1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/sshbn.h
Tim Kosse 3377ea57f5 Fix __uint128_t compile error on MinGW.
MinGW has __uint128_t, but not __uint64_t.
2015-08-15 13:54:41 +01:00

110 lines
4.0 KiB
C

/*
* sshbn.h: the assorted conditional definitions of BignumInt and
* multiply/divide macros used throughout the bignum code to treat
* numbers as arrays of the most conveniently sized word for the
* target machine. Exported so that other code (e.g. poly1305) can use
* it too.
*/
/*
* Usage notes:
* * Do not call the DIVMOD_WORD macro with expressions such as array
* subscripts, as some implementations object to this (see below).
* * Note that none of the division methods below will cope if the
* quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
* to avoid this case.
* If this condition occurs, in the case of the x86 DIV instruction,
* an overflow exception will occur, which (according to a correspondent)
* will manifest on Windows as something like
* 0xC0000095: Integer overflow
* The C variant won't give the right answer, either.
*/
#if defined __SIZEOF_INT128__
/* gcc and clang both provide a __uint128_t type on 64-bit targets
* (and, when they do, indicate its presence by the above macro),
* using the same 'two machine registers' kind of code generation that
* 32-bit targets use for 64-bit ints. If we have one of these, we can
* use a 64-bit BignumInt and a 128-bit BignumDblInt. */
typedef unsigned long long BignumInt;
typedef __uint128_t BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFFFFFFFFFULL
#define BIGNUM_TOP_BIT 0x8000000000000000ULL
#define BIGNUM_INT_BITS 64
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#elif defined __GNUC__ && defined __i386__
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) \
__asm__("div %2" : \
"=d" (r), "=a" (q) : \
"r" (w), "d" (hi), "a" (lo))
#elif defined _MSC_VER && defined _M_IX86
typedef unsigned __int32 BignumInt;
typedef unsigned __int64 BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
/* Note: MASM interprets array subscripts in the macro arguments as
* assembler syntax, which gives the wrong answer. Don't supply them.
* <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
__asm mov edx, hi \
__asm mov eax, lo \
__asm div w \
__asm mov r, edx \
__asm mov q, eax \
} while(0)
#elif defined _LP64
/* 64-bit architectures can do 32x32->64 chunks at a time */
typedef unsigned int BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFU
#define BIGNUM_TOP_BIT 0x80000000U
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#elif defined _LLP64
/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFFFFFUL
#define BIGNUM_TOP_BIT 0x80000000UL
#define BIGNUM_INT_BITS 32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#else
/* Fallback for all other cases */
typedef unsigned short BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK 0xFFFFU
#define BIGNUM_TOP_BIT 0x8000U
#define BIGNUM_INT_BITS 16
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
q = n / w; \
r = n % w; \
} while (0)
#endif
#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)