mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
5d718ef64b
The number of people has been steadily increasing who read our source code with an editor that thinks tab stops are 4 spaces apart, as opposed to the traditional tty-derived 8 that the PuTTY code expects. So I've been wondering for ages about just fixing it, and switching to a spaces-only policy throughout the code. And I recently found out about 'git blame -w', which should make this change not too disruptive for the purposes of source-control archaeology; so perhaps now is the time. While I'm at it, I've also taken the opportunity to remove all the trailing spaces from source lines (on the basis that git dislikes them, and is the only thing that seems to have a strong opinion one way or the other). Apologies to anyone downstream of this code who has complicated patch sets to rebase past this change. I don't intend it to be needed again.
1203 lines
39 KiB
C
1203 lines
39 KiB
C
/*
|
|
* Platform-independent bits of X11 forwarding.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
|
|
#include "putty.h"
|
|
#include "ssh.h"
|
|
#include "sshchan.h"
|
|
#include "tree234.h"
|
|
|
|
static inline uint16_t GET_16BIT_X11(char endian, const void *p)
|
|
{
|
|
return endian == 'B' ? GET_16BIT_MSB_FIRST(p) : GET_16BIT_LSB_FIRST(p);
|
|
}
|
|
|
|
static inline void PUT_16BIT_X11(char endian, void *p, uint16_t value)
|
|
{
|
|
if (endian == 'B')
|
|
PUT_16BIT_MSB_FIRST(p, value);
|
|
else
|
|
PUT_16BIT_LSB_FIRST(p, value);
|
|
}
|
|
|
|
const char *const x11_authnames[] = {
|
|
"", "MIT-MAGIC-COOKIE-1", "XDM-AUTHORIZATION-1"
|
|
};
|
|
|
|
struct XDMSeen {
|
|
unsigned int time;
|
|
unsigned char clientid[6];
|
|
};
|
|
|
|
typedef struct X11Connection {
|
|
unsigned char firstpkt[12]; /* first X data packet */
|
|
tree234 *authtree;
|
|
struct X11Display *disp;
|
|
char *auth_protocol;
|
|
unsigned char *auth_data;
|
|
int data_read, auth_plen, auth_psize, auth_dlen, auth_dsize;
|
|
bool verified;
|
|
bool input_wanted;
|
|
bool no_data_sent_to_x_client;
|
|
char *peer_addr;
|
|
int peer_port;
|
|
SshChannel *c; /* channel structure held by SSH backend */
|
|
Socket *s;
|
|
|
|
Plug plug;
|
|
Channel chan;
|
|
} X11Connection;
|
|
|
|
static int xdmseen_cmp(void *a, void *b)
|
|
{
|
|
struct XDMSeen *sa = a, *sb = b;
|
|
return sa->time > sb->time ? 1 :
|
|
sa->time < sb->time ? -1 :
|
|
memcmp(sa->clientid, sb->clientid, sizeof(sa->clientid));
|
|
}
|
|
|
|
struct X11FakeAuth *x11_invent_fake_auth(tree234 *authtree, int authtype)
|
|
{
|
|
struct X11FakeAuth *auth = snew(struct X11FakeAuth);
|
|
int i;
|
|
|
|
/*
|
|
* This function has the job of inventing a set of X11 fake auth
|
|
* data, and adding it to 'authtree'. We must preserve the
|
|
* property that for any given actual authorisation attempt, _at
|
|
* most one_ thing in the tree can possibly match it.
|
|
*
|
|
* For MIT-MAGIC-COOKIE-1, that's not too difficult: the match
|
|
* criterion is simply that the entire cookie is correct, so we
|
|
* just have to make sure we don't make up two cookies the same.
|
|
* (Vanishingly unlikely, but we check anyway to be sure, and go
|
|
* round again inventing a new cookie if add234 tells us the one
|
|
* we thought of is already in use.)
|
|
*
|
|
* For XDM-AUTHORIZATION-1, it's a little more fiddly. The setup
|
|
* with XA1 is that half the cookie is used as a DES key with
|
|
* which to CBC-encrypt an assortment of stuff. Happily, the stuff
|
|
* encrypted _begins_ with the other half of the cookie, and the
|
|
* IV is always zero, which means that any valid XA1 authorisation
|
|
* attempt for a given cookie must begin with the same cipher
|
|
* block, consisting of the DES ECB encryption of the first half
|
|
* of the cookie using the second half as a key. So we compute
|
|
* that cipher block here and now, and use it as the sorting key
|
|
* for distinguishing XA1 entries in the tree.
|
|
*/
|
|
|
|
if (authtype == X11_MIT) {
|
|
auth->proto = X11_MIT;
|
|
|
|
/* MIT-MAGIC-COOKIE-1. Cookie size is 128 bits (16 bytes). */
|
|
auth->datalen = 16;
|
|
auth->data = snewn(auth->datalen, unsigned char);
|
|
auth->xa1_firstblock = NULL;
|
|
|
|
while (1) {
|
|
random_read(auth->data, auth->datalen);
|
|
if (add234(authtree, auth) == auth)
|
|
break;
|
|
}
|
|
|
|
auth->xdmseen = NULL;
|
|
} else {
|
|
assert(authtype == X11_XDM);
|
|
auth->proto = X11_XDM;
|
|
|
|
/* XDM-AUTHORIZATION-1. Cookie size is 16 bytes; byte 8 is zero. */
|
|
auth->datalen = 16;
|
|
auth->data = snewn(auth->datalen, unsigned char);
|
|
auth->xa1_firstblock = snewn(8, unsigned char);
|
|
memset(auth->xa1_firstblock, 0, 8);
|
|
|
|
while (1) {
|
|
random_read(auth->data, 15);
|
|
auth->data[15] = auth->data[8];
|
|
auth->data[8] = 0;
|
|
|
|
memcpy(auth->xa1_firstblock, auth->data, 8);
|
|
des_encrypt_xdmauth(auth->data + 9, auth->xa1_firstblock, 8);
|
|
if (add234(authtree, auth) == auth)
|
|
break;
|
|
}
|
|
|
|
auth->xdmseen = newtree234(xdmseen_cmp);
|
|
}
|
|
auth->protoname = dupstr(x11_authnames[auth->proto]);
|
|
auth->datastring = snewn(auth->datalen * 2 + 1, char);
|
|
for (i = 0; i < auth->datalen; i++)
|
|
sprintf(auth->datastring + i*2, "%02x",
|
|
auth->data[i]);
|
|
|
|
auth->disp = NULL;
|
|
auth->share_cs = NULL;
|
|
auth->share_chan = NULL;
|
|
|
|
return auth;
|
|
}
|
|
|
|
void x11_free_fake_auth(struct X11FakeAuth *auth)
|
|
{
|
|
if (auth->data)
|
|
smemclr(auth->data, auth->datalen);
|
|
sfree(auth->data);
|
|
sfree(auth->protoname);
|
|
sfree(auth->datastring);
|
|
sfree(auth->xa1_firstblock);
|
|
if (auth->xdmseen != NULL) {
|
|
struct XDMSeen *seen;
|
|
while ((seen = delpos234(auth->xdmseen, 0)) != NULL)
|
|
sfree(seen);
|
|
freetree234(auth->xdmseen);
|
|
}
|
|
sfree(auth);
|
|
}
|
|
|
|
int x11_authcmp(void *av, void *bv)
|
|
{
|
|
struct X11FakeAuth *a = (struct X11FakeAuth *)av;
|
|
struct X11FakeAuth *b = (struct X11FakeAuth *)bv;
|
|
|
|
if (a->proto < b->proto)
|
|
return -1;
|
|
else if (a->proto > b->proto)
|
|
return +1;
|
|
|
|
if (a->proto == X11_MIT) {
|
|
if (a->datalen < b->datalen)
|
|
return -1;
|
|
else if (a->datalen > b->datalen)
|
|
return +1;
|
|
|
|
return memcmp(a->data, b->data, a->datalen);
|
|
} else {
|
|
assert(a->proto == X11_XDM);
|
|
|
|
return memcmp(a->xa1_firstblock, b->xa1_firstblock, 8);
|
|
}
|
|
}
|
|
|
|
struct X11Display *x11_setup_display(const char *display, Conf *conf,
|
|
char **error_msg)
|
|
{
|
|
struct X11Display *disp = snew(struct X11Display);
|
|
char *localcopy;
|
|
|
|
*error_msg = NULL;
|
|
|
|
if (!display || !*display) {
|
|
localcopy = platform_get_x_display();
|
|
if (!localcopy || !*localcopy) {
|
|
sfree(localcopy);
|
|
localcopy = dupstr(":0"); /* plausible default for any platform */
|
|
}
|
|
} else
|
|
localcopy = dupstr(display);
|
|
|
|
/*
|
|
* Parse the display name.
|
|
*
|
|
* We expect this to have one of the following forms:
|
|
*
|
|
* - the standard X format which looks like
|
|
* [ [ protocol '/' ] host ] ':' displaynumber [ '.' screennumber ]
|
|
* (X11 also permits a double colon to indicate DECnet, but
|
|
* that's not our problem, thankfully!)
|
|
*
|
|
* - only seen in the wild on MacOS (so far): a pathname to a
|
|
* Unix-domain socket, which will typically and confusingly
|
|
* end in ":0", and which I'm currently distinguishing from
|
|
* the standard scheme by noting that it starts with '/'.
|
|
*/
|
|
if (localcopy[0] == '/') {
|
|
disp->unixsocketpath = localcopy;
|
|
disp->unixdomain = true;
|
|
disp->hostname = NULL;
|
|
disp->displaynum = -1;
|
|
disp->screennum = 0;
|
|
disp->addr = NULL;
|
|
} else {
|
|
char *colon, *dot, *slash;
|
|
char *protocol, *hostname;
|
|
|
|
colon = host_strrchr(localcopy, ':');
|
|
if (!colon) {
|
|
*error_msg = dupprintf("display name '%s' has no ':number'"
|
|
" suffix", localcopy);
|
|
|
|
sfree(disp);
|
|
sfree(localcopy);
|
|
return NULL;
|
|
}
|
|
|
|
*colon++ = '\0';
|
|
dot = strchr(colon, '.');
|
|
if (dot)
|
|
*dot++ = '\0';
|
|
|
|
disp->displaynum = atoi(colon);
|
|
if (dot)
|
|
disp->screennum = atoi(dot);
|
|
else
|
|
disp->screennum = 0;
|
|
|
|
protocol = NULL;
|
|
hostname = localcopy;
|
|
if (colon > localcopy) {
|
|
slash = strchr(localcopy, '/');
|
|
if (slash) {
|
|
*slash++ = '\0';
|
|
protocol = localcopy;
|
|
hostname = slash;
|
|
}
|
|
}
|
|
|
|
disp->hostname = *hostname ? dupstr(hostname) : NULL;
|
|
|
|
if (protocol)
|
|
disp->unixdomain = (!strcmp(protocol, "local") ||
|
|
!strcmp(protocol, "unix"));
|
|
else if (!*hostname || !strcmp(hostname, "unix"))
|
|
disp->unixdomain = platform_uses_x11_unix_by_default;
|
|
else
|
|
disp->unixdomain = false;
|
|
|
|
if (!disp->hostname && !disp->unixdomain)
|
|
disp->hostname = dupstr("localhost");
|
|
|
|
disp->unixsocketpath = NULL;
|
|
disp->addr = NULL;
|
|
|
|
sfree(localcopy);
|
|
}
|
|
|
|
/*
|
|
* Look up the display hostname, if we need to.
|
|
*/
|
|
if (!disp->unixdomain) {
|
|
const char *err;
|
|
|
|
disp->port = 6000 + disp->displaynum;
|
|
disp->addr = name_lookup(disp->hostname, disp->port,
|
|
&disp->realhost, conf, ADDRTYPE_UNSPEC,
|
|
NULL, NULL);
|
|
|
|
if ((err = sk_addr_error(disp->addr)) != NULL) {
|
|
*error_msg = dupprintf("unable to resolve host name '%s' in "
|
|
"display name", disp->hostname);
|
|
|
|
sk_addr_free(disp->addr);
|
|
sfree(disp->hostname);
|
|
sfree(disp->unixsocketpath);
|
|
sfree(disp);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try upgrading an IP-style localhost display to a Unix-socket
|
|
* display (as the standard X connection libraries do).
|
|
*/
|
|
if (!disp->unixdomain && sk_address_is_local(disp->addr)) {
|
|
SockAddr *ux = platform_get_x11_unix_address(NULL, disp->displaynum);
|
|
const char *err = sk_addr_error(ux);
|
|
if (!err) {
|
|
/* Create trial connection to see if there is a useful Unix-domain
|
|
* socket */
|
|
Socket *s = sk_new(sk_addr_dup(ux), 0, false, false,
|
|
false, false, nullplug);
|
|
err = sk_socket_error(s);
|
|
sk_close(s);
|
|
}
|
|
if (err) {
|
|
sk_addr_free(ux);
|
|
} else {
|
|
sk_addr_free(disp->addr);
|
|
disp->unixdomain = true;
|
|
disp->addr = ux;
|
|
/* Fill in the rest in a moment */
|
|
}
|
|
}
|
|
|
|
if (disp->unixdomain) {
|
|
if (!disp->addr)
|
|
disp->addr = platform_get_x11_unix_address(disp->unixsocketpath,
|
|
disp->displaynum);
|
|
if (disp->unixsocketpath)
|
|
disp->realhost = dupstr(disp->unixsocketpath);
|
|
else
|
|
disp->realhost = dupprintf("unix:%d", disp->displaynum);
|
|
disp->port = 0;
|
|
}
|
|
|
|
/*
|
|
* Fetch the local authorisation details.
|
|
*/
|
|
disp->localauthproto = X11_NO_AUTH;
|
|
disp->localauthdata = NULL;
|
|
disp->localauthdatalen = 0;
|
|
platform_get_x11_auth(disp, conf);
|
|
|
|
return disp;
|
|
}
|
|
|
|
void x11_free_display(struct X11Display *disp)
|
|
{
|
|
sfree(disp->hostname);
|
|
sfree(disp->unixsocketpath);
|
|
if (disp->localauthdata)
|
|
smemclr(disp->localauthdata, disp->localauthdatalen);
|
|
sfree(disp->localauthdata);
|
|
sk_addr_free(disp->addr);
|
|
sfree(disp);
|
|
}
|
|
|
|
#define XDM_MAXSKEW 20*60 /* 20 minute clock skew should be OK */
|
|
|
|
static const char *x11_verify(unsigned long peer_ip, int peer_port,
|
|
tree234 *authtree, char *proto,
|
|
unsigned char *data, int dlen,
|
|
struct X11FakeAuth **auth_ret)
|
|
{
|
|
struct X11FakeAuth match_dummy; /* for passing to find234 */
|
|
struct X11FakeAuth *auth;
|
|
|
|
/*
|
|
* First, do a lookup in our tree to find the only authorisation
|
|
* record that _might_ match.
|
|
*/
|
|
if (!strcmp(proto, x11_authnames[X11_MIT])) {
|
|
/*
|
|
* Just look up the whole cookie that was presented to us,
|
|
* which x11_authcmp will compare against the cookies we
|
|
* currently believe in.
|
|
*/
|
|
match_dummy.proto = X11_MIT;
|
|
match_dummy.datalen = dlen;
|
|
match_dummy.data = data;
|
|
} else if (!strcmp(proto, x11_authnames[X11_XDM])) {
|
|
/*
|
|
* Look up the first cipher block, against the stored first
|
|
* cipher blocks for the XDM-AUTHORIZATION-1 cookies we
|
|
* currently know. (See comment in x11_invent_fake_auth.)
|
|
*/
|
|
match_dummy.proto = X11_XDM;
|
|
match_dummy.xa1_firstblock = data;
|
|
} else {
|
|
return "Unsupported authorisation protocol";
|
|
}
|
|
|
|
if ((auth = find234(authtree, &match_dummy, 0)) == NULL)
|
|
return "Authorisation not recognised";
|
|
|
|
/*
|
|
* If we're using MIT-MAGIC-COOKIE-1, that was all we needed. If
|
|
* we're doing XDM-AUTHORIZATION-1, though, we have to check the
|
|
* rest of the auth data.
|
|
*/
|
|
if (auth->proto == X11_XDM) {
|
|
unsigned long t;
|
|
time_t tim;
|
|
int i;
|
|
struct XDMSeen *seen, *ret;
|
|
|
|
if (dlen != 24)
|
|
return "XDM-AUTHORIZATION-1 data was wrong length";
|
|
if (peer_port == -1)
|
|
return "cannot do XDM-AUTHORIZATION-1 without remote address data";
|
|
des_decrypt_xdmauth(auth->data+9, data, 24);
|
|
if (memcmp(auth->data, data, 8) != 0)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* cookie wrong */
|
|
if (GET_32BIT_MSB_FIRST(data+8) != peer_ip)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* IP wrong */
|
|
if ((int)GET_16BIT_MSB_FIRST(data+12) != peer_port)
|
|
return "XDM-AUTHORIZATION-1 data failed check"; /* port wrong */
|
|
t = GET_32BIT_MSB_FIRST(data+14);
|
|
for (i = 18; i < 24; i++)
|
|
if (data[i] != 0) /* zero padding wrong */
|
|
return "XDM-AUTHORIZATION-1 data failed check";
|
|
tim = time(NULL);
|
|
if (((unsigned long)t - (unsigned long)tim
|
|
+ XDM_MAXSKEW) > 2*XDM_MAXSKEW)
|
|
return "XDM-AUTHORIZATION-1 time stamp was too far out";
|
|
seen = snew(struct XDMSeen);
|
|
seen->time = t;
|
|
memcpy(seen->clientid, data+8, 6);
|
|
assert(auth->xdmseen != NULL);
|
|
ret = add234(auth->xdmseen, seen);
|
|
if (ret != seen) {
|
|
sfree(seen);
|
|
return "XDM-AUTHORIZATION-1 data replayed";
|
|
}
|
|
/* While we're here, purge entries too old to be replayed. */
|
|
for (;;) {
|
|
seen = index234(auth->xdmseen, 0);
|
|
assert(seen != NULL);
|
|
if (t - seen->time <= XDM_MAXSKEW)
|
|
break;
|
|
sfree(delpos234(auth->xdmseen, 0));
|
|
}
|
|
}
|
|
/* implement other protocols here if ever required */
|
|
|
|
*auth_ret = auth;
|
|
return NULL;
|
|
}
|
|
|
|
ptrlen BinarySource_get_string_xauth(BinarySource *src)
|
|
{
|
|
size_t len = get_uint16(src);
|
|
return get_data(src, len);
|
|
}
|
|
#define get_string_xauth(src) \
|
|
BinarySource_get_string_xauth(BinarySource_UPCAST(src))
|
|
|
|
void BinarySink_put_stringpl_xauth(BinarySink *bs, ptrlen pl)
|
|
{
|
|
assert((pl.len >> 16) == 0);
|
|
put_uint16(bs, pl.len);
|
|
put_datapl(bs, pl);
|
|
}
|
|
#define put_stringpl_xauth(bs, ptrlen) \
|
|
BinarySink_put_stringpl_xauth(BinarySink_UPCAST(bs),ptrlen)
|
|
|
|
void x11_get_auth_from_authfile(struct X11Display *disp,
|
|
const char *authfilename)
|
|
{
|
|
FILE *authfp;
|
|
char *buf;
|
|
int size;
|
|
BinarySource src[1];
|
|
int family, protocol;
|
|
ptrlen addr, protoname, data;
|
|
char *displaynum_string;
|
|
int displaynum;
|
|
bool ideal_match = false;
|
|
char *ourhostname;
|
|
|
|
/* A maximally sized (wildly implausible) .Xauthority record
|
|
* consists of a 16-bit integer to start with, then four strings,
|
|
* each of which has a 16-bit length field followed by that many
|
|
* bytes of data (i.e. up to 0xFFFF bytes). */
|
|
const size_t MAX_RECORD_SIZE = 2 + 4 * (2+0xFFFF);
|
|
|
|
/* We'll want a buffer of twice that size (see below). */
|
|
const size_t BUF_SIZE = 2 * MAX_RECORD_SIZE;
|
|
|
|
/*
|
|
* Normally we should look for precisely the details specified in
|
|
* `disp'. However, there's an oddity when the display is local:
|
|
* displays like "localhost:0" usually have their details stored
|
|
* in a Unix-domain-socket record (even if there isn't actually a
|
|
* real Unix-domain socket available, as with OpenSSH's proxy X11
|
|
* server).
|
|
*
|
|
* This is apparently a fudge to get round the meaninglessness of
|
|
* "localhost" in a shared-home-directory context -- xauth entries
|
|
* for Unix-domain sockets already disambiguate this by storing
|
|
* the *local* hostname in the conveniently-blank hostname field,
|
|
* but IP "localhost" records couldn't do this. So, typically, an
|
|
* IP "localhost" entry in the auth database isn't present and if
|
|
* it were it would be ignored.
|
|
*
|
|
* However, we don't entirely trust that (say) Windows X servers
|
|
* won't rely on a straight "localhost" entry, bad idea though
|
|
* that is; so if we can't find a Unix-domain-socket entry we'll
|
|
* fall back to an IP-based entry if we can find one.
|
|
*/
|
|
bool localhost = !disp->unixdomain && sk_address_is_local(disp->addr);
|
|
|
|
authfp = fopen(authfilename, "rb");
|
|
if (!authfp)
|
|
return;
|
|
|
|
ourhostname = get_hostname();
|
|
|
|
/*
|
|
* Allocate enough space to hold two maximally sized records, so
|
|
* that a full record can start anywhere in the first half. That
|
|
* way we avoid the accidentally-quadratic algorithm that would
|
|
* arise if we moved everything to the front of the buffer after
|
|
* consuming each record; instead, we only move everything to the
|
|
* front after our current position gets past the half-way mark.
|
|
* Before then, there's no need to move anyway; so this guarantees
|
|
* linear time, in that every byte written into this buffer moves
|
|
* at most once (because every move is from the second half of the
|
|
* buffer to the first half).
|
|
*/
|
|
buf = snewn(BUF_SIZE, char);
|
|
size = fread(buf, 1, BUF_SIZE, authfp);
|
|
BinarySource_BARE_INIT(src, buf, size);
|
|
|
|
while (!ideal_match) {
|
|
bool match = false;
|
|
|
|
if (src->pos >= MAX_RECORD_SIZE) {
|
|
size -= src->pos;
|
|
memcpy(buf, buf + src->pos, size);
|
|
size += fread(buf + size, 1, BUF_SIZE - size, authfp);
|
|
BinarySource_BARE_INIT(src, buf, size);
|
|
}
|
|
|
|
family = get_uint16(src);
|
|
addr = get_string_xauth(src);
|
|
displaynum_string = mkstr(get_string_xauth(src));
|
|
displaynum = displaynum_string[0] ? atoi(displaynum_string) : -1;
|
|
sfree(displaynum_string);
|
|
protoname = get_string_xauth(src);
|
|
data = get_string_xauth(src);
|
|
if (get_err(src))
|
|
break;
|
|
|
|
/*
|
|
* Now we have a full X authority record in memory. See
|
|
* whether it matches the display we're trying to
|
|
* authenticate to.
|
|
*
|
|
* The details we've just read should be interpreted as
|
|
* follows:
|
|
*
|
|
* - 'family' is the network address family used to
|
|
* connect to the display. 0 means IPv4; 6 means IPv6;
|
|
* 256 means Unix-domain sockets.
|
|
*
|
|
* - 'addr' is the network address itself. For IPv4 and
|
|
* IPv6, this is a string of binary data of the
|
|
* appropriate length (respectively 4 and 16 bytes)
|
|
* representing the address in big-endian format, e.g.
|
|
* 7F 00 00 01 means IPv4 localhost. For Unix-domain
|
|
* sockets, this is the host name of the machine on
|
|
* which the Unix-domain display resides (so that an
|
|
* .Xauthority file on a shared file system can contain
|
|
* authority entries for Unix-domain displays on
|
|
* several machines without them clashing).
|
|
*
|
|
* - 'displaynum' is the display number. An empty display
|
|
* number is a wildcard for any display number.
|
|
*
|
|
* - 'protoname' is the authorisation protocol, encoded as
|
|
* its canonical string name (i.e. "MIT-MAGIC-COOKIE-1",
|
|
* "XDM-AUTHORIZATION-1" or something we don't recognise).
|
|
*
|
|
* - 'data' is the actual authorisation data, stored in
|
|
* binary form.
|
|
*/
|
|
|
|
if (disp->displaynum < 0 ||
|
|
(displaynum >= 0 && disp->displaynum != displaynum))
|
|
continue; /* not the one */
|
|
|
|
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
|
|
if (ptrlen_eq_string(protoname, x11_authnames[protocol]))
|
|
break;
|
|
if (protocol == lenof(x11_authnames))
|
|
continue; /* don't recognise this protocol, look for another */
|
|
|
|
switch (family) {
|
|
case 0: /* IPv4 */
|
|
if (!disp->unixdomain &&
|
|
sk_addrtype(disp->addr) == ADDRTYPE_IPV4) {
|
|
char buf[4];
|
|
sk_addrcopy(disp->addr, buf);
|
|
if (addr.len == 4 && !memcmp(addr.ptr, buf, 4)) {
|
|
match = true;
|
|
/* If this is a "localhost" entry, note it down
|
|
* but carry on looking for a Unix-domain entry. */
|
|
ideal_match = !localhost;
|
|
}
|
|
}
|
|
break;
|
|
case 6: /* IPv6 */
|
|
if (!disp->unixdomain &&
|
|
sk_addrtype(disp->addr) == ADDRTYPE_IPV6) {
|
|
char buf[16];
|
|
sk_addrcopy(disp->addr, buf);
|
|
if (addr.len == 16 && !memcmp(addr.ptr, buf, 16)) {
|
|
match = true;
|
|
ideal_match = !localhost;
|
|
}
|
|
}
|
|
break;
|
|
case 256: /* Unix-domain / localhost */
|
|
if ((disp->unixdomain || localhost)
|
|
&& ourhostname && ptrlen_eq_string(addr, ourhostname)) {
|
|
/* A matching Unix-domain socket is always the best
|
|
* match. */
|
|
match = true;
|
|
ideal_match = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (match) {
|
|
/* Current best guess -- may be overridden if !ideal_match */
|
|
disp->localauthproto = protocol;
|
|
sfree(disp->localauthdata); /* free previous guess, if any */
|
|
disp->localauthdata = snewn(data.len, unsigned char);
|
|
memcpy(disp->localauthdata, data.ptr, data.len);
|
|
disp->localauthdatalen = data.len;
|
|
}
|
|
}
|
|
|
|
fclose(authfp);
|
|
smemclr(buf, 2 * MAX_RECORD_SIZE);
|
|
sfree(buf);
|
|
sfree(ourhostname);
|
|
}
|
|
|
|
void x11_format_auth_for_authfile(
|
|
BinarySink *bs, SockAddr *addr, int display_no,
|
|
ptrlen authproto, ptrlen authdata)
|
|
{
|
|
if (sk_address_is_special_local(addr)) {
|
|
char *ourhostname = get_hostname();
|
|
put_uint16(bs, 256); /* indicates Unix-domain socket */
|
|
put_stringpl_xauth(bs, ptrlen_from_asciz(ourhostname));
|
|
sfree(ourhostname);
|
|
} else if (sk_addrtype(addr) == ADDRTYPE_IPV4) {
|
|
char ipv4buf[4];
|
|
sk_addrcopy(addr, ipv4buf);
|
|
put_uint16(bs, 0); /* indicates IPv4 */
|
|
put_stringpl_xauth(bs, make_ptrlen(ipv4buf, 4));
|
|
} else if (sk_addrtype(addr) == ADDRTYPE_IPV6) {
|
|
char ipv6buf[16];
|
|
sk_addrcopy(addr, ipv6buf);
|
|
put_uint16(bs, 6); /* indicates IPv6 */
|
|
put_stringpl_xauth(bs, make_ptrlen(ipv6buf, 16));
|
|
} else {
|
|
unreachable("Bad address type in x11_format_auth_for_authfile");
|
|
}
|
|
|
|
{
|
|
char *numberbuf = dupprintf("%d", display_no);
|
|
put_stringpl_xauth(bs, ptrlen_from_asciz(numberbuf));
|
|
sfree(numberbuf);
|
|
}
|
|
|
|
put_stringpl_xauth(bs, authproto);
|
|
put_stringpl_xauth(bs, authdata);
|
|
}
|
|
|
|
static void x11_log(Plug *p, int type, SockAddr *addr, int port,
|
|
const char *error_msg, int error_code)
|
|
{
|
|
/* We have no interface to the logging module here, so we drop these. */
|
|
}
|
|
|
|
static void x11_send_init_error(struct X11Connection *conn,
|
|
const char *err_message);
|
|
|
|
static void x11_closing(Plug *plug, const char *error_msg, int error_code,
|
|
bool calling_back)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
if (error_msg) {
|
|
/*
|
|
* Socket error. If we're still at the connection setup stage,
|
|
* construct an X11 error packet passing on the problem.
|
|
*/
|
|
if (xconn->no_data_sent_to_x_client) {
|
|
char *err_message = dupprintf("unable to connect to forwarded "
|
|
"X server: %s", error_msg);
|
|
x11_send_init_error(xconn, err_message);
|
|
sfree(err_message);
|
|
}
|
|
|
|
/*
|
|
* Whether we did that or not, now we slam the connection
|
|
* shut.
|
|
*/
|
|
sshfwd_initiate_close(xconn->c, error_msg);
|
|
} else {
|
|
/*
|
|
* Ordinary EOF received on socket. Send an EOF on the SSH
|
|
* channel.
|
|
*/
|
|
if (xconn->c)
|
|
sshfwd_write_eof(xconn->c);
|
|
}
|
|
}
|
|
|
|
static void x11_receive(Plug *plug, int urgent, const char *data, size_t len)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
xconn->no_data_sent_to_x_client = false;
|
|
sshfwd_write(xconn->c, data, len);
|
|
}
|
|
|
|
static void x11_sent(Plug *plug, size_t bufsize)
|
|
{
|
|
struct X11Connection *xconn = container_of(
|
|
plug, struct X11Connection, plug);
|
|
|
|
sshfwd_unthrottle(xconn->c, bufsize);
|
|
}
|
|
|
|
/*
|
|
* When setting up X forwarding, we should send the screen number
|
|
* from the specified local display. This function extracts it from
|
|
* the display string.
|
|
*/
|
|
int x11_get_screen_number(char *display)
|
|
{
|
|
int n;
|
|
|
|
n = host_strcspn(display, ":");
|
|
if (!display[n])
|
|
return 0;
|
|
n = strcspn(display, ".");
|
|
if (!display[n])
|
|
return 0;
|
|
return atoi(display + n + 1);
|
|
}
|
|
|
|
static const PlugVtable X11Connection_plugvt = {
|
|
x11_log,
|
|
x11_closing,
|
|
x11_receive,
|
|
x11_sent,
|
|
NULL
|
|
};
|
|
|
|
static void x11_chan_free(Channel *chan);
|
|
static size_t x11_send(
|
|
Channel *chan, bool is_stderr, const void *vdata, size_t len);
|
|
static void x11_send_eof(Channel *chan);
|
|
static void x11_set_input_wanted(Channel *chan, bool wanted);
|
|
static char *x11_log_close_msg(Channel *chan);
|
|
|
|
static const struct ChannelVtable X11Connection_channelvt = {
|
|
x11_chan_free,
|
|
chan_remotely_opened_confirmation,
|
|
chan_remotely_opened_failure,
|
|
x11_send,
|
|
x11_send_eof,
|
|
x11_set_input_wanted,
|
|
x11_log_close_msg,
|
|
chan_default_want_close,
|
|
chan_no_exit_status,
|
|
chan_no_exit_signal,
|
|
chan_no_exit_signal_numeric,
|
|
chan_no_run_shell,
|
|
chan_no_run_command,
|
|
chan_no_run_subsystem,
|
|
chan_no_enable_x11_forwarding,
|
|
chan_no_enable_agent_forwarding,
|
|
chan_no_allocate_pty,
|
|
chan_no_set_env,
|
|
chan_no_send_break,
|
|
chan_no_send_signal,
|
|
chan_no_change_window_size,
|
|
chan_no_request_response,
|
|
};
|
|
|
|
/*
|
|
* Called to set up the X11Connection structure, though this does not
|
|
* yet connect to an actual server.
|
|
*/
|
|
Channel *x11_new_channel(tree234 *authtree, SshChannel *c,
|
|
const char *peeraddr, int peerport,
|
|
bool connection_sharing_possible)
|
|
{
|
|
struct X11Connection *xconn;
|
|
|
|
/*
|
|
* Open socket.
|
|
*/
|
|
xconn = snew(struct X11Connection);
|
|
xconn->plug.vt = &X11Connection_plugvt;
|
|
xconn->chan.vt = &X11Connection_channelvt;
|
|
xconn->chan.initial_fixed_window_size =
|
|
(connection_sharing_possible ? 128 : 0);
|
|
xconn->auth_protocol = NULL;
|
|
xconn->authtree = authtree;
|
|
xconn->verified = false;
|
|
xconn->data_read = 0;
|
|
xconn->input_wanted = true;
|
|
xconn->no_data_sent_to_x_client = true;
|
|
xconn->c = c;
|
|
|
|
/*
|
|
* We don't actually open a local socket to the X server just yet,
|
|
* because we don't know which one it is. Instead, we'll wait
|
|
* until we see the incoming authentication data, which may tell
|
|
* us what display to connect to, or whether we have to divert
|
|
* this X forwarding channel to a connection-sharing downstream
|
|
* rather than handling it ourself.
|
|
*/
|
|
xconn->disp = NULL;
|
|
xconn->s = NULL;
|
|
|
|
/*
|
|
* Stash the peer address we were given in its original text form.
|
|
*/
|
|
xconn->peer_addr = peeraddr ? dupstr(peeraddr) : NULL;
|
|
xconn->peer_port = peerport;
|
|
|
|
return &xconn->chan;
|
|
}
|
|
|
|
static void x11_chan_free(Channel *chan)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
if (xconn->auth_protocol) {
|
|
sfree(xconn->auth_protocol);
|
|
sfree(xconn->auth_data);
|
|
}
|
|
|
|
if (xconn->s)
|
|
sk_close(xconn->s);
|
|
|
|
sfree(xconn->peer_addr);
|
|
sfree(xconn);
|
|
}
|
|
|
|
static void x11_set_input_wanted(Channel *chan, bool wanted)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
xconn->input_wanted = wanted;
|
|
if (xconn->s)
|
|
sk_set_frozen(xconn->s, !xconn->input_wanted);
|
|
}
|
|
|
|
static void x11_send_init_error(struct X11Connection *xconn,
|
|
const char *err_message)
|
|
{
|
|
char *full_message;
|
|
int msglen, msgsize;
|
|
unsigned char *reply;
|
|
|
|
full_message = dupprintf("%s X11 proxy: %s\n", appname, err_message);
|
|
|
|
msglen = strlen(full_message);
|
|
reply = snewn(8 + msglen+1 + 4, unsigned char); /* include zero */
|
|
msgsize = (msglen + 3) & ~3;
|
|
reply[0] = 0; /* failure */
|
|
reply[1] = msglen; /* length of reason string */
|
|
memcpy(reply + 2, xconn->firstpkt + 2, 4); /* major/minor proto vsn */
|
|
PUT_16BIT_X11(xconn->firstpkt[0], reply + 6, msgsize >> 2);/* data len */
|
|
memset(reply + 8, 0, msgsize);
|
|
memcpy(reply + 8, full_message, msglen);
|
|
sshfwd_write(xconn->c, reply, 8 + msgsize);
|
|
sshfwd_write_eof(xconn->c);
|
|
xconn->no_data_sent_to_x_client = false;
|
|
sfree(reply);
|
|
sfree(full_message);
|
|
}
|
|
|
|
static bool x11_parse_ip(const char *addr_string, unsigned long *ip)
|
|
{
|
|
|
|
/*
|
|
* See if we can make sense of this string as an IPv4 address, for
|
|
* XDM-AUTHORIZATION-1 purposes.
|
|
*/
|
|
int i[4];
|
|
if (addr_string &&
|
|
4 == sscanf(addr_string, "%d.%d.%d.%d", i+0, i+1, i+2, i+3)) {
|
|
*ip = (i[0] << 24) | (i[1] << 16) | (i[2] << 8) | i[3];
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called to send data down the raw connection.
|
|
*/
|
|
static size_t x11_send(
|
|
Channel *chan, bool is_stderr, const void *vdata, size_t len)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
const char *data = (const char *)vdata;
|
|
|
|
/*
|
|
* Read the first packet.
|
|
*/
|
|
while (len > 0 && xconn->data_read < 12)
|
|
xconn->firstpkt[xconn->data_read++] = (unsigned char) (len--, *data++);
|
|
if (xconn->data_read < 12)
|
|
return 0;
|
|
|
|
/*
|
|
* If we have not allocated the auth_protocol and auth_data
|
|
* strings, do so now.
|
|
*/
|
|
if (!xconn->auth_protocol) {
|
|
char endian = xconn->firstpkt[0];
|
|
xconn->auth_plen = GET_16BIT_X11(endian, xconn->firstpkt + 6);
|
|
xconn->auth_dlen = GET_16BIT_X11(endian, xconn->firstpkt + 8);
|
|
xconn->auth_psize = (xconn->auth_plen + 3) & ~3;
|
|
xconn->auth_dsize = (xconn->auth_dlen + 3) & ~3;
|
|
/* Leave room for a terminating zero, to make our lives easier. */
|
|
xconn->auth_protocol = snewn(xconn->auth_psize + 1, char);
|
|
xconn->auth_data = snewn(xconn->auth_dsize, unsigned char);
|
|
}
|
|
|
|
/*
|
|
* Read the auth_protocol and auth_data strings.
|
|
*/
|
|
while (len > 0 &&
|
|
xconn->data_read < 12 + xconn->auth_psize)
|
|
xconn->auth_protocol[xconn->data_read++ - 12] = (len--, *data++);
|
|
while (len > 0 &&
|
|
xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
|
|
xconn->auth_data[xconn->data_read++ - 12 -
|
|
xconn->auth_psize] = (unsigned char) (len--, *data++);
|
|
if (xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
|
|
return 0;
|
|
|
|
/*
|
|
* If we haven't verified the authorisation, do so now.
|
|
*/
|
|
if (!xconn->verified) {
|
|
const char *err;
|
|
struct X11FakeAuth *auth_matched = NULL;
|
|
unsigned long peer_ip;
|
|
int peer_port;
|
|
int protomajor, protominor;
|
|
void *greeting;
|
|
int greeting_len;
|
|
unsigned char *socketdata;
|
|
int socketdatalen;
|
|
char new_peer_addr[32];
|
|
int new_peer_port;
|
|
char endian = xconn->firstpkt[0];
|
|
|
|
protomajor = GET_16BIT_X11(endian, xconn->firstpkt + 2);
|
|
protominor = GET_16BIT_X11(endian, xconn->firstpkt + 4);
|
|
|
|
assert(!xconn->s);
|
|
|
|
xconn->auth_protocol[xconn->auth_plen] = '\0'; /* ASCIZ */
|
|
|
|
peer_ip = 0; /* placate optimiser */
|
|
if (x11_parse_ip(xconn->peer_addr, &peer_ip))
|
|
peer_port = xconn->peer_port;
|
|
else
|
|
peer_port = -1; /* signal no peer address data available */
|
|
|
|
err = x11_verify(peer_ip, peer_port,
|
|
xconn->authtree, xconn->auth_protocol,
|
|
xconn->auth_data, xconn->auth_dlen, &auth_matched);
|
|
if (err) {
|
|
x11_send_init_error(xconn, err);
|
|
return 0;
|
|
}
|
|
assert(auth_matched);
|
|
|
|
/*
|
|
* If this auth points to a connection-sharing downstream
|
|
* rather than an X display we know how to connect to
|
|
* directly, pass it off to the sharing module now. (This will
|
|
* have the side effect of freeing xconn.)
|
|
*/
|
|
if (auth_matched->share_cs) {
|
|
sshfwd_x11_sharing_handover(xconn->c, auth_matched->share_cs,
|
|
auth_matched->share_chan,
|
|
xconn->peer_addr, xconn->peer_port,
|
|
xconn->firstpkt[0],
|
|
protomajor, protominor, data, len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now we know we're going to accept the connection, and what
|
|
* X display to connect to. Actually connect to it.
|
|
*/
|
|
xconn->chan.initial_fixed_window_size = 0;
|
|
sshfwd_window_override_removed(xconn->c);
|
|
xconn->disp = auth_matched->disp;
|
|
xconn->s = new_connection(sk_addr_dup(xconn->disp->addr),
|
|
xconn->disp->realhost, xconn->disp->port,
|
|
false, true, false, false, &xconn->plug,
|
|
sshfwd_get_conf(xconn->c));
|
|
if ((err = sk_socket_error(xconn->s)) != NULL) {
|
|
char *err_message = dupprintf("unable to connect to"
|
|
" forwarded X server: %s", err);
|
|
x11_send_init_error(xconn, err_message);
|
|
sfree(err_message);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a new connection header containing our replacement
|
|
* auth data.
|
|
*/
|
|
socketdatalen = 0; /* placate compiler warning */
|
|
socketdata = sk_getxdmdata(xconn->s, &socketdatalen);
|
|
if (socketdata && socketdatalen==6) {
|
|
sprintf(new_peer_addr, "%d.%d.%d.%d", socketdata[0],
|
|
socketdata[1], socketdata[2], socketdata[3]);
|
|
new_peer_port = GET_16BIT_MSB_FIRST(socketdata + 4);
|
|
} else {
|
|
strcpy(new_peer_addr, "0.0.0.0");
|
|
new_peer_port = 0;
|
|
}
|
|
|
|
greeting = x11_make_greeting(xconn->firstpkt[0],
|
|
protomajor, protominor,
|
|
xconn->disp->localauthproto,
|
|
xconn->disp->localauthdata,
|
|
xconn->disp->localauthdatalen,
|
|
new_peer_addr, new_peer_port,
|
|
&greeting_len);
|
|
|
|
sk_write(xconn->s, greeting, greeting_len);
|
|
|
|
smemclr(greeting, greeting_len);
|
|
sfree(greeting);
|
|
|
|
/*
|
|
* Now we're done.
|
|
*/
|
|
xconn->verified = true;
|
|
}
|
|
|
|
/*
|
|
* After initialisation, just copy data simply.
|
|
*/
|
|
|
|
return sk_write(xconn->s, data, len);
|
|
}
|
|
|
|
static void x11_send_eof(Channel *chan)
|
|
{
|
|
assert(chan->vt == &X11Connection_channelvt);
|
|
X11Connection *xconn = container_of(chan, X11Connection, chan);
|
|
|
|
if (xconn->s) {
|
|
sk_write_eof(xconn->s);
|
|
} else {
|
|
/*
|
|
* If EOF is received from the X client before we've got to
|
|
* the point of actually connecting to an X server, then we
|
|
* should send an EOF back to the client so that the
|
|
* forwarded channel will be terminated.
|
|
*/
|
|
if (xconn->c)
|
|
sshfwd_write_eof(xconn->c);
|
|
}
|
|
}
|
|
|
|
static char *x11_log_close_msg(Channel *chan)
|
|
{
|
|
return dupstr("Forwarded X11 connection terminated");
|
|
}
|
|
|
|
/*
|
|
* Utility functions used by connection sharing to convert textual
|
|
* representations of an X11 auth protocol name + hex cookie into our
|
|
* usual integer protocol id and binary auth data.
|
|
*/
|
|
int x11_identify_auth_proto(ptrlen protoname)
|
|
{
|
|
int protocol;
|
|
|
|
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
|
|
if (ptrlen_eq_string(protoname, x11_authnames[protocol]))
|
|
return protocol;
|
|
return -1;
|
|
}
|
|
|
|
void *x11_dehexify(ptrlen hexpl, int *outlen)
|
|
{
|
|
int len, i;
|
|
unsigned char *ret;
|
|
|
|
len = hexpl.len / 2;
|
|
ret = snewn(len, unsigned char);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
char bytestr[3];
|
|
unsigned val = 0;
|
|
bytestr[0] = ((const char *)hexpl.ptr)[2*i];
|
|
bytestr[1] = ((const char *)hexpl.ptr)[2*i+1];
|
|
bytestr[2] = '\0';
|
|
sscanf(bytestr, "%x", &val);
|
|
ret[i] = val;
|
|
}
|
|
|
|
*outlen = len;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Construct an X11 greeting packet, including making up the right
|
|
* authorisation data.
|
|
*/
|
|
void *x11_make_greeting(int endian, int protomajor, int protominor,
|
|
int auth_proto, const void *auth_data, int auth_len,
|
|
const char *peer_addr, int peer_port,
|
|
int *outlen)
|
|
{
|
|
unsigned char *greeting;
|
|
unsigned char realauthdata[64];
|
|
const char *authname;
|
|
const unsigned char *authdata;
|
|
int authnamelen, authnamelen_pad;
|
|
int authdatalen, authdatalen_pad;
|
|
int greeting_len;
|
|
|
|
authname = x11_authnames[auth_proto];
|
|
authnamelen = strlen(authname);
|
|
authnamelen_pad = (authnamelen + 3) & ~3;
|
|
|
|
if (auth_proto == X11_MIT) {
|
|
authdata = auth_data;
|
|
authdatalen = auth_len;
|
|
} else if (auth_proto == X11_XDM && auth_len == 16) {
|
|
time_t t;
|
|
unsigned long peer_ip = 0;
|
|
|
|
x11_parse_ip(peer_addr, &peer_ip);
|
|
|
|
authdata = realauthdata;
|
|
authdatalen = 24;
|
|
memset(realauthdata, 0, authdatalen);
|
|
memcpy(realauthdata, auth_data, 8);
|
|
PUT_32BIT_MSB_FIRST(realauthdata+8, peer_ip);
|
|
PUT_16BIT_MSB_FIRST(realauthdata+12, peer_port);
|
|
t = time(NULL);
|
|
PUT_32BIT_MSB_FIRST(realauthdata+14, t);
|
|
|
|
des_encrypt_xdmauth((char *)auth_data + 9, realauthdata, authdatalen);
|
|
} else {
|
|
authdata = realauthdata;
|
|
authdatalen = 0;
|
|
}
|
|
|
|
authdatalen_pad = (authdatalen + 3) & ~3;
|
|
greeting_len = 12 + authnamelen_pad + authdatalen_pad;
|
|
|
|
greeting = snewn(greeting_len, unsigned char);
|
|
memset(greeting, 0, greeting_len);
|
|
greeting[0] = endian;
|
|
PUT_16BIT_X11(endian, greeting+2, protomajor);
|
|
PUT_16BIT_X11(endian, greeting+4, protominor);
|
|
PUT_16BIT_X11(endian, greeting+6, authnamelen);
|
|
PUT_16BIT_X11(endian, greeting+8, authdatalen);
|
|
memcpy(greeting+12, authname, authnamelen);
|
|
memcpy(greeting+12+authnamelen_pad, authdata, authdatalen);
|
|
|
|
smemclr(realauthdata, sizeof(realauthdata));
|
|
|
|
*outlen = greeting_len;
|
|
return greeting;
|
|
}
|