
}
|
|
|
|
ssh_hash_free(random_hash);
|
|
|
|
if (npass == nrun) {
|
|
printf("All tests passed\n");
|
|
return 0;
|
|
} else {
|
|
printf("%"SIZEu" tests failed\n", nrun - npass);
|
|
return 1;
|
|
}
|
|
}
|