mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
c1d9da67a2
This enables plug_log to run query methods on the socket in order to find out useful information to log. I don't expect it's sensible to do anything else with it.
518 lines
14 KiB
C
518 lines
14 KiB
C
/*
|
|
* General mechanism for wrapping up reading/writing of Windows
|
|
* HANDLEs into a PuTTY Socket abstraction.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
|
|
#include "tree234.h"
|
|
#include "putty.h"
|
|
#include "network.h"
|
|
|
|
/*
|
|
* Freezing one of these sockets is a slightly fiddly business,
|
|
* because the reads from the handle are happening in a separate
|
|
* thread as blocking system calls and so once one is in progress it
|
|
* can't sensibly be interrupted. Hence, after the user tries to
|
|
* freeze one of these sockets, it's unavoidable that we may receive
|
|
* one more load of data before we manage to get handle-io.c to stop
|
|
* reading.
|
|
*/
|
|
typedef enum HandleSocketFreezeState {
|
|
UNFROZEN, /* reading as normal */
|
|
FREEZING, /* have been set to frozen but winhandl is still reading */
|
|
FROZEN, /* really frozen - winhandl has been throttled */
|
|
THAWING /* we're gradually releasing our remaining data */
|
|
} HandleSocketFreezeState;
|
|
|
|
typedef struct HandleSocket {
|
|
union {
|
|
struct {
|
|
HANDLE send_H, recv_H, stderr_H;
|
|
struct handle *send_h, *recv_h, *stderr_h;
|
|
|
|
HandleSocketFreezeState frozen;
|
|
/* We buffer data here if we receive it from winhandl
|
|
* while frozen. */
|
|
bufchain inputdata;
|
|
|
|
/* Handle logging proxy error messages from stderr_H, if
|
|
* we have one */
|
|
ProxyStderrBuf psb;
|
|
|
|
bool defer_close, deferred_close; /* in case of re-entrance */
|
|
};
|
|
struct {
|
|
DeferredSocketOpener *opener;
|
|
|
|
/* We buffer data here if we receive it via sk_write
|
|
* before the socket is opened. */
|
|
bufchain outputdata;
|
|
|
|
bool output_eof_pending;
|
|
|
|
bool start_frozen;
|
|
};
|
|
};
|
|
|
|
char *error;
|
|
|
|
SockAddr *addr;
|
|
int port;
|
|
Plug *plug;
|
|
|
|
Socket sock;
|
|
} HandleSocket;
|
|
|
|
static size_t handle_gotdata(
|
|
struct handle *h, const void *data, size_t len, int err)
|
|
{
|
|
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
|
|
|
|
if (err) {
|
|
plug_closing_error(hs->plug, "Read error from handle");
|
|
return 0;
|
|
} else if (len == 0) {
|
|
plug_closing_normal(hs->plug);
|
|
return 0;
|
|
} else {
|
|
assert(hs->frozen != FROZEN && hs->frozen != THAWING);
|
|
if (hs->frozen == FREEZING) {
|
|
/*
|
|
* If we've received data while this socket is supposed to
|
|
* be frozen (because the read handle-io.c started before
|
|
* sk_set_frozen was called has now returned) then buffer
|
|
* the data for when we unfreeze.
|
|
*/
|
|
bufchain_add(&hs->inputdata, data, len);
|
|
hs->frozen = FROZEN;
|
|
|
|
/*
|
|
* And return a very large backlog, to prevent further
|
|
* data arriving from winhandl until we unfreeze.
|
|
*/
|
|
return INT_MAX;
|
|
} else {
|
|
plug_receive(hs->plug, 0, data, len);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t handle_stderr(
|
|
struct handle *h, const void *data, size_t len, int err)
|
|
{
|
|
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
|
|
|
|
if (!err && len > 0)
|
|
log_proxy_stderr(hs->plug, &hs->sock, &hs->psb, data, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void handle_sentdata(struct handle *h, size_t new_backlog, int err,
|
|
bool close)
|
|
{
|
|
HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);
|
|
|
|
if (close) {
|
|
if (hs->send_H != INVALID_HANDLE_VALUE)
|
|
CloseHandle(hs->send_H);
|
|
if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
|
|
CloseHandle(hs->recv_H);
|
|
hs->send_H = hs->recv_H = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
if (err) {
|
|
plug_closing_system_error(hs->plug, err);
|
|
return;
|
|
}
|
|
|
|
plug_sent(hs->plug, new_backlog);
|
|
}
|
|
|
|
static Plug *sk_handle_plug(Socket *s, Plug *p)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
Plug *ret = hs->plug;
|
|
if (p)
|
|
hs->plug = p;
|
|
return ret;
|
|
}
|
|
|
|
static void sk_handle_close(Socket *s)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
|
|
if (hs->defer_close) {
|
|
hs->deferred_close = true;
|
|
return;
|
|
}
|
|
|
|
handle_free(hs->send_h);
|
|
handle_free(hs->recv_h);
|
|
if (hs->send_H != INVALID_HANDLE_VALUE)
|
|
CloseHandle(hs->send_H);
|
|
if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
|
|
CloseHandle(hs->recv_H);
|
|
bufchain_clear(&hs->inputdata);
|
|
|
|
if (hs->addr)
|
|
sk_addr_free(hs->addr);
|
|
|
|
delete_callbacks_for_context(hs);
|
|
|
|
sfree(hs);
|
|
}
|
|
|
|
static size_t sk_handle_write(Socket *s, const void *data, size_t len)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
|
|
return handle_write(hs->send_h, data, len);
|
|
}
|
|
|
|
static size_t sk_handle_write_oob(Socket *s, const void *data, size_t len)
|
|
{
|
|
/*
|
|
* oob data is treated as inband; nasty, but nothing really
|
|
* better we can do
|
|
*/
|
|
return sk_handle_write(s, data, len);
|
|
}
|
|
|
|
static void sk_handle_write_eof(Socket *s)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
|
|
handle_write_eof(hs->send_h);
|
|
}
|
|
|
|
static void handle_socket_unfreeze(void *hsv)
|
|
{
|
|
HandleSocket *hs = (HandleSocket *)hsv;
|
|
|
|
/*
|
|
* If we've been put into a state other than THAWING since the
|
|
* last callback, then we're done.
|
|
*/
|
|
if (hs->frozen != THAWING)
|
|
return;
|
|
|
|
/*
|
|
* Get some of the data we've buffered.
|
|
*/
|
|
ptrlen data = bufchain_prefix(&hs->inputdata);
|
|
assert(data.len > 0);
|
|
|
|
/*
|
|
* Hand it off to the plug. Be careful of re-entrance - that might
|
|
* have the effect of trying to close this socket.
|
|
*/
|
|
hs->defer_close = true;
|
|
plug_receive(hs->plug, 0, data.ptr, data.len);
|
|
bufchain_consume(&hs->inputdata, data.len);
|
|
hs->defer_close = false;
|
|
if (hs->deferred_close) {
|
|
sk_handle_close(&hs->sock);
|
|
return;
|
|
}
|
|
|
|
if (bufchain_size(&hs->inputdata) > 0) {
|
|
/*
|
|
* If there's still data in our buffer, stay in THAWING state,
|
|
* and reschedule ourself.
|
|
*/
|
|
queue_toplevel_callback(handle_socket_unfreeze, hs);
|
|
} else {
|
|
/*
|
|
* Otherwise, we've successfully thawed!
|
|
*/
|
|
hs->frozen = UNFROZEN;
|
|
handle_unthrottle(hs->recv_h, 0);
|
|
}
|
|
}
|
|
|
|
static void sk_handle_set_frozen(Socket *s, bool is_frozen)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
|
|
if (is_frozen) {
|
|
switch (hs->frozen) {
|
|
case FREEZING:
|
|
case FROZEN:
|
|
return; /* nothing to do */
|
|
|
|
case THAWING:
|
|
/*
|
|
* We were in the middle of emptying our bufchain, and got
|
|
* frozen again. In that case, handle-io.c is already
|
|
* throttled, so just return to FROZEN state. The toplevel
|
|
* callback will notice and disable itself.
|
|
*/
|
|
hs->frozen = FROZEN;
|
|
break;
|
|
|
|
case UNFROZEN:
|
|
/*
|
|
* The normal case. Go to FREEZING, and expect one more
|
|
* load of data from winhandl if we're unlucky.
|
|
*/
|
|
hs->frozen = FREEZING;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (hs->frozen) {
|
|
case UNFROZEN:
|
|
case THAWING:
|
|
return; /* nothing to do */
|
|
|
|
case FREEZING:
|
|
/*
|
|
* If winhandl didn't send us any data throughout the time
|
|
* we were frozen, then we'll still be in this state and
|
|
* can just unfreeze in the trivial way.
|
|
*/
|
|
assert(bufchain_size(&hs->inputdata) == 0);
|
|
hs->frozen = UNFROZEN;
|
|
break;
|
|
|
|
case FROZEN:
|
|
/*
|
|
* If we have buffered data, go to THAWING and start
|
|
* releasing it in top-level callbacks.
|
|
*/
|
|
hs->frozen = THAWING;
|
|
queue_toplevel_callback(handle_socket_unfreeze, hs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *sk_handle_socket_error(Socket *s)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
return hs->error;
|
|
}
|
|
|
|
static SocketEndpointInfo *sk_handle_endpoint_info(Socket *s, bool peer)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
ULONG pid;
|
|
static HMODULE kernel32_module;
|
|
DECL_WINDOWS_FUNCTION(static, BOOL, GetNamedPipeClientProcessId,
|
|
(HANDLE, PULONG));
|
|
|
|
if (!peer)
|
|
return NULL;
|
|
|
|
if (!kernel32_module) {
|
|
kernel32_module = load_system32_dll("kernel32.dll");
|
|
#if !HAVE_GETNAMEDPIPECLIENTPROCESSID
|
|
/* For older Visual Studio, and MinGW too (at least as of
|
|
* Ubuntu 16.04), this function isn't available in the header
|
|
* files to type-check. Ditto the toolchain I use for
|
|
* Coveritying the Windows code. */
|
|
GET_WINDOWS_FUNCTION_NO_TYPECHECK(
|
|
kernel32_module, GetNamedPipeClientProcessId);
|
|
#else
|
|
GET_WINDOWS_FUNCTION(
|
|
kernel32_module, GetNamedPipeClientProcessId);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Of course, not all handles managed by this module will be
|
|
* server ends of named pipes, but if they are, then it's useful
|
|
* to log what we can find out about the client end.
|
|
*/
|
|
if (p_GetNamedPipeClientProcessId &&
|
|
p_GetNamedPipeClientProcessId(hs->send_H, &pid)) {
|
|
SocketEndpointInfo *pi = snew(SocketEndpointInfo);
|
|
pi->addressfamily = ADDRTYPE_LOCAL;
|
|
pi->addr_text = NULL;
|
|
pi->port = -1;
|
|
pi->log_text = dupprintf("process id %lu", (unsigned long)pid);
|
|
return pi;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const SocketVtable HandleSocket_sockvt = {
|
|
.plug = sk_handle_plug,
|
|
.close = sk_handle_close,
|
|
.write = sk_handle_write,
|
|
.write_oob = sk_handle_write_oob,
|
|
.write_eof = sk_handle_write_eof,
|
|
.set_frozen = sk_handle_set_frozen,
|
|
.socket_error = sk_handle_socket_error,
|
|
.endpoint_info = sk_handle_endpoint_info,
|
|
};
|
|
|
|
static void sk_handle_connect_success_callback(void *ctx)
|
|
{
|
|
HandleSocket *hs = (HandleSocket *)ctx;
|
|
plug_log(hs->plug, &hs->sock, PLUGLOG_CONNECT_SUCCESS, hs->addr, hs->port,
|
|
NULL, 0);
|
|
}
|
|
|
|
Socket *make_handle_socket(HANDLE send_H, HANDLE recv_H, HANDLE stderr_H,
|
|
SockAddr *addr, int port, Plug *plug,
|
|
bool overlapped)
|
|
{
|
|
HandleSocket *hs;
|
|
int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);
|
|
|
|
hs = snew(HandleSocket);
|
|
hs->sock.vt = &HandleSocket_sockvt;
|
|
hs->addr = addr;
|
|
hs->port = port;
|
|
hs->plug = plug;
|
|
hs->error = NULL;
|
|
|
|
hs->frozen = UNFROZEN;
|
|
bufchain_init(&hs->inputdata);
|
|
psb_init(&hs->psb);
|
|
|
|
hs->recv_H = recv_H;
|
|
hs->recv_h = handle_input_new(hs->recv_H, handle_gotdata, hs, flags);
|
|
hs->send_H = send_H;
|
|
hs->send_h = handle_output_new(hs->send_H, handle_sentdata, hs, flags);
|
|
hs->stderr_H = stderr_H;
|
|
if (hs->stderr_H)
|
|
hs->stderr_h = handle_input_new(hs->stderr_H, handle_stderr,
|
|
hs, flags);
|
|
|
|
hs->defer_close = hs->deferred_close = false;
|
|
|
|
queue_toplevel_callback(sk_handle_connect_success_callback, hs);
|
|
|
|
return &hs->sock;
|
|
}
|
|
|
|
void handle_socket_set_psb_prefix(Socket *s, const char *prefix)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
assert(hs->sock.vt == &HandleSocket_sockvt);
|
|
psb_set_prefix(&hs->psb, prefix);
|
|
}
|
|
|
|
static void sk_handle_deferred_close(Socket *s)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
|
|
deferred_socket_opener_free(hs->opener);
|
|
bufchain_clear(&hs->outputdata);
|
|
|
|
if (hs->addr)
|
|
sk_addr_free(hs->addr);
|
|
|
|
delete_callbacks_for_context(hs);
|
|
|
|
sfree(hs);
|
|
}
|
|
|
|
static size_t sk_handle_deferred_write(Socket *s, const void *data, size_t len)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
assert(!hs->output_eof_pending);
|
|
bufchain_add(&hs->outputdata, data, len);
|
|
return bufchain_size(&hs->outputdata);
|
|
}
|
|
|
|
static void sk_handle_deferred_write_eof(Socket *s)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
assert(!hs->output_eof_pending);
|
|
hs->output_eof_pending = true;
|
|
}
|
|
|
|
static void sk_handle_deferred_set_frozen(Socket *s, bool is_frozen)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
hs->frozen = is_frozen;
|
|
}
|
|
|
|
static SocketEndpointInfo *sk_handle_deferred_endpoint_info(
|
|
Socket *s, bool peer)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static const SocketVtable HandleSocket_deferred_sockvt = {
|
|
.plug = sk_handle_plug,
|
|
.close = sk_handle_deferred_close,
|
|
.write = sk_handle_deferred_write,
|
|
.write_oob = sk_handle_deferred_write,
|
|
.write_eof = sk_handle_deferred_write_eof,
|
|
.set_frozen = sk_handle_deferred_set_frozen,
|
|
.socket_error = sk_handle_socket_error,
|
|
.endpoint_info = sk_handle_deferred_endpoint_info,
|
|
};
|
|
|
|
Socket *make_deferred_handle_socket(DeferredSocketOpener *opener,
|
|
SockAddr *addr, int port, Plug *plug)
|
|
{
|
|
HandleSocket *hs = snew(HandleSocket);
|
|
hs->sock.vt = &HandleSocket_deferred_sockvt;
|
|
hs->addr = addr;
|
|
hs->port = port;
|
|
hs->plug = plug;
|
|
hs->error = NULL;
|
|
|
|
hs->opener = opener;
|
|
bufchain_init(&hs->outputdata);
|
|
hs->output_eof_pending = false;
|
|
hs->start_frozen = false;
|
|
|
|
return &hs->sock;
|
|
}
|
|
|
|
void setup_handle_socket(Socket *s, HANDLE send_H, HANDLE recv_H,
|
|
HANDLE stderr_H, bool overlapped)
|
|
{
|
|
HandleSocket *hs = container_of(s, HandleSocket, sock);
|
|
assert(hs->sock.vt == &HandleSocket_deferred_sockvt);
|
|
|
|
int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);
|
|
|
|
struct handle *recv_h = handle_input_new(
|
|
recv_H, handle_gotdata, hs, flags);
|
|
struct handle *send_h = handle_output_new(
|
|
send_H, handle_sentdata, hs, flags);
|
|
struct handle *stderr_h = !stderr_H ? NULL : handle_input_new(
|
|
stderr_H, handle_stderr, hs, flags);
|
|
|
|
while (bufchain_size(&hs->outputdata)) {
|
|
ptrlen data = bufchain_prefix(&hs->outputdata);
|
|
handle_write(send_h, data.ptr, data.len);
|
|
bufchain_consume(&hs->outputdata, data.len);
|
|
}
|
|
|
|
if (hs->output_eof_pending)
|
|
handle_write_eof(send_h);
|
|
|
|
bool start_frozen = hs->start_frozen;
|
|
|
|
deferred_socket_opener_free(hs->opener);
|
|
bufchain_clear(&hs->outputdata);
|
|
|
|
hs->sock.vt = &HandleSocket_sockvt;
|
|
hs->frozen = start_frozen ? FREEZING : UNFROZEN;
|
|
bufchain_init(&hs->inputdata);
|
|
psb_init(&hs->psb);
|
|
|
|
hs->recv_H = recv_H;
|
|
hs->recv_h = recv_h;
|
|
hs->send_H = send_H;
|
|
hs->send_h = send_h;
|
|
hs->stderr_H = stderr_H;
|
|
hs->stderr_h = stderr_h;
|
|
|
|
hs->defer_close = hs->deferred_close = false;
|
|
|
|
queue_toplevel_callback(sk_handle_connect_success_callback, hs);
|
|
}
|