mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
c1e5815add
[originally from svn r663]
945 lines
26 KiB
C
945 lines
26 KiB
C
/*
|
|
* tree234.c: reasonably generic 2-3-4 tree routines. Currently
|
|
* supports insert, delete, find and iterate operations.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "tree234.h"
|
|
|
|
#define mknew(typ) ( (typ *) malloc (sizeof (typ)) )
|
|
#define sfree free
|
|
|
|
#ifdef TEST
|
|
#define LOG(x) (printf x)
|
|
#else
|
|
#define LOG(x)
|
|
#endif
|
|
|
|
struct tree234_Tag {
|
|
node234 *root;
|
|
cmpfn234 cmp;
|
|
};
|
|
|
|
struct node234_Tag {
|
|
node234 *parent;
|
|
node234 *kids[4];
|
|
void *elems[3];
|
|
};
|
|
|
|
/*
|
|
* Create a 2-3-4 tree.
|
|
*/
|
|
tree234 *newtree234(cmpfn234 cmp) {
|
|
tree234 *ret = mknew(tree234);
|
|
LOG(("created tree %p\n", ret));
|
|
ret->root = NULL;
|
|
ret->cmp = cmp;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free a 2-3-4 tree (not including freeing the elements).
|
|
*/
|
|
static void freenode234(node234 *n) {
|
|
if (!n)
|
|
return;
|
|
freenode234(n->kids[0]);
|
|
freenode234(n->kids[1]);
|
|
freenode234(n->kids[2]);
|
|
freenode234(n->kids[3]);
|
|
sfree(n);
|
|
}
|
|
void freetree234(tree234 *t) {
|
|
freenode234(t->root);
|
|
sfree(t);
|
|
}
|
|
|
|
/*
|
|
* Add an element e to a 2-3-4 tree t. Returns e on success, or if
|
|
* an existing element compares equal, returns that.
|
|
*/
|
|
void *add234(tree234 *t, void *e) {
|
|
node234 *n, **np, *left, *right;
|
|
void *orig_e = e;
|
|
int c;
|
|
|
|
LOG(("adding node %p to tree %p\n", e, t));
|
|
if (t->root == NULL) {
|
|
t->root = mknew(node234);
|
|
t->root->elems[1] = t->root->elems[2] = NULL;
|
|
t->root->kids[0] = t->root->kids[1] = NULL;
|
|
t->root->kids[2] = t->root->kids[3] = NULL;
|
|
t->root->parent = NULL;
|
|
t->root->elems[0] = e;
|
|
LOG((" created root %p\n", t->root));
|
|
return orig_e;
|
|
}
|
|
|
|
np = &t->root;
|
|
while (*np) {
|
|
n = *np;
|
|
LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
if ((c = t->cmp(e, n->elems[0])) < 0)
|
|
np = &n->kids[0];
|
|
else if (c == 0)
|
|
return n->elems[0]; /* already exists */
|
|
else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
|
|
np = &n->kids[1];
|
|
else if (c == 0)
|
|
return n->elems[1]; /* already exists */
|
|
else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
|
|
np = &n->kids[2];
|
|
else if (c == 0)
|
|
return n->elems[2]; /* already exists */
|
|
else
|
|
np = &n->kids[3];
|
|
LOG((" moving to child %d (%p)\n", np - n->kids, *np));
|
|
}
|
|
|
|
/*
|
|
* We need to insert the new element in n at position np.
|
|
*/
|
|
left = NULL;
|
|
right = NULL;
|
|
while (n) {
|
|
LOG((" at %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
LOG((" need to insert %p [%p] %p at position %d\n",
|
|
left, e, right, np - n->kids));
|
|
if (n->elems[1] == NULL) {
|
|
/*
|
|
* Insert in a 2-node; simple.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
LOG((" inserting on left of 2-node\n"));
|
|
n->kids[2] = n->kids[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left;
|
|
} else { /* np == &n->kids[1] */
|
|
LOG((" inserting on right of 2-node\n"));
|
|
n->kids[2] = right;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else if (n->elems[2] == NULL) {
|
|
/*
|
|
* Insert in a 3-node; simple.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
LOG((" inserting on left of 3-node\n"));
|
|
n->kids[3] = n->kids[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = n->kids[1];
|
|
n->elems[1] = n->elems[0];
|
|
n->kids[1] = right;
|
|
n->elems[0] = e;
|
|
n->kids[0] = left;
|
|
} else if (np == &n->kids[1]) {
|
|
LOG((" inserting in middle of 3-node\n"));
|
|
n->kids[3] = n->kids[2];
|
|
n->elems[2] = n->elems[1];
|
|
n->kids[2] = right;
|
|
n->elems[1] = e;
|
|
n->kids[1] = left;
|
|
} else { /* np == &n->kids[2] */
|
|
LOG((" inserting on right of 3-node\n"));
|
|
n->kids[3] = right;
|
|
n->elems[2] = e;
|
|
n->kids[2] = left;
|
|
}
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
if (n->kids[2]) n->kids[2]->parent = n;
|
|
if (n->kids[3]) n->kids[3]->parent = n;
|
|
LOG((" done\n"));
|
|
break;
|
|
} else {
|
|
node234 *m = mknew(node234);
|
|
m->parent = n->parent;
|
|
LOG((" splitting a 4-node; created new node %p\n", m));
|
|
/*
|
|
* Insert in a 4-node; split into a 2-node and a
|
|
* 3-node, and move focus up a level.
|
|
*
|
|
* I don't think it matters which way round we put the
|
|
* 2 and the 3. For simplicity, we'll put the 3 first
|
|
* always.
|
|
*/
|
|
if (np == &n->kids[0]) {
|
|
m->kids[0] = left;
|
|
m->elems[0] = e;
|
|
m->kids[1] = right;
|
|
m->elems[1] = n->elems[0];
|
|
m->kids[2] = n->kids[1];
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else if (np == &n->kids[1]) {
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = left;
|
|
m->elems[1] = e;
|
|
m->kids[2] = right;
|
|
e = n->elems[1];
|
|
n->kids[0] = n->kids[2];
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else if (np == &n->kids[2]) {
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = left;
|
|
/* e = e; */
|
|
n->kids[0] = right;
|
|
n->elems[0] = n->elems[2];
|
|
n->kids[1] = n->kids[3];
|
|
} else { /* np == &n->kids[3] */
|
|
m->kids[0] = n->kids[0];
|
|
m->elems[0] = n->elems[0];
|
|
m->kids[1] = n->kids[1];
|
|
m->elems[1] = n->elems[1];
|
|
m->kids[2] = n->kids[2];
|
|
n->kids[0] = left;
|
|
n->elems[0] = e;
|
|
n->kids[1] = right;
|
|
e = n->elems[2];
|
|
}
|
|
m->kids[3] = n->kids[3] = n->kids[2] = NULL;
|
|
m->elems[2] = n->elems[2] = n->elems[1] = NULL;
|
|
if (m->kids[0]) m->kids[0]->parent = m;
|
|
if (m->kids[1]) m->kids[1]->parent = m;
|
|
if (m->kids[2]) m->kids[2]->parent = m;
|
|
if (n->kids[0]) n->kids[0]->parent = n;
|
|
if (n->kids[1]) n->kids[1]->parent = n;
|
|
LOG((" left (%p): %p [%p] %p [%p] %p\n", m,
|
|
m->kids[0], m->elems[0],
|
|
m->kids[1], m->elems[1],
|
|
m->kids[2]));
|
|
LOG((" right (%p): %p [%p] %p\n", n,
|
|
n->kids[0], n->elems[0],
|
|
n->kids[1]));
|
|
left = m;
|
|
right = n;
|
|
}
|
|
if (n->parent)
|
|
np = (n->parent->kids[0] == n ? &n->parent->kids[0] :
|
|
n->parent->kids[1] == n ? &n->parent->kids[1] :
|
|
n->parent->kids[2] == n ? &n->parent->kids[2] :
|
|
&n->parent->kids[3]);
|
|
n = n->parent;
|
|
}
|
|
|
|
/*
|
|
* If we've come out of here by `break', n will still be
|
|
* non-NULL and we've finished. If we've come here because n is
|
|
* NULL, we need to create a new root for the tree because the
|
|
* old one has just split into two.
|
|
*/
|
|
if (!n) {
|
|
LOG((" root is overloaded, split into two\n"));
|
|
t->root = mknew(node234);
|
|
t->root->kids[0] = left;
|
|
t->root->elems[0] = e;
|
|
t->root->kids[1] = right;
|
|
t->root->elems[1] = NULL;
|
|
t->root->kids[2] = NULL;
|
|
t->root->elems[2] = NULL;
|
|
t->root->kids[3] = NULL;
|
|
t->root->parent = NULL;
|
|
if (t->root->kids[0]) t->root->kids[0]->parent = t->root;
|
|
if (t->root->kids[1]) t->root->kids[1]->parent = t->root;
|
|
LOG((" new root is %p [%p] %p\n",
|
|
t->root->kids[0], t->root->elems[0], t->root->kids[1]));
|
|
}
|
|
|
|
return orig_e;
|
|
}
|
|
|
|
/*
|
|
* Find an element e in a 2-3-4 tree t. Returns NULL if not found.
|
|
* e is always passed as the first argument to cmp, so cmp can be
|
|
* an asymmetric function if desired. cmp can also be passed as
|
|
* NULL, in which case the compare function from the tree proper
|
|
* will be used.
|
|
*/
|
|
void *find234(tree234 *t, void *e, cmpfn234 cmp) {
|
|
node234 *n;
|
|
int c;
|
|
|
|
if (t->root == NULL)
|
|
return NULL;
|
|
|
|
if (cmp == NULL)
|
|
cmp = t->cmp;
|
|
|
|
n = t->root;
|
|
while (n) {
|
|
if ( (c = cmp(e, n->elems[0])) < 0)
|
|
n = n->kids[0];
|
|
else if (c == 0)
|
|
return n->elems[0];
|
|
else if (n->elems[1] == NULL || (c = cmp(e, n->elems[1])) < 0)
|
|
n = n->kids[1];
|
|
else if (c == 0)
|
|
return n->elems[1];
|
|
else if (n->elems[2] == NULL || (c = cmp(e, n->elems[2])) < 0)
|
|
n = n->kids[2];
|
|
else if (c == 0)
|
|
return n->elems[2];
|
|
else
|
|
n = n->kids[3];
|
|
}
|
|
|
|
/*
|
|
* We've found our way to the bottom of the tree and we know
|
|
* where we would insert this node if we wanted to. But it
|
|
* isn't there.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Delete an element e in a 2-3-4 tree. Does not free the element,
|
|
* merely removes all links to it from the tree nodes.
|
|
*/
|
|
void del234(tree234 *t, void *e) {
|
|
node234 *n;
|
|
int ei = -1;
|
|
|
|
n = t->root;
|
|
LOG(("deleting %p from tree %p\n", e, t));
|
|
while (1) {
|
|
while (n) {
|
|
int c;
|
|
int ki;
|
|
node234 *sub;
|
|
|
|
LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
|
|
n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
|
|
n->kids[2], n->elems[2], n->kids[3]));
|
|
if ((c = t->cmp(e, n->elems[0])) < 0) {
|
|
ki = 0;
|
|
} else if (c == 0) {
|
|
ei = 0; break;
|
|
} else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) {
|
|
ki = 1;
|
|
} else if (c == 0) {
|
|
ei = 1; break;
|
|
} else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) {
|
|
ki = 2;
|
|
} else if (c == 0) {
|
|
ei = 2; break;
|
|
} else {
|
|
ki = 3;
|
|
}
|
|
/*
|
|
* Recurse down to subtree ki. If it has only one element,
|
|
* we have to do some transformation to start with.
|
|
*/
|
|
LOG((" moving to subtree %d\n", ki));
|
|
sub = n->kids[ki];
|
|
if (!sub->elems[1]) {
|
|
LOG((" subtree has only one element!\n", ki));
|
|
if (ki > 0 && n->kids[ki-1]->elems[1]) {
|
|
/*
|
|
* Case 3a, left-handed variant. Child ki has
|
|
* only one element, but child ki-1 has two or
|
|
* more. So we need to move a subtree from ki-1
|
|
* to ki.
|
|
*
|
|
* . C . . B .
|
|
* / \ -> / \
|
|
* [more] a A b B c d D e [more] a A b c C d D e
|
|
*/
|
|
node234 *sib = n->kids[ki-1];
|
|
int lastelem = (sib->elems[2] ? 2 :
|
|
sib->elems[1] ? 1 : 0);
|
|
sub->kids[2] = sub->kids[1];
|
|
sub->elems[1] = sub->elems[0];
|
|
sub->kids[1] = sub->kids[0];
|
|
sub->elems[0] = n->elems[ki-1];
|
|
sub->kids[0] = sib->kids[lastelem+1];
|
|
if (sub->kids[0]) sub->kids[0]->parent = sub;
|
|
n->elems[ki-1] = sib->elems[lastelem];
|
|
sib->kids[lastelem+1] = NULL;
|
|
sib->elems[lastelem] = NULL;
|
|
LOG((" case 3a left\n"));
|
|
} else if (ki < 3 && n->kids[ki+1] &&
|
|
n->kids[ki+1]->elems[1]) {
|
|
/*
|
|
* Case 3a, right-handed variant. ki has only
|
|
* one element but ki+1 has two or more. Move a
|
|
* subtree from ki+1 to ki.
|
|
*
|
|
* . B . . C .
|
|
* / \ -> / \
|
|
* a A b c C d D e [more] a A b B c d D e [more]
|
|
*/
|
|
node234 *sib = n->kids[ki+1];
|
|
int j;
|
|
sub->elems[1] = n->elems[ki];
|
|
sub->kids[2] = sib->kids[0];
|
|
if (sub->kids[2]) sub->kids[2]->parent = sub;
|
|
n->elems[ki] = sib->elems[0];
|
|
sib->kids[0] = sib->kids[1];
|
|
for (j = 0; j < 2 && sib->elems[j+1]; j++) {
|
|
sib->kids[j+1] = sib->kids[j+2];
|
|
sib->elems[j] = sib->elems[j+1];
|
|
}
|
|
sib->kids[j+1] = NULL;
|
|
sib->elems[j] = NULL;
|
|
LOG((" case 3a right\n"));
|
|
} else {
|
|
/*
|
|
* Case 3b. ki has only one element, and has no
|
|
* neighbour with more than one. So pick a
|
|
* neighbour and merge it with ki, taking an
|
|
* element down from n to go in the middle.
|
|
*
|
|
* . B . .
|
|
* / \ -> |
|
|
* a A b c C d a A b B c C d
|
|
*
|
|
* (Since at all points we have avoided
|
|
* descending to a node with only one element,
|
|
* we can be sure that n is not reduced to
|
|
* nothingness by this move, _unless_ it was
|
|
* the very first node, ie the root of the
|
|
* tree. In that case we remove the now-empty
|
|
* root and replace it with its single large
|
|
* child as shown.)
|
|
*/
|
|
node234 *sib;
|
|
int j;
|
|
|
|
if (ki > 0)
|
|
ki--;
|
|
sib = n->kids[ki];
|
|
sub = n->kids[ki+1];
|
|
|
|
sub->kids[3] = sub->kids[1];
|
|
sub->elems[2] = sub->elems[0];
|
|
sub->kids[2] = sub->kids[0];
|
|
sub->elems[1] = n->elems[ki];
|
|
sub->kids[1] = sib->kids[1];
|
|
if (sub->kids[1]) sub->kids[1]->parent = sub;
|
|
sub->elems[0] = sib->elems[0];
|
|
sub->kids[0] = sib->kids[0];
|
|
if (sub->kids[0]) sub->kids[0]->parent = sub;
|
|
|
|
sfree(sib);
|
|
|
|
/*
|
|
* That's built the big node in sub. Now we
|
|
* need to remove the reference to sib in n.
|
|
*/
|
|
for (j = ki; j < 3 && n->kids[j+1]; j++) {
|
|
n->kids[j] = n->kids[j+1];
|
|
n->elems[j] = j<2 ? n->elems[j+1] : NULL;
|
|
}
|
|
n->kids[j] = NULL;
|
|
if (j < 3) n->elems[j] = NULL;
|
|
LOG((" case 3b ki=%d\n", ki));
|
|
|
|
if (!n->elems[0]) {
|
|
/*
|
|
* The root is empty and needs to be
|
|
* removed.
|
|
*/
|
|
LOG((" shifting root!\n"));
|
|
t->root = sub;
|
|
sub->parent = NULL;
|
|
sfree(n);
|
|
}
|
|
}
|
|
}
|
|
n = sub;
|
|
}
|
|
if (ei==-1)
|
|
return; /* nothing to do; `already removed' */
|
|
|
|
/*
|
|
* Treat special case: this is the one remaining item in
|
|
* the tree. n is the tree root (no parent), has one
|
|
* element (no elems[1]), and has no kids (no kids[0]).
|
|
*/
|
|
if (!n->parent && !n->elems[1] && !n->kids[0]) {
|
|
LOG((" removed last element in tree\n"));
|
|
sfree(n);
|
|
t->root = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now we have the element we want, as n->elems[ei], and we
|
|
* have also arranged for that element not to be the only
|
|
* one in its node. So...
|
|
*/
|
|
|
|
if (!n->kids[0] && n->elems[1]) {
|
|
/*
|
|
* Case 1. n is a leaf node with more than one element,
|
|
* so it's _really easy_. Just delete the thing and
|
|
* we're done.
|
|
*/
|
|
int i;
|
|
LOG((" case 1\n"));
|
|
for (i = ei; i < 2 && n->elems[i+1]; i++)
|
|
n->elems[i] = n->elems[i+1];
|
|
n->elems[i] = NULL;
|
|
return; /* finished! */
|
|
} else if (n->kids[ei]->elems[1]) {
|
|
/*
|
|
* Case 2a. n is an internal node, and the root of the
|
|
* subtree to the left of e has more than one element.
|
|
* So find the predecessor p to e (ie the largest node
|
|
* in that subtree), place it where e currently is, and
|
|
* then start the deletion process over again on the
|
|
* subtree with p as target.
|
|
*/
|
|
node234 *m = n->kids[ei];
|
|
void *target;
|
|
LOG((" case 2a\n"));
|
|
while (m->kids[0]) {
|
|
m = (m->kids[3] ? m->kids[3] :
|
|
m->kids[2] ? m->kids[2] :
|
|
m->kids[1] ? m->kids[1] : m->kids[0]);
|
|
}
|
|
target = (m->elems[2] ? m->elems[2] :
|
|
m->elems[1] ? m->elems[1] : m->elems[0]);
|
|
n->elems[ei] = target;
|
|
n = n->kids[ei];
|
|
e = target;
|
|
} else if (n->kids[ei+1]->elems[1]) {
|
|
/*
|
|
* Case 2b, symmetric to 2a but s/left/right/ and
|
|
* s/predecessor/successor/. (And s/largest/smallest/).
|
|
*/
|
|
node234 *m = n->kids[ei+1];
|
|
void *target;
|
|
LOG((" case 2b\n"));
|
|
while (m->kids[0]) {
|
|
m = m->kids[0];
|
|
}
|
|
target = m->elems[0];
|
|
n->elems[ei] = target;
|
|
n = n->kids[ei+1];
|
|
e = target;
|
|
} else {
|
|
/*
|
|
* Case 2c. n is an internal node, and the subtrees to
|
|
* the left and right of e both have only one element.
|
|
* So combine the two subnodes into a single big node
|
|
* with their own elements on the left and right and e
|
|
* in the middle, then restart the deletion process on
|
|
* that subtree, with e still as target.
|
|
*/
|
|
node234 *a = n->kids[ei], *b = n->kids[ei+1];
|
|
int j;
|
|
|
|
LOG((" case 2c\n"));
|
|
a->elems[1] = n->elems[ei];
|
|
a->kids[2] = b->kids[0];
|
|
if (a->kids[2]) a->kids[2]->parent = a;
|
|
a->elems[2] = b->elems[0];
|
|
a->kids[3] = b->kids[1];
|
|
if (a->kids[3]) a->kids[3]->parent = a;
|
|
sfree(b);
|
|
/*
|
|
* That's built the big node in a, and destroyed b. Now
|
|
* remove the reference to b (and e) in n.
|
|
*/
|
|
for (j = ei; j < 2 && n->elems[j+1]; j++) {
|
|
n->elems[j] = n->elems[j+1];
|
|
n->kids[j+1] = n->kids[j+2];
|
|
}
|
|
n->elems[j] = NULL;
|
|
n->kids[j+1] = NULL;
|
|
/*
|
|
* It's possible, in this case, that we've just removed
|
|
* the only element in the root of the tree. If so,
|
|
* shift the root.
|
|
*/
|
|
if (n->elems[0] == NULL) {
|
|
LOG((" shifting root!\n"));
|
|
t->root = a;
|
|
a->parent = NULL;
|
|
sfree(n);
|
|
}
|
|
/*
|
|
* Now go round the deletion process again, with n
|
|
* pointing at the new big node and e still the same.
|
|
*/
|
|
n = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate over the elements of a tree234, in order.
|
|
*/
|
|
void *first234(tree234 *t, enum234 *e) {
|
|
node234 *n = t->root;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->kids[0])
|
|
n = n->kids[0];
|
|
e->node = n;
|
|
e->posn = 0;
|
|
return n->elems[0];
|
|
}
|
|
|
|
void *next234(enum234 *e) {
|
|
node234 *n = e->node;
|
|
int pos = e->posn;
|
|
|
|
if (n->kids[pos+1]) {
|
|
n = n->kids[pos+1];
|
|
while (n->kids[0])
|
|
n = n->kids[0];
|
|
e->node = n;
|
|
e->posn = 0;
|
|
return n->elems[0];
|
|
}
|
|
|
|
if (pos < 2 && n->elems[pos+1]) {
|
|
e->posn = pos+1;
|
|
return n->elems[e->posn];
|
|
}
|
|
|
|
do {
|
|
node234 *nn = n->parent;
|
|
if (nn == NULL)
|
|
return NULL; /* end of tree */
|
|
pos = (nn->kids[0] == n ? 0 :
|
|
nn->kids[1] == n ? 1 :
|
|
nn->kids[2] == n ? 2 : 3);
|
|
n = nn;
|
|
} while (pos == 3 || n->kids[pos+1] == NULL);
|
|
|
|
e->node = n;
|
|
e->posn = pos;
|
|
return n->elems[pos];
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
/*
|
|
* Test code for the 2-3-4 tree. This code maintains an alternative
|
|
* representation of the data in the tree, in an array (using the
|
|
* obvious and slow insert and delete functions). After each tree
|
|
* operation, the verify() function is called, which ensures all
|
|
* the tree properties are preserved (node->child->parent always
|
|
* equals node; number of kids == 0 or number of elements + 1;
|
|
* ordering property between elements of a node and elements of its
|
|
* children is preserved; tree has the same depth everywhere; every
|
|
* node has at least one element) and also ensures the list
|
|
* represented by the tree is the same list it should be. (This
|
|
* last check also verifies the ordering properties, because the
|
|
* `same list it should be' is by definition correctly ordered. It
|
|
* also ensures all nodes are distinct, because the enum functions
|
|
* would get caught in a loop if not.)
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
/*
|
|
* Error reporting function.
|
|
*/
|
|
void error(char *fmt, ...) {
|
|
va_list ap;
|
|
printf("ERROR: ");
|
|
va_start(ap, fmt);
|
|
vfprintf(stdout, fmt, ap);
|
|
va_end(ap);
|
|
printf("\n");
|
|
}
|
|
|
|
/* The array representation of the data. */
|
|
void **array;
|
|
int arraylen, arraysize;
|
|
cmpfn234 cmp;
|
|
|
|
/* The tree representation of the same data. */
|
|
tree234 *tree;
|
|
|
|
typedef struct {
|
|
int treedepth;
|
|
int elemcount;
|
|
} chkctx;
|
|
|
|
void chknode(chkctx *ctx, int level, node234 *node,
|
|
void *lowbound, void *highbound) {
|
|
int nkids, nelems;
|
|
int i;
|
|
|
|
/* Count the non-NULL kids. */
|
|
for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
|
|
/* Ensure no kids beyond the first NULL are non-NULL. */
|
|
for (i = nkids; i < 4; i++)
|
|
if (node->kids[i]) {
|
|
error("node %p: nkids=%d but kids[%d] non-NULL",
|
|
node, nkids, i);
|
|
}
|
|
|
|
/* Count the non-NULL elements. */
|
|
for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
|
|
/* Ensure no elements beyond the first NULL are non-NULL. */
|
|
for (i = nelems; i < 3; i++)
|
|
if (node->elems[i]) {
|
|
error("node %p: nelems=%d but elems[%d] non-NULL",
|
|
node, nelems, i);
|
|
}
|
|
|
|
if (nkids == 0) {
|
|
/*
|
|
* If nkids==0, this is a leaf node; verify that the tree
|
|
* depth is the same everywhere.
|
|
*/
|
|
if (ctx->treedepth < 0)
|
|
ctx->treedepth = level; /* we didn't know the depth yet */
|
|
else if (ctx->treedepth != level)
|
|
error("node %p: leaf at depth %d, previously seen depth %d",
|
|
node, level, ctx->treedepth);
|
|
} else {
|
|
/*
|
|
* If nkids != 0, then it should be nelems+1, unless nelems
|
|
* is 0 in which case nkids should also be 0 (and so we
|
|
* shouldn't be in this condition at all).
|
|
*/
|
|
int shouldkids = (nelems ? nelems+1 : 0);
|
|
if (nkids != shouldkids) {
|
|
error("node %p: %d elems should mean %d kids but has %d",
|
|
node, nelems, shouldkids, nkids);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nelems should be at least 1.
|
|
*/
|
|
if (nelems == 0) {
|
|
error("node %p: no elems", node, nkids);
|
|
}
|
|
|
|
/*
|
|
* Add nelems to the running element count of the whole tree
|
|
* (to ensure the enum234 routines see them all).
|
|
*/
|
|
ctx->elemcount += nelems;
|
|
|
|
/*
|
|
* Check ordering property: all elements should be strictly >
|
|
* lowbound, strictly < highbound, and strictly < each other in
|
|
* sequence. (lowbound and highbound are NULL at edges of tree
|
|
* - both NULL at root node - and NULL is considered to be <
|
|
* everything and > everything. IYSWIM.)
|
|
*/
|
|
for (i = -1; i < nelems; i++) {
|
|
void *lower = (i == -1 ? lowbound : node->elems[i]);
|
|
void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
|
|
if (lower && higher && cmp(lower, higher) >= 0) {
|
|
error("node %p: kid comparison [%d=%s,%d=%s] failed",
|
|
node, i, lower, i+1, higher);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check parent pointers: all non-NULL kids should have a
|
|
* parent pointer coming back to this node.
|
|
*/
|
|
for (i = 0; i < nkids; i++)
|
|
if (node->kids[i]->parent != node) {
|
|
error("node %p kid %d: parent ptr is %p not %p",
|
|
node, i, node->kids[i]->parent, node);
|
|
}
|
|
|
|
|
|
/*
|
|
* Now (finally!) recurse into subtrees.
|
|
*/
|
|
for (i = 0; i < nkids; i++) {
|
|
void *lower = (i == 0 ? lowbound : node->elems[i-1]);
|
|
void *higher = (i >= nelems ? highbound : node->elems[i]);
|
|
chknode(ctx, level+1, node->kids[i], lower, higher);
|
|
}
|
|
}
|
|
|
|
void verify(void) {
|
|
chkctx ctx;
|
|
enum234 e;
|
|
int i;
|
|
void *p;
|
|
|
|
ctx.treedepth = -1; /* depth unknown yet */
|
|
ctx.elemcount = 0; /* no elements seen yet */
|
|
/*
|
|
* Verify validity of tree properties.
|
|
*/
|
|
if (tree->root)
|
|
chknode(&ctx, 0, tree->root, NULL, NULL);
|
|
printf("tree depth: %d\n", ctx.treedepth);
|
|
/*
|
|
* Enumerate the tree and ensure it matches up to the array.
|
|
*/
|
|
for (i = 0, p = first234(tree, &e);
|
|
p;
|
|
i++, p = next234(&e)) {
|
|
if (i >= arraylen)
|
|
error("tree contains more than %d elements", arraylen);
|
|
if (array[i] != p)
|
|
error("enum at position %d: array says %s, tree says %s",
|
|
i, array[i], p);
|
|
}
|
|
if (i != ctx.elemcount) {
|
|
error("tree really contains %d elements, enum gave %d",
|
|
i, ctx.elemcount);
|
|
}
|
|
if (i < arraylen) {
|
|
error("enum gave only %d elements, array has %d", i, arraylen);
|
|
}
|
|
}
|
|
|
|
void addtest(void *elem) {
|
|
int i, j;
|
|
void *retval, *realret;
|
|
|
|
if (arraysize < arraylen+1) {
|
|
arraysize = arraylen+1+256;
|
|
array = (array == NULL ? malloc(arraysize*sizeof(*array)) :
|
|
realloc(array, arraysize*sizeof(*array)));
|
|
}
|
|
|
|
i = 0;
|
|
while (i < arraylen && cmp(elem, array[i]) > 0)
|
|
i++;
|
|
/* now i points to the first element >= elem */
|
|
if (i < arraylen && !cmp(elem, array[i]))
|
|
retval = array[i]; /* expect that returned not elem */
|
|
else {
|
|
retval = elem; /* expect elem returned (success) */
|
|
for (j = arraylen; j > i; j--)
|
|
array[j] = array[j-1];
|
|
array[i] = elem; /* add elem to array */
|
|
arraylen++;
|
|
}
|
|
|
|
realret = add234(tree, elem);
|
|
if (realret != retval) {
|
|
error("add: retval was %p expected %p", realret, retval);
|
|
}
|
|
|
|
verify();
|
|
}
|
|
|
|
void deltest(void *elem) {
|
|
int i;
|
|
|
|
i = 0;
|
|
while (i < arraylen && cmp(elem, array[i]) > 0)
|
|
i++;
|
|
/* now i points to the first element >= elem */
|
|
if (i >= arraylen || cmp(elem, array[i]) != 0)
|
|
return; /* don't do it! */
|
|
else {
|
|
while (i < arraylen-1) {
|
|
array[i] = array[i+1];
|
|
i++;
|
|
}
|
|
arraylen--; /* delete elem from array */
|
|
}
|
|
|
|
del234(tree, elem);
|
|
|
|
verify();
|
|
}
|
|
|
|
/* A sample data set and test utility. Designed for pseudo-randomness,
|
|
* and yet repeatability. */
|
|
|
|
/*
|
|
* This random number generator uses the `portable implementation'
|
|
* given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
|
|
* change it if not.
|
|
*/
|
|
int randomnumber(unsigned *seed) {
|
|
*seed *= 1103515245;
|
|
*seed += 12345;
|
|
return ((*seed) / 65536) % 32768;
|
|
}
|
|
|
|
int mycmp(void *av, void *bv) {
|
|
char const *a = (char const *)av;
|
|
char const *b = (char const *)bv;
|
|
return strcmp(a, b);
|
|
}
|
|
|
|
#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
|
|
|
|
char *strings[] = {
|
|
"a", "ab", "absque", "coram", "de",
|
|
"palam", "clam", "cum", "ex", "e",
|
|
"sine", "tenus", "pro", "prae",
|
|
"banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
|
|
"penguin", "blancmange", "pangolin", "whale", "hedgehog",
|
|
"giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
|
|
"murfl", "spoo", "breen", "flarn", "octothorpe",
|
|
"snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
|
|
"aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
|
|
"pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
|
|
"wand", "ring", "amulet"
|
|
};
|
|
|
|
#define NSTR lenof(strings)
|
|
|
|
int main(void) {
|
|
int in[NSTR];
|
|
int i, j;
|
|
unsigned seed = 0;
|
|
|
|
for (i = 0; i < NSTR; i++) in[i] = 0;
|
|
array = NULL;
|
|
arraylen = arraysize = 0;
|
|
tree = newtree234(mycmp);
|
|
cmp = mycmp;
|
|
|
|
verify();
|
|
for (i = 0; i < 10000; i++) {
|
|
j = randomnumber(&seed);
|
|
j %= NSTR;
|
|
printf("trial: %d\n", i);
|
|
if (in[j]) {
|
|
printf("deleting %s (%d)\n", strings[j], j);
|
|
deltest(strings[j]);
|
|
in[j] = 0;
|
|
} else {
|
|
printf("adding %s (%d)\n", strings[j], j);
|
|
addtest(strings[j]);
|
|
in[j] = 1;
|
|
}
|
|
}
|
|
|
|
while (arraylen > 0) {
|
|
j = randomnumber(&seed);
|
|
j %= arraylen;
|
|
deltest(array[j]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|