mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
d2653e79ab
Mark Wooding pointed out that my comment in make1305.py was completely wrong, and that the stated strategy for reducing a value mod 2^130-5 would not in fact completely reduce all inputs in the range - for the most obvious reason, namely that the numbers between 2^130-5 and 2^130 would never have anything subtracted at all. Implemented a replacement strategy which my tests suggest will do the right thing for all numbers in the expected range that are anywhere near an integer multiple of the modulus.
373 lines
14 KiB
Python
Executable File
373 lines
14 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import sys
|
|
import string
|
|
from collections import namedtuple
|
|
|
|
class Multiprecision(object):
|
|
def __init__(self, target, minval, maxval, words):
|
|
self.target = target
|
|
self.minval = minval
|
|
self.maxval = maxval
|
|
self.words = words
|
|
assert 0 <= self.minval
|
|
assert self.minval <= self.maxval
|
|
assert self.target.nwords(self.maxval) == len(words)
|
|
|
|
def getword(self, n):
|
|
return self.words[n] if n < len(self.words) else "0"
|
|
|
|
def __add__(self, rhs):
|
|
newmin = self.minval + rhs.minval
|
|
newmax = self.maxval + rhs.maxval
|
|
nwords = self.target.nwords(newmax)
|
|
words = []
|
|
|
|
addfn = self.target.add
|
|
for i in range(nwords):
|
|
words.append(addfn(self.getword(i), rhs.getword(i)))
|
|
addfn = self.target.adc
|
|
|
|
return Multiprecision(self.target, newmin, newmax, words)
|
|
|
|
def __mul__(self, rhs):
|
|
newmin = self.minval * rhs.minval
|
|
newmax = self.maxval * rhs.maxval
|
|
nwords = self.target.nwords(newmax)
|
|
words = []
|
|
|
|
# There are basically two strategies we could take for
|
|
# multiplying two multiprecision integers. One is to enumerate
|
|
# the space of pairs of word indices in lexicographic order,
|
|
# essentially computing a*b[i] for each i and adding them
|
|
# together; the other is to enumerate in diagonal order,
|
|
# computing everything together that belongs at a particular
|
|
# output word index.
|
|
#
|
|
# For the moment, I've gone for the former.
|
|
|
|
sprev = []
|
|
for i, sword in enumerate(self.words):
|
|
rprev = None
|
|
sthis = sprev[:i]
|
|
for j, rword in enumerate(rhs.words):
|
|
prevwords = []
|
|
if i+j < len(sprev):
|
|
prevwords.append(sprev[i+j])
|
|
if rprev is not None:
|
|
prevwords.append(rprev)
|
|
vhi, vlo = self.target.muladd(sword, rword, *prevwords)
|
|
sthis.append(vlo)
|
|
rprev = vhi
|
|
sthis.append(rprev)
|
|
sprev = sthis
|
|
|
|
# Remove unneeded words from the top of the output, if we can
|
|
# prove by range analysis that they'll always be zero.
|
|
sprev = sprev[:self.target.nwords(newmax)]
|
|
|
|
return Multiprecision(self.target, newmin, newmax, sprev)
|
|
|
|
def extract_bits(self, start, bits=None):
|
|
if bits is None:
|
|
bits = (self.maxval >> start).bit_length()
|
|
|
|
# Overly thorough range analysis: if min and max have the same
|
|
# *quotient* by 2^bits, then the result of reducing anything
|
|
# in the range [min,max] mod 2^bits has to fall within the
|
|
# obvious range. But if they have different quotients, then
|
|
# you can wrap round the modulus and so any value mod 2^bits
|
|
# is possible.
|
|
newmin = self.minval >> start
|
|
newmax = self.maxval >> start
|
|
if (newmin >> bits) != (newmax >> bits):
|
|
newmin = 0
|
|
newmax = (1 << bits) - 1
|
|
|
|
nwords = self.target.nwords(newmax)
|
|
words = []
|
|
for i in range(nwords):
|
|
srcpos = i * self.target.bits + start
|
|
maxbits = min(self.target.bits, start + bits - srcpos)
|
|
wordindex = srcpos / self.target.bits
|
|
if srcpos % self.target.bits == 0:
|
|
word = self.getword(srcpos / self.target.bits)
|
|
elif (wordindex+1 >= len(self.words) or
|
|
srcpos % self.target.bits + maxbits < self.target.bits):
|
|
word = self.target.new_value(
|
|
"(%%s) >> %d" % (srcpos % self.target.bits),
|
|
self.getword(srcpos / self.target.bits))
|
|
else:
|
|
word = self.target.new_value(
|
|
"((%%s) >> %d) | ((%%s) << %d)" % (
|
|
srcpos % self.target.bits,
|
|
self.target.bits - (srcpos % self.target.bits)),
|
|
self.getword(srcpos / self.target.bits),
|
|
self.getword(srcpos / self.target.bits + 1))
|
|
if maxbits < self.target.bits and maxbits < bits:
|
|
word = self.target.new_value(
|
|
"(%%s) & ((((BignumInt)1) << %d)-1)" % maxbits,
|
|
word)
|
|
words.append(word)
|
|
|
|
return Multiprecision(self.target, newmin, newmax, words)
|
|
|
|
# Each Statement has a list of variables it reads, and a list of ones
|
|
# it writes. 'forms' is a list of multiple actual C statements it
|
|
# could be generated as, depending on which of its output variables is
|
|
# actually used (e.g. no point calling BignumADC if the generated
|
|
# carry in a particular case is unused, or BignumMUL if nobody needs
|
|
# the top half). It is indexed by a bitmap whose bits correspond to
|
|
# the entries in wvars, with wvars[0] the MSB and wvars[-1] the LSB.
|
|
Statement = namedtuple("Statement", "rvars wvars forms")
|
|
|
|
class CodegenTarget(object):
|
|
def __init__(self, bits):
|
|
self.bits = bits
|
|
self.valindex = 0
|
|
self.stmts = []
|
|
self.generators = {}
|
|
self.bv_words = (130 + self.bits - 1) / self.bits
|
|
self.carry_index = 0
|
|
|
|
def nwords(self, maxval):
|
|
return (maxval.bit_length() + self.bits - 1) / self.bits
|
|
|
|
def stmt(self, stmt, needed=False):
|
|
index = len(self.stmts)
|
|
self.stmts.append([needed, stmt])
|
|
for val in stmt.wvars:
|
|
self.generators[val] = index
|
|
|
|
def new_value(self, formatstr=None, *deps):
|
|
name = "v%d" % self.valindex
|
|
self.valindex += 1
|
|
if formatstr is not None:
|
|
self.stmt(Statement(
|
|
rvars=deps, wvars=[name],
|
|
forms=[None, name + " = " + formatstr % deps]))
|
|
return name
|
|
|
|
def bigval_input(self, name, bits):
|
|
words = (bits + self.bits - 1) / self.bits
|
|
# Expect not to require an entire extra word
|
|
assert words == self.bv_words
|
|
|
|
return Multiprecision(self, 0, (1<<bits)-1, [
|
|
self.new_value("%s->w[%d]" % (name, i)) for i in range(words)])
|
|
|
|
def const(self, value):
|
|
# We only support constants small enough to both fit in a
|
|
# BignumInt (of any size supported) _and_ be expressible in C
|
|
# with no weird integer literal syntax like a trailing LL.
|
|
#
|
|
# Supporting larger constants would be possible - you could
|
|
# break 'value' up into word-sized pieces on the Python side,
|
|
# and generate a legal C expression for each piece by
|
|
# splitting it further into pieces within the
|
|
# standards-guaranteed 'unsigned long' limit of 32 bits and
|
|
# then casting those to BignumInt before combining them with
|
|
# shifts. But it would be a lot of effort, and since the
|
|
# application for this code doesn't even need it, there's no
|
|
# point in bothering.
|
|
assert value < 2**16
|
|
return Multiprecision(self, value, value, ["%d" % value])
|
|
|
|
def current_carry(self):
|
|
return "carry%d" % self.carry_index
|
|
|
|
def add(self, a1, a2):
|
|
ret = self.new_value()
|
|
adcform = "BignumADC(%s, carry, %s, %s, 0)" % (ret, a1, a2)
|
|
plainform = "%s = %s + %s" % (ret, a1, a2)
|
|
self.carry_index += 1
|
|
carryout = self.current_carry()
|
|
self.stmt(Statement(
|
|
rvars=[a1,a2], wvars=[ret,carryout],
|
|
forms=[None, adcform, plainform, adcform]))
|
|
return ret
|
|
|
|
def adc(self, a1, a2):
|
|
ret = self.new_value()
|
|
adcform = "BignumADC(%s, carry, %s, %s, carry)" % (ret, a1, a2)
|
|
plainform = "%s = %s + %s + carry" % (ret, a1, a2)
|
|
carryin = self.current_carry()
|
|
self.carry_index += 1
|
|
carryout = self.current_carry()
|
|
self.stmt(Statement(
|
|
rvars=[a1,a2,carryin], wvars=[ret,carryout],
|
|
forms=[None, adcform, plainform, adcform]))
|
|
return ret
|
|
|
|
def muladd(self, m1, m2, *addends):
|
|
rlo = self.new_value()
|
|
rhi = self.new_value()
|
|
wideform = "BignumMUL%s(%s)" % (
|
|
{ 0:"", 1:"ADD", 2:"ADD2" }[len(addends)],
|
|
", ".join([rhi, rlo, m1, m2] + list(addends)))
|
|
narrowform = " + ".join(["%s = %s * %s" % (rlo, m1, m2)] +
|
|
list(addends))
|
|
self.stmt(Statement(
|
|
rvars=[m1,m2]+list(addends), wvars=[rhi,rlo],
|
|
forms=[None, narrowform, wideform, wideform]))
|
|
return rhi, rlo
|
|
|
|
def write_bigval(self, name, val):
|
|
for i in range(self.bv_words):
|
|
word = val.getword(i)
|
|
self.stmt(Statement(
|
|
rvars=[word], wvars=[],
|
|
forms=["%s->w[%d] = %s" % (name, i, word)]),
|
|
needed=True)
|
|
|
|
def compute_needed(self):
|
|
used_vars = set()
|
|
|
|
self.queue = [stmt for (needed,stmt) in self.stmts if needed]
|
|
while len(self.queue) > 0:
|
|
stmt = self.queue.pop(0)
|
|
deps = []
|
|
for var in stmt.rvars:
|
|
if var[0] in string.digits:
|
|
continue # constant
|
|
deps.append(self.generators[var])
|
|
used_vars.add(var)
|
|
for index in deps:
|
|
if not self.stmts[index][0]:
|
|
self.stmts[index][0] = True
|
|
self.queue.append(self.stmts[index][1])
|
|
|
|
forms = []
|
|
for i, (needed, stmt) in enumerate(self.stmts):
|
|
if needed:
|
|
formindex = 0
|
|
for (j, var) in enumerate(stmt.wvars):
|
|
formindex *= 2
|
|
if var in used_vars:
|
|
formindex += 1
|
|
forms.append(stmt.forms[formindex])
|
|
|
|
# Now we must check whether this form of the statement
|
|
# also writes some variables we _don't_ actually need
|
|
# (e.g. if you only wanted the top half from a mul, or
|
|
# only the carry from an adc, you'd be forced to
|
|
# generate the other output too). Easiest way to do
|
|
# this is to look for an identical statement form
|
|
# later in the array.
|
|
maxindex = max(i for i in range(len(stmt.forms))
|
|
if stmt.forms[i] == stmt.forms[formindex])
|
|
extra_vars = maxindex & ~formindex
|
|
bitpos = 0
|
|
while extra_vars != 0:
|
|
if extra_vars & (1 << bitpos):
|
|
extra_vars &= ~(1 << bitpos)
|
|
var = stmt.wvars[-1-bitpos]
|
|
used_vars.add(var)
|
|
# Also, write out a cast-to-void for each
|
|
# subsequently unused value, to prevent gcc
|
|
# warnings when the output code is compiled.
|
|
forms.append("(void)" + var)
|
|
bitpos += 1
|
|
|
|
used_carry = any(v.startswith("carry") for v in used_vars)
|
|
used_vars = [v for v in used_vars if v.startswith("v")]
|
|
used_vars.sort(key=lambda v: int(v[1:]))
|
|
|
|
return used_carry, used_vars, forms
|
|
|
|
def text(self):
|
|
used_carry, values, forms = self.compute_needed()
|
|
|
|
ret = ""
|
|
while len(values) > 0:
|
|
prefix, sep, suffix = " BignumInt ", ", ", ";"
|
|
currline = values.pop(0)
|
|
while (len(values) > 0 and
|
|
len(prefix+currline+sep+values[0]+suffix) < 79):
|
|
currline += sep + values.pop(0)
|
|
ret += prefix + currline + suffix + "\n"
|
|
if used_carry:
|
|
ret += " BignumCarry carry;\n"
|
|
if ret != "":
|
|
ret += "\n"
|
|
for stmtform in forms:
|
|
ret += " %s;\n" % stmtform
|
|
return ret
|
|
|
|
def gen_add(target):
|
|
# This is an addition _without_ reduction mod p, so that it can be
|
|
# used both during accumulation of the polynomial and for adding
|
|
# on the encrypted nonce at the end (which is mod 2^128, not mod
|
|
# p).
|
|
#
|
|
# Because one of the inputs will have come from our
|
|
# not-completely-reducing multiplication function, we expect up to
|
|
# 3 extra bits of input.
|
|
|
|
a = target.bigval_input("a", 133)
|
|
b = target.bigval_input("b", 133)
|
|
ret = a + b
|
|
target.write_bigval("r", ret)
|
|
return """\
|
|
static void bigval_add(bigval *r, const bigval *a, const bigval *b)
|
|
{
|
|
%s}
|
|
\n""" % target.text()
|
|
|
|
def gen_mul(target):
|
|
# The inputs are not 100% reduced mod p. Specifically, we can get
|
|
# a full 130-bit number from the pow5==0 pass, and then a 130-bit
|
|
# number times 5 from the pow5==1 pass, plus a possible carry. The
|
|
# total of that can be easily bounded above by 2^130 * 8, so we
|
|
# need to assume we're multiplying two 133-bit numbers.
|
|
|
|
a = target.bigval_input("a", 133)
|
|
b = target.bigval_input("b", 133)
|
|
ab = a * b
|
|
ab0 = ab.extract_bits(0, 130)
|
|
ab1 = ab.extract_bits(130, 130)
|
|
ab2 = ab.extract_bits(260)
|
|
ab1_5 = target.const(5) * ab1
|
|
ab2_25 = target.const(25) * ab2
|
|
ret = ab0 + ab1_5 + ab2_25
|
|
target.write_bigval("r", ret)
|
|
return """\
|
|
static void bigval_mul_mod_p(bigval *r, const bigval *a, const bigval *b)
|
|
{
|
|
%s}
|
|
\n""" % target.text()
|
|
|
|
def gen_final_reduce(target):
|
|
# Given our input number n, n >> 130 is usually precisely the
|
|
# multiple of p that needs to be subtracted from n to reduce it to
|
|
# strictly less than p, but it might be too low by 1 (but not more
|
|
# than 1, given the range of our input is nowhere near the square
|
|
# of the modulus). So we add another 5, which will push a carry
|
|
# into the 130th bit if and only if that has happened, and then
|
|
# use that to decide whether to subtract one more copy of p.
|
|
|
|
a = target.bigval_input("n", 133)
|
|
q = a.extract_bits(130)
|
|
adjusted = a.extract_bits(0, 130) + target.const(5) * q
|
|
final_subtract = (adjusted + target.const(5)).extract_bits(130)
|
|
adjusted2 = adjusted + target.const(5) * final_subtract
|
|
ret = adjusted2.extract_bits(0, 130)
|
|
target.write_bigval("n", ret)
|
|
return """\
|
|
static void bigval_final_reduce(bigval *n)
|
|
{
|
|
%s}
|
|
\n""" % target.text()
|
|
|
|
pp_keyword = "#if"
|
|
for bits in [16, 32, 64]:
|
|
sys.stdout.write("%s BIGNUM_INT_BITS == %d\n\n" % (pp_keyword, bits))
|
|
pp_keyword = "#elif"
|
|
sys.stdout.write(gen_add(CodegenTarget(bits)))
|
|
sys.stdout.write(gen_mul(CodegenTarget(bits)))
|
|
sys.stdout.write(gen_final_reduce(CodegenTarget(bits)))
|
|
sys.stdout.write("""#else
|
|
#error Add another bit count to contrib/make1305.py and rerun it
|
|
#endif
|
|
""")
|