1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/sshrsa.c
Simon Tatham 25b034ee39 Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.

The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.

I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.

I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.

sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.

A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.

In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.

Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 14:54:59 +00:00

934 lines
24 KiB
C

/*
* RSA implementation for PuTTY.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "misc.h"
void BinarySource_get_rsa_ssh1_pub(
BinarySource *src, struct RSAKey *rsa, RsaSsh1Order order)
{
unsigned bits;
mp_int *e, *m;
bits = get_uint32(src);
if (order == RSA_SSH1_EXPONENT_FIRST) {
e = get_mp_ssh1(src);
m = get_mp_ssh1(src);
} else {
m = get_mp_ssh1(src);
e = get_mp_ssh1(src);
}
if (rsa) {
rsa->bits = bits;
rsa->exponent = e;
rsa->modulus = m;
rsa->bytes = (mp_get_nbits(m) + 7) / 8;
} else {
mp_free(e);
mp_free(m);
}
}
void BinarySource_get_rsa_ssh1_priv(
BinarySource *src, struct RSAKey *rsa)
{
rsa->private_exponent = get_mp_ssh1(src);
}
bool rsa_ssh1_encrypt(unsigned char *data, int length, struct RSAKey *key)
{
mp_int *b1, *b2;
int i;
unsigned char *p;
if (key->bytes < length + 4)
return false; /* RSA key too short! */
memmove(data + key->bytes - length, data, length);
data[0] = 0;
data[1] = 2;
for (i = 2; i < key->bytes - length - 1; i++) {
do {
data[i] = random_byte();
} while (data[i] == 0);
}
data[key->bytes - length - 1] = 0;
b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));
b2 = mp_modpow(b1, key->exponent, key->modulus);
p = data;
for (i = key->bytes; i--;) {
*p++ = mp_get_byte(b2, i);
}
mp_free(b1);
mp_free(b2);
return true;
}
/*
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
* Uses Chinese Remainder Theorem to speed computation up over the
* obvious implementation of a single big modpow.
*/
mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
mp_int *p, mp_int *q, mp_int *iqmp)
{
mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
mp_int *diff, *multiplier, *ret0, *ret;
/*
* Reduce the exponent mod phi(p) and phi(q), to save time when
* exponentiating mod p and mod q respectively. Of course, since p
* and q are prime, phi(p) == p-1 and similarly for q.
*/
pm1 = mp_copy(p);
mp_sub_integer_into(pm1, pm1, 1);
qm1 = mp_copy(q);
mp_sub_integer_into(qm1, qm1, 1);
pexp = mp_mod(exp, pm1);
qexp = mp_mod(exp, qm1);
/*
* Do the two modpows.
*/
mp_int *base_mod_p = mp_mod(base, p);
presult = mp_modpow(base_mod_p, pexp, p);
mp_free(base_mod_p);
mp_int *base_mod_q = mp_mod(base, q);
qresult = mp_modpow(base_mod_q, qexp, q);
mp_free(base_mod_q);
/*
* Recombine the results. We want a value which is congruent to
* qresult mod q, and to presult mod p.
*
* We know that iqmp * q is congruent to 1 * mod p (by definition
* of iqmp) and to 0 mod q (obviously). So we start with qresult
* (which is congruent to qresult mod both primes), and add on
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
* to presult mod p without affecting its value mod q.
*
* (If presult-qresult < 0, we add p to it to keep it positive.)
*/
unsigned presult_too_small = mp_cmp_hs(qresult, presult);
mp_cond_add_into(presult, presult, p, presult_too_small);
diff = mp_sub(presult, qresult);
multiplier = mp_mul(iqmp, q);
ret0 = mp_mul(multiplier, diff);
mp_add_into(ret0, ret0, qresult);
/*
* Finally, reduce the result mod n.
*/
ret = mp_mod(ret0, mod);
/*
* Free all the intermediate results before returning.
*/
mp_free(pm1);
mp_free(qm1);
mp_free(pexp);
mp_free(qexp);
mp_free(presult);
mp_free(qresult);
mp_free(diff);
mp_free(multiplier);
mp_free(ret0);
return ret;
}
/*
* Wrapper on crt_modpow that looks up all the right values from an
* RSAKey.
*/
static mp_int *rsa_privkey_op(mp_int *input, struct RSAKey *key)
{
return crt_modpow(input, key->private_exponent,
key->modulus, key->p, key->q, key->iqmp);
}
mp_int *rsa_ssh1_decrypt(mp_int *input, struct RSAKey *key)
{
return rsa_privkey_op(input, key);
}
bool rsa_ssh1_decrypt_pkcs1(mp_int *input, struct RSAKey *key,
strbuf *outbuf)
{
strbuf *data = strbuf_new();
bool success = false;
BinarySource src[1];
{
mp_int *b = rsa_ssh1_decrypt(input, key);
for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
put_byte(data, mp_get_byte(b, i));
}
mp_free(b);
}
BinarySource_BARE_INIT(src, data->u, data->len);
/* Check PKCS#1 formatting prefix */
if (get_byte(src) != 0) goto out;
if (get_byte(src) != 2) goto out;
while (1) {
unsigned char byte = get_byte(src);
if (get_err(src)) goto out;
if (byte == 0)
break;
}
/* Everything else is the payload */
success = true;
put_data(outbuf, get_ptr(src), get_avail(src));
out:
strbuf_free(data);
return success;
}
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
{
if (sb->len > 0)
put_byte(sb, ',');
put_data(sb, "0x", 2);
char *hex = mp_get_hex(x);
size_t hexlen = strlen(hex);
put_data(sb, hex, hexlen);
smemclr(hex, hexlen);
sfree(hex);
}
char *rsastr_fmt(struct RSAKey *key)
{
strbuf *sb = strbuf_new();
append_hex_to_strbuf(sb, key->exponent);
append_hex_to_strbuf(sb, key->modulus);
return strbuf_to_str(sb);
}
/*
* Generate a fingerprint string for the key. Compatible with the
* OpenSSH fingerprint code.
*/
char *rsa_ssh1_fingerprint(struct RSAKey *key)
{
struct MD5Context md5c;
unsigned char digest[16];
strbuf *out;
int i;
MD5Init(&md5c);
put_mp_ssh1(&md5c, key->modulus);
put_mp_ssh1(&md5c, key->exponent);
MD5Final(digest, &md5c);
out = strbuf_new();
strbuf_catf(out, "%d ", mp_get_nbits(key->modulus));
for (i = 0; i < 16; i++)
strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
if (key->comment)
strbuf_catf(out, " %s", key->comment);
return strbuf_to_str(out);
}
/*
* Verify that the public data in an RSA key matches the private
* data. We also check the private data itself: we ensure that p >
* q and that iqmp really is the inverse of q mod p.
*/
bool rsa_verify(struct RSAKey *key)
{
mp_int *n, *ed, *pm1, *qm1;
unsigned ok = 1;
/* Preliminary checks: p,q must actually be nonzero. */
if (mp_eq_integer(key->p, 0) | mp_eq_integer(key->q, 0))
return false;
/* n must equal pq. */
n = mp_mul(key->p, key->q);
ok &= mp_cmp_eq(n, key->modulus);
mp_free(n);
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
pm1 = mp_copy(key->p);
mp_sub_integer_into(pm1, pm1, 1);
ed = mp_modmul(key->exponent, key->private_exponent, pm1);
mp_free(pm1);
ok &= mp_eq_integer(ed, 1);
mp_free(ed);
qm1 = mp_copy(key->q);
mp_sub_integer_into(qm1, qm1, 1);
ed = mp_modmul(key->exponent, key->private_exponent, qm1);
mp_free(qm1);
ok &= mp_eq_integer(ed, 1);
mp_free(ed);
/*
* Ensure p > q.
*
* I have seen key blobs in the wild which were generated with
* p < q, so instead of rejecting the key in this case we
* should instead flip them round into the canonical order of
* p > q. This also involves regenerating iqmp.
*/
unsigned swap_pq = mp_cmp_hs(key->q, key->p);
mp_cond_swap(key->p, key->q, swap_pq);
mp_free(key->iqmp);
key->iqmp = mp_invert(key->q, key->p);
return ok;
}
void rsa_ssh1_public_blob(BinarySink *bs, struct RSAKey *key,
RsaSsh1Order order)
{
put_uint32(bs, mp_get_nbits(key->modulus));
if (order == RSA_SSH1_EXPONENT_FIRST) {
put_mp_ssh1(bs, key->exponent);
put_mp_ssh1(bs, key->modulus);
} else {
put_mp_ssh1(bs, key->modulus);
put_mp_ssh1(bs, key->exponent);
}
}
/* Given an SSH-1 public key blob, determine its length. */
int rsa_ssh1_public_blob_len(void *data, int maxlen)
{
BinarySource src[1];
BinarySource_BARE_INIT(src, data, maxlen);
/* Expect a length word, then exponent and modulus. (It doesn't
* even matter which order.) */
get_uint32(src);
mp_free(get_mp_ssh1(src));
mp_free(get_mp_ssh1(src));
if (get_err(src))
return -1;
/* Return the number of bytes consumed. */
return src->pos;
}
void freersapriv(struct RSAKey *key)
{
if (key->private_exponent) {
mp_free(key->private_exponent);
key->private_exponent = NULL;
}
if (key->p) {
mp_free(key->p);
key->p = NULL;
}
if (key->q) {
mp_free(key->q);
key->q = NULL;
}
if (key->iqmp) {
mp_free(key->iqmp);
key->iqmp = NULL;
}
}
void freersakey(struct RSAKey *key)
{
freersapriv(key);
if (key->modulus) {
mp_free(key->modulus);
key->modulus = NULL;
}
if (key->exponent) {
mp_free(key->exponent);
key->exponent = NULL;
}
if (key->comment) {
sfree(key->comment);
key->comment = NULL;
}
}
/* ----------------------------------------------------------------------
* Implementation of the ssh-rsa signing key type.
*/
static void rsa2_freekey(ssh_key *key); /* forward reference */
static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
{
BinarySource src[1];
struct RSAKey *rsa;
BinarySource_BARE_INIT(src, data.ptr, data.len);
if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
return NULL;
rsa = snew(struct RSAKey);
rsa->sshk.vt = &ssh_rsa;
rsa->exponent = get_mp_ssh2(src);
rsa->modulus = get_mp_ssh2(src);
rsa->private_exponent = NULL;
rsa->p = rsa->q = rsa->iqmp = NULL;
rsa->comment = NULL;
if (get_err(src)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static void rsa2_freekey(ssh_key *key)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
freersakey(rsa);
sfree(rsa);
}
static char *rsa2_cache_str(ssh_key *key)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
return rsastr_fmt(rsa);
}
static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
put_stringz(bs, "ssh-rsa");
put_mp_ssh2(bs, rsa->exponent);
put_mp_ssh2(bs, rsa->modulus);
}
static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
put_mp_ssh2(bs, rsa->private_exponent);
put_mp_ssh2(bs, rsa->p);
put_mp_ssh2(bs, rsa->q);
put_mp_ssh2(bs, rsa->iqmp);
}
static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
ptrlen pub, ptrlen priv)
{
BinarySource src[1];
ssh_key *sshk;
struct RSAKey *rsa;
sshk = rsa2_new_pub(self, pub);
if (!sshk)
return NULL;
rsa = container_of(sshk, struct RSAKey, sshk);
BinarySource_BARE_INIT(src, priv.ptr, priv.len);
rsa->private_exponent = get_mp_ssh2(src);
rsa->p = get_mp_ssh2(src);
rsa->q = get_mp_ssh2(src);
rsa->iqmp = get_mp_ssh2(src);
if (get_err(src) || !rsa_verify(rsa)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
BinarySource *src)
{
struct RSAKey *rsa;
rsa = snew(struct RSAKey);
rsa->sshk.vt = &ssh_rsa;
rsa->comment = NULL;
rsa->modulus = get_mp_ssh2(src);
rsa->exponent = get_mp_ssh2(src);
rsa->private_exponent = get_mp_ssh2(src);
rsa->iqmp = get_mp_ssh2(src);
rsa->p = get_mp_ssh2(src);
rsa->q = get_mp_ssh2(src);
if (get_err(src) || !rsa_verify(rsa)) {
rsa2_freekey(&rsa->sshk);
return NULL;
}
return &rsa->sshk;
}
static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
put_mp_ssh2(bs, rsa->modulus);
put_mp_ssh2(bs, rsa->exponent);
put_mp_ssh2(bs, rsa->private_exponent);
put_mp_ssh2(bs, rsa->iqmp);
put_mp_ssh2(bs, rsa->p);
put_mp_ssh2(bs, rsa->q);
}
static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
{
ssh_key *sshk;
struct RSAKey *rsa;
int ret;
sshk = rsa2_new_pub(self, pub);
if (!sshk)
return -1;
rsa = container_of(sshk, struct RSAKey, sshk);
ret = mp_get_nbits(rsa->modulus);
rsa2_freekey(&rsa->sshk);
return ret;
}
/*
* This is the magic ASN.1/DER prefix that goes in the decoded
* signature, between the string of FFs and the actual SHA hash
* value. The meaning of it is:
*
* 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
*
* 30 21 -- a constructed SEQUENCE of length 0x21
* 30 09 -- a constructed sub-SEQUENCE of length 9
* 06 05 -- an object identifier, length 5
* 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
* (the 1,3 comes from 0x2B = 43 = 40*1+3)
* 05 00 -- NULL
* 04 14 -- a primitive OCTET STRING of length 0x14
* [0x14 bytes of hash data follows]
*
* The object id in the middle there is listed as `id-sha1' in
* ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
* ASN module for PKCS #1) and its expanded form is as follows:
*
* id-sha1 OBJECT IDENTIFIER ::= {
* iso(1) identified-organization(3) oiw(14) secsig(3)
* algorithms(2) 26 }
*/
static const unsigned char sha1_asn1_prefix[] = {
0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
};
/*
* Two more similar pieces of ASN.1 used for signatures using SHA-256
* and SHA-512, in the same format but differing only in various
* length fields and OID.
*/
static const unsigned char sha256_asn1_prefix[] = {
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20,
};
static const unsigned char sha512_asn1_prefix[] = {
0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
0x05, 0x00, 0x04, 0x40,
};
#define SHA1_ASN1_PREFIX_LEN sizeof(sha1_asn1_prefix)
static unsigned char *rsa_pkcs1_signature_string(
size_t nbytes, const struct ssh_hashalg *halg, ptrlen data)
{
const unsigned char *asn1_prefix;
unsigned asn1_prefix_size;
if (halg == &ssh_sha256) {
asn1_prefix = sha256_asn1_prefix;
asn1_prefix_size = sizeof(sha256_asn1_prefix);
} else if (halg == &ssh_sha512) {
asn1_prefix = sha512_asn1_prefix;
asn1_prefix_size = sizeof(sha512_asn1_prefix);
} else {
assert(halg == &ssh_sha1);
asn1_prefix = sha1_asn1_prefix;
asn1_prefix_size = sizeof(sha1_asn1_prefix);
}
size_t fixed_parts = halg->hlen + asn1_prefix_size + 2;
assert(nbytes >= fixed_parts);
size_t padding = nbytes - fixed_parts;
unsigned char *bytes = snewn(nbytes, unsigned char);
bytes[0] = 0;
bytes[1] = 1;
memset(bytes + 2, 0xFF, padding);
memcpy(bytes + 2 + padding, asn1_prefix, asn1_prefix_size);
ssh_hash *h = ssh_hash_new(halg);
put_data(h, data.ptr, data.len);
ssh_hash_final(h, bytes + 2 + padding + asn1_prefix_size);
return bytes;
}
static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
BinarySource src[1];
ptrlen type, in_pl;
mp_int *in, *out;
BinarySource_BARE_INIT(src, sig.ptr, sig.len);
type = get_string(src);
/*
* RFC 4253 section 6.6: the signature integer in an ssh-rsa
* signature is 'without lengths or padding'. That is, we _don't_
* expect the usual leading zero byte if the topmost bit of the
* first byte is set. (However, because of the possibility of
* BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
* there.) So we can't use get_mp_ssh2, which enforces that
* leading-byte scheme; instead we use get_string and
* mp_from_bytes_be, which will tolerate anything.
*/
in_pl = get_string(src);
if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
return false;
in = mp_from_bytes_be(in_pl);
out = mp_modpow(in, rsa->exponent, rsa->modulus);
mp_free(in);
unsigned diff = 0;
size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, &ssh_sha1, data);
for (size_t i = 0; i < nbytes; i++)
diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
smemclr(bytes, nbytes);
sfree(bytes);
mp_free(out);
return diff == 0;
}
static void rsa2_sign(ssh_key *key, const void *data, int datalen,
unsigned flags, BinarySink *bs)
{
struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
unsigned char *bytes;
size_t nbytes;
mp_int *in, *out;
const struct ssh_hashalg *halg;
const char *sign_alg_name;
if (flags & SSH_AGENT_RSA_SHA2_256) {
halg = &ssh_sha256;
sign_alg_name = "rsa-sha2-256";
} else if (flags & SSH_AGENT_RSA_SHA2_512) {
halg = &ssh_sha512;
sign_alg_name = "rsa-sha2-512";
} else {
halg = &ssh_sha1;
sign_alg_name = "ssh-rsa";
}
nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
bytes = rsa_pkcs1_signature_string(
nbytes, halg, make_ptrlen(data, datalen));
in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
smemclr(bytes, nbytes);
sfree(bytes);
out = rsa_privkey_op(in, rsa);
mp_free(in);
put_stringz(bs, sign_alg_name);
nbytes = (mp_get_nbits(out) + 7) / 8;
put_uint32(bs, nbytes);
for (size_t i = 0; i < nbytes; i++)
put_byte(bs, mp_get_byte(out, nbytes - 1 - i));
mp_free(out);
}
const ssh_keyalg ssh_rsa = {
rsa2_new_pub,
rsa2_new_priv,
rsa2_new_priv_openssh,
rsa2_freekey,
rsa2_sign,
rsa2_verify,
rsa2_public_blob,
rsa2_private_blob,
rsa2_openssh_blob,
rsa2_cache_str,
rsa2_pubkey_bits,
"ssh-rsa",
"rsa2",
NULL,
SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
};
struct RSAKey *ssh_rsakex_newkey(const void *data, int len)
{
ssh_key *sshk = rsa2_new_pub(&ssh_rsa, make_ptrlen(data, len));
if (!sshk)
return NULL;
return container_of(sshk, struct RSAKey, sshk);
}
void ssh_rsakex_freekey(struct RSAKey *key)
{
rsa2_freekey(&key->sshk);
}
int ssh_rsakex_klen(struct RSAKey *rsa)
{
return mp_get_nbits(rsa->modulus);
}
static void oaep_mask(const struct ssh_hashalg *h, void *seed, int seedlen,
void *vdata, int datalen)
{
unsigned char *data = (unsigned char *)vdata;
unsigned count = 0;
while (datalen > 0) {
int i, max = (datalen > h->hlen ? h->hlen : datalen);
ssh_hash *s;
unsigned char hash[SSH2_KEX_MAX_HASH_LEN];
assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
s = ssh_hash_new(h);
put_data(s, seed, seedlen);
put_uint32(s, count);
ssh_hash_final(s, hash);
count++;
for (i = 0; i < max; i++)
data[i] ^= hash[i];
data += max;
datalen -= max;
}
}
void ssh_rsakex_encrypt(const struct ssh_hashalg *h,
unsigned char *in, int inlen,
unsigned char *out, int outlen, struct RSAKey *rsa)
{
mp_int *b1, *b2;
int k, i;
char *p;
const int HLEN = h->hlen;
/*
* Here we encrypt using RSAES-OAEP. Essentially this means:
*
* - we have a SHA-based `mask generation function' which
* creates a pseudo-random stream of mask data
* deterministically from an input chunk of data.
*
* - we have a random chunk of data called a seed.
*
* - we use the seed to generate a mask which we XOR with our
* plaintext.
*
* - then we use _the masked plaintext_ to generate a mask
* which we XOR with the seed.
*
* - then we concatenate the masked seed and the masked
* plaintext, and RSA-encrypt that lot.
*
* The result is that the data input to the encryption function
* is random-looking and (hopefully) contains no exploitable
* structure such as PKCS1-v1_5 does.
*
* For a precise specification, see RFC 3447, section 7.1.1.
* Some of the variable names below are derived from that, so
* it'd probably help to read it anyway.
*/
/* k denotes the length in octets of the RSA modulus. */
k = (7 + mp_get_nbits(rsa->modulus)) / 8;
/* The length of the input data must be at most k - 2hLen - 2. */
assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
/* The length of the output data wants to be precisely k. */
assert(outlen == k);
/*
* Now perform EME-OAEP encoding. First set up all the unmasked
* output data.
*/
/* Leading byte zero. */
out[0] = 0;
/* At position 1, the seed: HLEN bytes of random data. */
for (i = 0; i < HLEN; i++)
out[i + 1] = random_byte();
/* At position 1+HLEN, the data block DB, consisting of: */
/* The hash of the label (we only support an empty label here) */
{
ssh_hash *s = ssh_hash_new(h);
ssh_hash_final(s, out + HLEN + 1);
}
/* A bunch of zero octets */
memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
/* A single 1 octet, followed by the input message data. */
out[outlen - inlen - 1] = 1;
memcpy(out + outlen - inlen, in, inlen);
/*
* Now use the seed data to mask the block DB.
*/
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
/*
* And now use the masked DB to mask the seed itself.
*/
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
/*
* Now `out' contains precisely the data we want to
* RSA-encrypt.
*/
b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
p = (char *)out;
for (i = outlen; i--;) {
*p++ = mp_get_byte(b2, i);
}
mp_free(b1);
mp_free(b2);
/*
* And we're done.
*/
}
mp_int *ssh_rsakex_decrypt(const struct ssh_hashalg *h, ptrlen ciphertext,
struct RSAKey *rsa)
{
mp_int *b1, *b2;
int outlen, i;
unsigned char *out;
unsigned char labelhash[64];
ssh_hash *hash;
BinarySource src[1];
const int HLEN = h->hlen;
/*
* Decryption side of the RSA key exchange operation.
*/
/* The length of the encrypted data should be exactly the length
* in octets of the RSA modulus.. */
outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
if (ciphertext.len != outlen)
return NULL;
/* Do the RSA decryption, and extract the result into a byte array. */
b1 = mp_from_bytes_be(ciphertext);
b2 = rsa_privkey_op(b1, rsa);
out = snewn(outlen, unsigned char);
for (i = 0; i < outlen; i++)
out[i] = mp_get_byte(b2, outlen-1-i);
mp_free(b1);
mp_free(b2);
/* Do the OAEP masking operations, in the reverse order from encryption */
oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
/* Check the leading byte is zero. */
if (out[0] != 0) {
sfree(out);
return NULL;
}
/* Check the label hash at position 1+HLEN */
assert(HLEN <= lenof(labelhash));
hash = ssh_hash_new(h);
ssh_hash_final(hash, labelhash);
if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
sfree(out);
return NULL;
}
/* Expect zero bytes followed by a 1 byte */
for (i = 1 + 2 * HLEN; i < outlen; i++) {
if (out[i] == 1) {
i++; /* skip over the 1 byte */
break;
} else if (out[i] != 1) {
sfree(out);
return NULL;
}
}
/* And what's left is the input message data, which should be
* encoded as an ordinary SSH-2 mpint. */
BinarySource_BARE_INIT(src, out + i, outlen - i);
b1 = get_mp_ssh2(src);
sfree(out);
if (get_err(src) || get_avail(src) != 0) {
mp_free(b1);
return NULL;
}
/* Success! */
return b1;
}
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
static const struct ssh_kex ssh_rsa_kex_sha1 = {
"rsa1024-sha1", NULL, KEXTYPE_RSA,
&ssh_sha1, &ssh_rsa_kex_extra_sha1,
};
static const struct ssh_kex ssh_rsa_kex_sha256 = {
"rsa2048-sha256", NULL, KEXTYPE_RSA,
&ssh_sha256, &ssh_rsa_kex_extra_sha256,
};
static const struct ssh_kex *const rsa_kex_list[] = {
&ssh_rsa_kex_sha256,
&ssh_rsa_kex_sha1
};
const struct ssh_kexes ssh_rsa_kex = {
sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
rsa_kex_list
};