mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
cd60a602f5
I recently encountered a paper [1] which catalogues all kinds of things that can go wrong when one party in a discrete-log system invents a prime and the other party chooses an exponent. In particular, some choices of prime make it reasonable to use a short exponent to save time, but others make that strategy very bad. That paper is about the ElGamal encryption scheme used in OpenPGP, which is basically integer Diffie-Hellman with one side's key being persistent: a shared-secret integer is derived exactly as in DH, and then it's used to communicate a message integer by simply multiplying the shared secret by the message, mod p. I don't _know_ that any problem of this kind arises in the SSH usage of Diffie-Hellman: the standard integer DH groups in SSH are safe primes, and as far as I know, the usual generation of prime moduli for DH group exchange also picks safe primes. So the short exponents PuTTY has been using _should_ be OK. However, the range of imaginative other possibilities shown in that paper make me nervous, even so! So I think I'm going to retire the short exponent strategy, on general principles of overcaution. This slows down 4096-bit integer DH by about a factor of 3-4 (which would be worse if it weren't for the modpow speedup in the previous commit). I think that's OK, because, firstly, computers are a lot faster these days than when I originally chose to use short exponents, and secondly, more and more implementations are now switching to elliptic-curve DH, which is unaffected by this change (and with which we've always been using maximum-length exponents). [1] On the (in)security of ElGamal in OpenPGP. Luca De Feo, Bertram Poettering, Alessandro Sorniotti. https://eprint.iacr.org/2021/923
262 lines
6.8 KiB
C
262 lines
6.8 KiB
C
/*
|
|
* Diffie-Hellman implementation for PuTTY.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "misc.h"
|
|
#include "mpint.h"
|
|
|
|
struct dh_ctx {
|
|
mp_int *x, *e, *p, *q, *g;
|
|
};
|
|
|
|
struct dh_extra {
|
|
bool gex;
|
|
void (*construct)(dh_ctx *ctx);
|
|
};
|
|
|
|
static void dh_group1_construct(dh_ctx *ctx)
|
|
{
|
|
/* Command to recompute, from the expression in RFC 2412 section E.2:
|
|
spigot -B16 '2^1024 - 2^960 - 1 + 2^64 * ( floor(2^894 pi) + 129093 )'
|
|
*/
|
|
ctx->p = MP_LITERAL(0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF);
|
|
ctx->g = mp_from_integer(2);
|
|
}
|
|
|
|
static void dh_group14_construct(dh_ctx *ctx)
|
|
{
|
|
/* Command to recompute, from the expression in RFC 3526 section 3:
|
|
spigot -B16 '2^2048 - 2^1984 - 1 + 2^64 * ( floor(2^1918 pi) + 124476 )'
|
|
*/
|
|
ctx->p = MP_LITERAL(0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF);
|
|
ctx->g = mp_from_integer(2);
|
|
}
|
|
|
|
static const struct dh_extra extra_group1 = {
|
|
false, dh_group1_construct,
|
|
};
|
|
|
|
const ssh_kex ssh_diffiehellman_group1_sha1 = {
|
|
"diffie-hellman-group1-sha1", "group1",
|
|
KEXTYPE_DH, &ssh_sha1, &extra_group1,
|
|
};
|
|
|
|
static const ssh_kex *const group1_list[] = {
|
|
&ssh_diffiehellman_group1_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_group1 = { lenof(group1_list), group1_list };
|
|
|
|
static const struct dh_extra extra_group14 = {
|
|
false, dh_group14_construct,
|
|
};
|
|
|
|
const ssh_kex ssh_diffiehellman_group14_sha256 = {
|
|
"diffie-hellman-group14-sha256", "group14",
|
|
KEXTYPE_DH, &ssh_sha256, &extra_group14,
|
|
};
|
|
|
|
const ssh_kex ssh_diffiehellman_group14_sha1 = {
|
|
"diffie-hellman-group14-sha1", "group14",
|
|
KEXTYPE_DH, &ssh_sha1, &extra_group14,
|
|
};
|
|
|
|
static const ssh_kex *const group14_list[] = {
|
|
&ssh_diffiehellman_group14_sha256,
|
|
&ssh_diffiehellman_group14_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_group14 = {
|
|
lenof(group14_list), group14_list
|
|
};
|
|
|
|
static const struct dh_extra extra_gex = { true };
|
|
|
|
static const ssh_kex ssh_diffiehellman_gex_sha256 = {
|
|
"diffie-hellman-group-exchange-sha256", NULL,
|
|
KEXTYPE_DH, &ssh_sha256, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex ssh_diffiehellman_gex_sha1 = {
|
|
"diffie-hellman-group-exchange-sha1", NULL,
|
|
KEXTYPE_DH, &ssh_sha1, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex *const gex_list[] = {
|
|
&ssh_diffiehellman_gex_sha256,
|
|
&ssh_diffiehellman_gex_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_diffiehellman_gex = { lenof(gex_list), gex_list };
|
|
|
|
/*
|
|
* Suffix on GSSAPI SSH protocol identifiers that indicates Kerberos 5
|
|
* as the mechanism.
|
|
*
|
|
* This suffix is the base64-encoded MD5 hash of the byte sequence
|
|
* 06 09 2A 86 48 86 F7 12 01 02 02, which in turn is the ASN.1 DER
|
|
* encoding of the object ID 1.2.840.113554.1.2.2 which designates
|
|
* Kerberos v5.
|
|
*
|
|
* (The same encoded OID, minus the two-byte DER header, is defined in
|
|
* ssh/pgssapi.c as GSS_MECH_KRB5.)
|
|
*/
|
|
#define GSS_KRB5_OID_HASH "toWM5Slw5Ew8Mqkay+al2g=="
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_gex_sha1 = {
|
|
"gss-gex-sha1-" GSS_KRB5_OID_HASH, NULL,
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_gex,
|
|
};
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_group14_sha1 = {
|
|
"gss-group14-sha1-" GSS_KRB5_OID_HASH, "group14",
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_group14,
|
|
};
|
|
|
|
static const ssh_kex ssh_gssk5_diffiehellman_group1_sha1 = {
|
|
"gss-group1-sha1-" GSS_KRB5_OID_HASH, "group1",
|
|
KEXTYPE_GSS, &ssh_sha1, &extra_group1,
|
|
};
|
|
|
|
static const ssh_kex *const gssk5_sha1_kex_list[] = {
|
|
&ssh_gssk5_diffiehellman_gex_sha1,
|
|
&ssh_gssk5_diffiehellman_group14_sha1,
|
|
&ssh_gssk5_diffiehellman_group1_sha1
|
|
};
|
|
|
|
const ssh_kexes ssh_gssk5_sha1_kex = {
|
|
lenof(gssk5_sha1_kex_list), gssk5_sha1_kex_list
|
|
};
|
|
|
|
/*
|
|
* Common DH initialisation.
|
|
*/
|
|
static void dh_init(dh_ctx *ctx)
|
|
{
|
|
ctx->q = mp_rshift_fixed(ctx->p, 1);
|
|
ctx->x = ctx->e = NULL;
|
|
}
|
|
|
|
bool dh_is_gex(const ssh_kex *kex)
|
|
{
|
|
const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
|
|
return extra->gex;
|
|
}
|
|
|
|
/*
|
|
* Initialise DH for a standard group.
|
|
*/
|
|
dh_ctx *dh_setup_group(const ssh_kex *kex)
|
|
{
|
|
const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
|
|
assert(!extra->gex);
|
|
dh_ctx *ctx = snew(dh_ctx);
|
|
extra->construct(ctx);
|
|
dh_init(ctx);
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Initialise DH for a server-supplied group.
|
|
*/
|
|
dh_ctx *dh_setup_gex(mp_int *pval, mp_int *gval)
|
|
{
|
|
dh_ctx *ctx = snew(dh_ctx);
|
|
ctx->p = mp_copy(pval);
|
|
ctx->g = mp_copy(gval);
|
|
dh_init(ctx);
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Return size of DH modulus p.
|
|
*/
|
|
int dh_modulus_bit_size(const dh_ctx *ctx)
|
|
{
|
|
return mp_get_nbits(ctx->p);
|
|
}
|
|
|
|
/*
|
|
* Clean up and free a context.
|
|
*/
|
|
void dh_cleanup(dh_ctx *ctx)
|
|
{
|
|
if (ctx->x)
|
|
mp_free(ctx->x);
|
|
if (ctx->e)
|
|
mp_free(ctx->e);
|
|
if (ctx->p)
|
|
mp_free(ctx->p);
|
|
if (ctx->g)
|
|
mp_free(ctx->g);
|
|
if (ctx->q)
|
|
mp_free(ctx->q);
|
|
sfree(ctx);
|
|
}
|
|
|
|
/*
|
|
* DH stage 1: invent a number x between 1 and q, and compute e =
|
|
* g^x mod p. Return e.
|
|
*/
|
|
mp_int *dh_create_e(dh_ctx *ctx)
|
|
{
|
|
/*
|
|
* Lower limit is just 2.
|
|
*/
|
|
mp_int *lo = mp_from_integer(2);
|
|
|
|
/*
|
|
* Upper limit.
|
|
*/
|
|
mp_int *hi = mp_copy(ctx->q);
|
|
mp_sub_integer_into(hi, hi, 1);
|
|
|
|
/*
|
|
* Make a random number in that range.
|
|
*/
|
|
ctx->x = mp_random_in_range(lo, hi);
|
|
mp_free(lo);
|
|
mp_free(hi);
|
|
|
|
/*
|
|
* Now compute e = g^x mod p.
|
|
*/
|
|
ctx->e = mp_modpow(ctx->g, ctx->x, ctx->p);
|
|
|
|
return ctx->e;
|
|
}
|
|
|
|
/*
|
|
* DH stage 2-epsilon: given a number f, validate it to ensure it's in
|
|
* range. (RFC 4253 section 8: "Values of 'e' or 'f' that are not in
|
|
* the range [1, p-1] MUST NOT be sent or accepted by either side."
|
|
* Also, we rule out 1 and p-1 too, since that's easy to do and since
|
|
* they lead to obviously weak keys that even a passive eavesdropper
|
|
* can figure out.)
|
|
*/
|
|
const char *dh_validate_f(dh_ctx *ctx, mp_int *f)
|
|
{
|
|
if (!mp_hs_integer(f, 2)) {
|
|
return "f value received is too small";
|
|
} else {
|
|
mp_int *pm1 = mp_copy(ctx->p);
|
|
mp_sub_integer_into(pm1, pm1, 1);
|
|
unsigned cmp = mp_cmp_hs(f, pm1);
|
|
mp_free(pm1);
|
|
if (cmp)
|
|
return "f value received is too large";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* DH stage 2: given a number f, compute K = f^x mod p.
|
|
*/
|
|
mp_int *dh_find_K(dh_ctx *ctx, mp_int *f)
|
|
{
|
|
return mp_modpow(f, ctx->x, ctx->p);
|
|
}
|