1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/crypto/dsa.c
Simon Tatham 4fa3480444 Formatting: realign run-on parenthesised stuff.
My bulk indentation check also turned up a lot of cases where a run-on
function call or if statement didn't have its later lines aligned
correctly relative to the open paren.

I think this is quite easy to do by getting things out of
sync (editing the first line of the function call and forgetting to
update the rest, perhaps even because you never _saw_ the rest during
a search-replace). But a few didn't quite fit into that pattern, in
particular an outright misleading case in unix/askpass.c where the
second line of a call was aligned neatly below the _wrong_ one of the
open parens on the opening line.

Restored as many alignments as I could easily find.
2022-08-03 20:48:46 +01:00

518 lines
14 KiB
C

/*
* Digital Signature Algorithm implementation for PuTTY.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "misc.h"
static void dsa_freekey(ssh_key *key); /* forward reference */
static ssh_key *dsa_new_pub(const ssh_keyalg *self, ptrlen data)
{
BinarySource src[1];
struct dsa_key *dsa;
BinarySource_BARE_INIT_PL(src, data);
if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
return NULL;
dsa = snew(struct dsa_key);
dsa->sshk.vt = &ssh_dsa;
dsa->p = get_mp_ssh2(src);
dsa->q = get_mp_ssh2(src);
dsa->g = get_mp_ssh2(src);
dsa->y = get_mp_ssh2(src);
dsa->x = NULL;
if (get_err(src) ||
mp_eq_integer(dsa->p, 0) || mp_eq_integer(dsa->q, 0)) {
/* Invalid key. */
dsa_freekey(&dsa->sshk);
return NULL;
}
return &dsa->sshk;
}
static void dsa_freekey(ssh_key *key)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
if (dsa->p)
mp_free(dsa->p);
if (dsa->q)
mp_free(dsa->q);
if (dsa->g)
mp_free(dsa->g);
if (dsa->y)
mp_free(dsa->y);
if (dsa->x)
mp_free(dsa->x);
sfree(dsa);
}
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
{
if (sb->len > 0)
put_byte(sb, ',');
put_data(sb, "0x", 2);
char *hex = mp_get_hex(x);
size_t hexlen = strlen(hex);
put_data(sb, hex, hexlen);
smemclr(hex, hexlen);
sfree(hex);
}
static char *dsa_cache_str(ssh_key *key)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
strbuf *sb = strbuf_new();
if (!dsa->p) {
strbuf_free(sb);
return NULL;
}
append_hex_to_strbuf(sb, dsa->p);
append_hex_to_strbuf(sb, dsa->q);
append_hex_to_strbuf(sb, dsa->g);
append_hex_to_strbuf(sb, dsa->y);
return strbuf_to_str(sb);
}
static key_components *dsa_components(ssh_key *key)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
key_components *kc = key_components_new();
key_components_add_text(kc, "key_type", "DSA");
assert(dsa->p);
key_components_add_mp(kc, "p", dsa->p);
key_components_add_mp(kc, "q", dsa->q);
key_components_add_mp(kc, "g", dsa->g);
key_components_add_mp(kc, "public_y", dsa->y);
if (dsa->x)
key_components_add_mp(kc, "private_x", dsa->x);
return kc;
}
static char *dsa_invalid(ssh_key *key, unsigned flags)
{
/* No validity criterion will stop us from using a DSA key at all */
return NULL;
}
static bool dsa_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
BinarySource src[1];
unsigned char hash[20];
bool toret;
if (!dsa->p)
return false;
BinarySource_BARE_INIT_PL(src, sig);
/*
* Commercial SSH (2.0.13) and OpenSSH disagree over the format
* of a DSA signature. OpenSSH is in line with RFC 4253:
* it uses a string "ssh-dss", followed by a 40-byte string
* containing two 160-bit integers end-to-end. Commercial SSH
* can't be bothered with the header bit, and considers a DSA
* signature blob to be _just_ the 40-byte string containing
* the two 160-bit integers. We tell them apart by measuring
* the length: length 40 means the commercial-SSH bug, anything
* else is assumed to be RFC-compliant.
*/
if (sig.len != 40) { /* bug not present; read admin fields */
ptrlen type = get_string(src);
sig = get_string(src);
if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
sig.len != 40)
return false;
}
/* Now we're sitting on a 40-byte string for sure. */
mp_int *r = mp_from_bytes_be(make_ptrlen(sig.ptr, 20));
mp_int *s = mp_from_bytes_be(make_ptrlen((const char *)sig.ptr + 20, 20));
if (!r || !s) {
if (r)
mp_free(r);
if (s)
mp_free(s);
return false;
}
/* Basic sanity checks: 0 < r,s < q */
unsigned invalid = 0;
invalid |= mp_eq_integer(r, 0);
invalid |= mp_eq_integer(s, 0);
invalid |= mp_cmp_hs(r, dsa->q);
invalid |= mp_cmp_hs(s, dsa->q);
if (invalid) {
mp_free(r);
mp_free(s);
return false;
}
/*
* Step 1. w <- s^-1 mod q.
*/
mp_int *w = mp_invert(s, dsa->q);
if (!w) {
mp_free(r);
mp_free(s);
return false;
}
/*
* Step 2. u1 <- SHA(message) * w mod q.
*/
hash_simple(&ssh_sha1, data, hash);
mp_int *sha = mp_from_bytes_be(make_ptrlen(hash, 20));
mp_int *u1 = mp_modmul(sha, w, dsa->q);
/*
* Step 3. u2 <- r * w mod q.
*/
mp_int *u2 = mp_modmul(r, w, dsa->q);
/*
* Step 4. v <- (g^u1 * y^u2 mod p) mod q.
*/
mp_int *gu1p = mp_modpow(dsa->g, u1, dsa->p);
mp_int *yu2p = mp_modpow(dsa->y, u2, dsa->p);
mp_int *gu1yu2p = mp_modmul(gu1p, yu2p, dsa->p);
mp_int *v = mp_mod(gu1yu2p, dsa->q);
/*
* Step 5. v should now be equal to r.
*/
toret = mp_cmp_eq(v, r);
mp_free(w);
mp_free(sha);
mp_free(u1);
mp_free(u2);
mp_free(gu1p);
mp_free(yu2p);
mp_free(gu1yu2p);
mp_free(v);
mp_free(r);
mp_free(s);
return toret;
}
static void dsa_public_blob(ssh_key *key, BinarySink *bs)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
put_stringz(bs, "ssh-dss");
put_mp_ssh2(bs, dsa->p);
put_mp_ssh2(bs, dsa->q);
put_mp_ssh2(bs, dsa->g);
put_mp_ssh2(bs, dsa->y);
}
static void dsa_private_blob(ssh_key *key, BinarySink *bs)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
put_mp_ssh2(bs, dsa->x);
}
static ssh_key *dsa_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
{
BinarySource src[1];
ssh_key *sshk;
struct dsa_key *dsa;
ptrlen hash;
unsigned char digest[20];
mp_int *ytest;
sshk = dsa_new_pub(self, pub);
if (!sshk)
return NULL;
dsa = container_of(sshk, struct dsa_key, sshk);
BinarySource_BARE_INIT_PL(src, priv);
dsa->x = get_mp_ssh2(src);
if (get_err(src)) {
dsa_freekey(&dsa->sshk);
return NULL;
}
/*
* Check the obsolete hash in the old DSA key format.
*/
hash = get_string(src);
if (hash.len == 20) {
ssh_hash *h = ssh_hash_new(&ssh_sha1);
put_mp_ssh2(h, dsa->p);
put_mp_ssh2(h, dsa->q);
put_mp_ssh2(h, dsa->g);
ssh_hash_final(h, digest);
if (!smemeq(hash.ptr, digest, 20)) {
dsa_freekey(&dsa->sshk);
return NULL;
}
}
/*
* Now ensure g^x mod p really is y.
*/
ytest = mp_modpow(dsa->g, dsa->x, dsa->p);
if (!mp_cmp_eq(ytest, dsa->y)) {
mp_free(ytest);
dsa_freekey(&dsa->sshk);
return NULL;
}
mp_free(ytest);
return &dsa->sshk;
}
static ssh_key *dsa_new_priv_openssh(const ssh_keyalg *self,
BinarySource *src)
{
struct dsa_key *dsa;
dsa = snew(struct dsa_key);
dsa->sshk.vt = &ssh_dsa;
dsa->p = get_mp_ssh2(src);
dsa->q = get_mp_ssh2(src);
dsa->g = get_mp_ssh2(src);
dsa->y = get_mp_ssh2(src);
dsa->x = get_mp_ssh2(src);
if (get_err(src) ||
mp_eq_integer(dsa->q, 0) || mp_eq_integer(dsa->p, 0)) {
/* Invalid key. */
dsa_freekey(&dsa->sshk);
return NULL;
}
return &dsa->sshk;
}
static void dsa_openssh_blob(ssh_key *key, BinarySink *bs)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
put_mp_ssh2(bs, dsa->p);
put_mp_ssh2(bs, dsa->q);
put_mp_ssh2(bs, dsa->g);
put_mp_ssh2(bs, dsa->y);
put_mp_ssh2(bs, dsa->x);
}
static bool dsa_has_private(ssh_key *key)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
return dsa->x != NULL;
}
static int dsa_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
{
ssh_key *sshk;
struct dsa_key *dsa;
int ret;
sshk = dsa_new_pub(self, pub);
if (!sshk)
return -1;
dsa = container_of(sshk, struct dsa_key, sshk);
ret = mp_get_nbits(dsa->p);
dsa_freekey(&dsa->sshk);
return ret;
}
mp_int *dsa_gen_k(const char *id_string, mp_int *modulus,
mp_int *private_key,
unsigned char *digest, int digest_len)
{
/*
* The basic DSA signing algorithm is:
*
* - invent a random k between 1 and q-1 (exclusive).
* - Compute r = (g^k mod p) mod q.
* - Compute s = k^-1 * (hash + x*r) mod q.
*
* This has the dangerous properties that:
*
* - if an attacker in possession of the public key _and_ the
* signature (for example, the host you just authenticated
* to) can guess your k, he can reverse the computation of s
* and work out x = r^-1 * (s*k - hash) mod q. That is, he
* can deduce the private half of your key, and masquerade
* as you for as long as the key is still valid.
*
* - since r is a function purely of k and the public key, if
* the attacker only has a _range of possibilities_ for k
* it's easy for him to work through them all and check each
* one against r; he'll never be unsure of whether he's got
* the right one.
*
* - if you ever sign two different hashes with the same k, it
* will be immediately obvious because the two signatures
* will have the same r, and moreover an attacker in
* possession of both signatures (and the public key of
* course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
* and from there deduce x as before.
*
* - the Bleichenbacher attack on DSA makes use of methods of
* generating k which are significantly non-uniformly
* distributed; in particular, generating a 160-bit random
* number and reducing it mod q is right out.
*
* For this reason we must be pretty careful about how we
* generate our k. Since this code runs on Windows, with no
* particularly good system entropy sources, we can't trust our
* RNG itself to produce properly unpredictable data. Hence, we
* use a totally different scheme instead.
*
* What we do is to take a SHA-512 (_big_) hash of the private
* key x, and then feed this into another SHA-512 hash that
* also includes the message hash being signed. That is:
*
* proto_k = SHA512 ( SHA512(x) || SHA160(message) )
*
* This number is 512 bits long, so reducing it mod q won't be
* noticeably non-uniform. So
*
* k = proto_k mod q
*
* This has the interesting property that it's _deterministic_:
* signing the same hash twice with the same key yields the
* same signature.
*
* Despite this determinism, it's still not predictable to an
* attacker, because in order to repeat the SHA-512
* construction that created it, the attacker would have to
* know the private key value x - and by assumption he doesn't,
* because if he knew that he wouldn't be attacking k!
*
* (This trick doesn't, _per se_, protect against reuse of k.
* Reuse of k is left to chance; all it does is prevent
* _excessively high_ chances of reuse of k due to entropy
* problems.)
*
* Thanks to Colin Plumb for the general idea of using x to
* ensure k is hard to guess, and to the Cambridge University
* Computer Security Group for helping to argue out all the
* fine details.
*/
ssh_hash *h;
unsigned char digest512[64];
/*
* Hash some identifying text plus x.
*/
h = ssh_hash_new(&ssh_sha512);
put_asciz(h, id_string);
put_mp_ssh2(h, private_key);
ssh_hash_digest(h, digest512);
/*
* Now hash that digest plus the message hash.
*/
ssh_hash_reset(h);
put_data(h, digest512, sizeof(digest512));
put_data(h, digest, digest_len);
ssh_hash_final(h, digest512);
/*
* Now convert the result into a bignum, and coerce it to the
* range [2,q), which we do by reducing it mod q-2 and adding 2.
*/
mp_int *modminus2 = mp_copy(modulus);
mp_sub_integer_into(modminus2, modminus2, 2);
mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
mp_int *k = mp_mod(proto_k, modminus2);
mp_free(proto_k);
mp_free(modminus2);
mp_add_integer_into(k, k, 2);
smemclr(digest512, sizeof(digest512));
return k;
}
static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
unsigned char digest[20];
int i;
hash_simple(&ssh_sha1, data, digest);
mp_int *k = dsa_gen_k("DSA deterministic k generator", dsa->q, dsa->x,
digest, sizeof(digest));
mp_int *kinv = mp_invert(k, dsa->q); /* k^-1 mod q */
/*
* Now we have k, so just go ahead and compute the signature.
*/
mp_int *gkp = mp_modpow(dsa->g, k, dsa->p); /* g^k mod p */
mp_int *r = mp_mod(gkp, dsa->q); /* r = (g^k mod p) mod q */
mp_free(gkp);
mp_int *hash = mp_from_bytes_be(make_ptrlen(digest, 20));
mp_int *xr = mp_mul(dsa->x, r);
mp_int *hxr = mp_add(xr, hash); /* hash + x*r */
mp_int *s = mp_modmul(kinv, hxr, dsa->q); /* s = k^-1 * (hash+x*r) mod q */
mp_free(hxr);
mp_free(xr);
mp_free(kinv);
mp_free(k);
mp_free(hash);
put_stringz(bs, "ssh-dss");
put_uint32(bs, 40);
for (i = 0; i < 20; i++)
put_byte(bs, mp_get_byte(r, 19 - i));
for (i = 0; i < 20; i++)
put_byte(bs, mp_get_byte(s, 19 - i));
mp_free(r);
mp_free(s);
}
static char *dsa_alg_desc(const ssh_keyalg *self) { return dupstr("DSA"); }
const ssh_keyalg ssh_dsa = {
.new_pub = dsa_new_pub,
.new_priv = dsa_new_priv,
.new_priv_openssh = dsa_new_priv_openssh,
.freekey = dsa_freekey,
.invalid = dsa_invalid,
.sign = dsa_sign,
.verify = dsa_verify,
.public_blob = dsa_public_blob,
.private_blob = dsa_private_blob,
.openssh_blob = dsa_openssh_blob,
.has_private = dsa_has_private,
.cache_str = dsa_cache_str,
.components = dsa_components,
.base_key = nullkey_base_key,
.pubkey_bits = dsa_pubkey_bits,
.supported_flags = nullkey_supported_flags,
.alternate_ssh_id = nullkey_alternate_ssh_id,
.alg_desc = dsa_alg_desc,
.variable_size = nullkey_variable_size_yes,
.ssh_id = "ssh-dss",
.cache_id = "dss",
};