1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/minibidi.c
Simon Tatham cdbb891f0f Stability fixes (thanks valgrind).
[originally from svn r4916]
2004-11-28 09:32:17 +00:00

1790 lines
33 KiB
C

/************************************************************************
* $Id$
*
* ------------
* Description:
* ------------
* This is an implemention of Unicode's Bidirectional Algorithm
* (known as UAX #9).
*
* http://www.unicode.org/reports/tr9/
*
* Author: Ahmad Khalifa
*
* -----------------
* Revision Details: (Updated by Revision Control System)
* -----------------
* $Date$
* $Author$
* $Revision$
* $Source: /u1/simon/svn-migration/cvs/putty/minibidi.c,v $
*
* (www.arabeyes.org - under MIT license)
*
************************************************************************/
/*
* TODO:
* =====
* - Explicit marks need to be handled (they are not 100% now)
* - Ligatures
*/
#include "minibidi.h"
/*
* Flips the text buffer, according to max level, and
* all higher levels
*
* Input:
* from: text buffer, on which to apply flipping
* level: resolved levels buffer
* max: the maximum level found in this line (should be unsigned char)
* count: line size in bidi_char
*/
void flipThisRun(bidi_char *from, unsigned char *level, int max, int count)
{
int i, j, rcount, tlevel;
bidi_char temp;
j = i = 0;
while(i<count && j<count)
{
/* find the start of the run of level=max */
tlevel = max;
i = j = findIndexOfRun(level, i, count, max);
/* find the end of the run */
while(i<count && tlevel <= level[i])
{
i++;
}
rcount = i-j;
for(; rcount>((i-j)/2); rcount--)
{
temp = from[j+rcount-1];
from[j+rcount-1] = from[i-rcount];
from[i-rcount] = temp;
}
}
}
/*
* Finds the index of a run with level equals tlevel
*/
int findIndexOfRun(unsigned char* level , int start, int count, int tlevel)
{
int i;
for(i=start; i<count; i++)
{
if(tlevel == level[i])
{
return i;
}
}
return count;
}
/*
* Returns character type of ch, by calling RLE table lookup
* function
*/
unsigned char getType(wchar_t ch)
{
return getRLE(ch);
}
/*
* The most significant 2 bits of each level are used to store
* Override status of each character
* This function sets the override bits of level according
* to the value in override, and reurns the new byte.
*/
unsigned char setOverrideBits(unsigned char level, unsigned char override)
{
if(override == ON)
return level;
else if(override == R)
return level | OISR;
else if(override == L)
return level | OISL;
return level;
}
/* Dont remember what this was used for :-) */
unsigned char getPreviousLevel(unsigned char* level, int from)
{
unsigned char current;
from--;
current = level[from];
while(from>0 && level[from] == current)
{
from--;
}
return level[++from];
}
/*
* Returns the first odd value greater than x
*/
unsigned char leastGreaterOdd(unsigned char x)
{
if((x % 2) == 0)
return x+1;
else
return x+2;
}
/*
* Returns the first even value greater than x
*/
unsigned char leastGreaterEven(unsigned char x)
{
if((x % 2) == 0)
return x+2;
else
return x+1;
}
/*
* Loops over the RLE_table array looking for the
* type of ch
*/
unsigned char getRLE(wchar_t ch)
{
int offset, i, freq;
freq = offset = 0;
for(i=0; i<0xFFFF; i++)
{
freq = ((RLENode*)RLE_table)[i].f;
offset += freq;
if(offset == ch)
return ((RLENode*)RLE_table)[i].d;
else if(offset > ch)
return ((RLENode*)RLE_table)[i-1].d;
}
/* this is here to stop compiler nagging */
return ON;
}
/* The Main shaping function, and the only one to be used
* by the outside world.
*
* line: buffer to apply shaping to. this must be passed by doBidi() first
* to: output buffer for the shaped data
* count: number of characters in line
*/
int do_shape(bidi_char *line, bidi_char *to, int count)
{
int i, tempShape, ligFlag;
for(ligFlag=i=0; i<count; i++)
{
to[i] = line[i];
tempShape = STYPE(line[i].wc);
switch(tempShape )
{
case SC:
break;
case SU:
break;
case SR:
tempShape = STYPE(line[i+1].wc);
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
to[i].wc = SFINAL((SISOLATED(line[i].wc)));
else
to[i].wc = SISOLATED(line[i].wc);
break;
case SD:
/* Make Ligatures */
tempShape = STYPE(line[i+1].wc);
if(line[i].wc == 0x644)
{
switch(line[i-1].wc)
{
case 0x622:
ligFlag = 1;
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
to[i].wc = 0xFEF6;
else
to[i].wc = 0xFEF5;
break;
case 0x623:
ligFlag = 1;
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
to[i].wc = 0xFEF8;
else
to[i].wc = 0xFEF7;
break;
case 0x625:
ligFlag = 1;
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
to[i].wc = 0xFEFA;
else
to[i].wc = 0xFEF9;
break;
case 0x627:
ligFlag = 1;
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
to[i].wc = 0xFEFC;
else
to[i].wc = 0xFEFB;
break;
}
if(ligFlag)
{
to[i-1].wc = 0x20;
ligFlag = 0;
break;
}
}
if((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
{
tempShape = STYPE(line[i-1].wc);
if((tempShape == SR) || (tempShape == SD) || (tempShape == SC))
to[i].wc = SMEDIAL( (SISOLATED(line[i].wc)) );
else
to[i].wc = SFINAL((SISOLATED(line[i].wc)));
break;
}
tempShape = STYPE(line[i-1].wc);
if((tempShape == SR) || (tempShape == SD) || (tempShape == SC))
to[i].wc = SINITIAL((SISOLATED(line[i].wc)));
else
to[i].wc = SISOLATED(line[i].wc);
break;
}
}
return 1;
}
/*
* The Main Bidi Function, and the only function that should
* be used by the outside world.
*
* line: a buffer of size count containing text to apply
* the Bidirectional algorithm to.
*/
int do_bidi(bidi_char *line, int count)
{
unsigned char* types;
unsigned char* levels;
unsigned char paragraphLevel;
unsigned char currentEmbedding;
unsigned char currentOverride;
unsigned char tempType;
int i, j, imax, yes, bover;
/* Check the presence of R or AL types as optimization */
yes = 0;
for(i=0; i<count; i++)
{
if(getType(line[i].wc) == R || getType(line[i].wc) == AL)
{
yes = 1;
break;
}
}
if(yes == 0)
return L;
/* Initialize types, levels */
types = malloc(sizeof(unsigned char) * count);
levels = malloc(sizeof(unsigned char) * count);
/* Rule (P1) NOT IMPLEMENTED
* P1. Split the text into separate paragraphs. A paragraph separator is
* kept with the previous paragraph. Within each paragraph, apply all the
* other rules of this algorithm.
*/
/* Rule (P2), (P3)
* P2. In each paragraph, find the first character of type L, AL, or R.
* P3. If a character is found in P2 and it is of type AL or R, then set
* the paragraph embedding level to one; otherwise, set it to zero.
*/
paragraphLevel = 0;
for( i=0; i<count ; i++)
{
if(getType(line[i].wc) == R || getType(line[i].wc) == AL)
{
paragraphLevel = 1;
break;
}
else if(getType(line[i].wc) == L)
break;
}
/* Rule (X1)
* X1. Begin by setting the current embedding level to the paragraph
* embedding level. Set the directional override status to neutral.
*/
currentEmbedding = paragraphLevel;
currentOverride = ON;
/* Rule (X2), (X3), (X4), (X5), (X6), (X7), (X8)
* X2. With each RLE, compute the least greater odd embedding level.
* X3. With each LRE, compute the least greater even embedding level.
* X4. With each RLO, compute the least greater odd embedding level.
* X5. With each LRO, compute the least greater even embedding level.
* X6. For all types besides RLE, LRE, RLO, LRO, and PDF:
* a. Set the level of the current character to the current
* embedding level.
* b. Whenever the directional override status is not neutral,
* reset the current character type to the directional
* override status.
* X7. With each PDF, determine the matching embedding or override code.
* If there was a valid matching code, restore (pop) the last
* remembered (pushed) embedding level and directional override.
* X8. All explicit directional embeddings and overrides are completely
* terminated at the end of each paragraph. Paragraph separators are not
* included in the embedding. (Useless here) NOT IMPLEMENTED
*/
bover = 0;
for( i=0; i<count; i++)
{
tempType = getType(line[i].wc);
switch(tempType)
{
case RLE:
currentEmbedding = levels[i] = leastGreaterOdd(currentEmbedding);
levels[i] = setOverrideBits(levels[i], currentOverride);
currentOverride = ON;
break;
case LRE:
currentEmbedding = levels[i] = leastGreaterEven(currentEmbedding);
levels[i] = setOverrideBits(levels[i], currentOverride);
currentOverride = ON;
break;
case RLO:
currentEmbedding = levels[i] = leastGreaterOdd(currentEmbedding);
tempType = currentOverride = R;
bover = 1;
break;
case LRO:
currentEmbedding = levels[i] = leastGreaterEven(currentEmbedding);
tempType = currentOverride = L;
bover = 1;
break;
case PDF:
currentEmbedding = getPreviousLevel(levels, i);
currentOverride = currentEmbedding & OMASK;
currentEmbedding = currentEmbedding & ~OMASK;
levels[i] = currentEmbedding;
break;
/* Whitespace is treated as neutral for now */
case WS:
case S:
levels[i] = currentEmbedding;
tempType = ON;
if(currentOverride != ON)
tempType = currentOverride;
break;
default:
levels[i] = currentEmbedding;
if(currentOverride != ON)
tempType = currentOverride;
break;
}
types[i] = tempType;
}
/* this clears out all overrides, so we can use levels safely... */
/* checks bover first */
if(bover)
for( i=0; i<count; i++)
levels[i] = levels[i] & LMASK;
/* Rule (X9)
* X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN codes.
* Here, they're converted to BN.
*/
for(i=0; i<count; i++)
{
switch(types[i])
{
case RLE:
case LRE:
case RLO:
case LRO:
case PDF:
types[i] = BN;
break;
}
}
/* Rule (W1)
* W1. Examine each non-spacing mark (NSM) in the level run, and change
* the type of the NSM to the type of the previous character. If the NSM
* is at the start of the level run, it will get the type of sor.
*/
if(types[0] == NSM)
types[0] = paragraphLevel;
for(i=1; i<count; i++)
{
if(types[i] == NSM)
types[i] = types[i-1];
/* Is this a safe assumption?
* I assumed the previous, IS a character.
*/
}
/* Rule (W2)
* W2. Search backwards from each instance of a European number until the
* first strong type (R, L, AL, or sor) is found. If an AL is found,
* change the type of the European number to Arabic number.
*/
for(i=0; i<count; i++)
{
if(types[i] == EN)
{
j=i;
while(j >= 0)
{
if(types[j] == AL)
{
types[i] = AN;
break;
}else if(types[j] == R || types[j] == L)
{
break;
}
j--;
}
}
}
/* Rule (W3)
* W3. Change all ALs to R.
*
* Optimization: on Rule Xn, we might set a flag on AL type
* to prevent this loop in L R lines only...
*/
for(i=0; i<count; i++)
{
if(types[i] == AL)
types[i] = R;
}
/* Rule (W4)
* W4. A single European separator between two European numbers changes
* to a European number. A single common separator between two numbers
* of the same type changes to that type.
*/
for( i=0; i<(count-1); i++)
{
if(types[i] == ES)
{
if(types[i-1] == EN && types[i+1] == EN)
types[i] = EN;
}else if(types[i] == CS)
{
if(types[i-1] == EN && types[i+1] == EN)
types[i] = EN;
else if(types[i-1] == AN && types[i+1] == AN)
types[i] = AN;
}
}
/* Rule (W5)
* W5. A sequence of European terminators adjacent to European numbers
* changes to all European numbers.
*
* Optimization: lots here... else ifs need rearrangement
*/
for(i=0; i<count; i++)
{
if(types[i] == ET)
{
if(types[i-1] == EN)
{
types[i] = EN;
continue;
}else if(types[i+1] == EN)
{
types[i] = EN;
continue;
}else if(types[i+1] == ET)
{
j=i;
while(j <count && types[j] == ET)
{
j++;
}
if(types[j] == EN)
types[i] = EN;
}
}
}
/* Rule (W6)
* W6. Otherwise, separators and terminators change to Other Neutral:
*/
for(i=0; i<count; i++)
{
switch(types[i])
{
case ES:
case ET:
case CS:
types[i] = ON;
break;
}
}
/* Rule (W7)
* W7. Search backwards from each instance of a European number until
* the first strong type (R, L, or sor) is found. If an L is found,
* then change the type of the European number to L.
*/
for(i=0; i<count; i++)
{
if(types[i] == EN)
{
j=i;
while(j >= 0)
{
if(types[j] == L)
{
types[i] = L;
break;
}
else if(types[j] == R || types[j] == AL)
{
break;
}
j--;
}
}
}
/* Rule (N1)
* N1. A sequence of neutrals takes the direction of the surrounding
* strong text if the text on both sides has the same direction. European
* and Arabic numbers are treated as though they were R.
*/
if(types[0] == ON)
{
if((types[1] == R) || (types[1] == EN) || (types[1] == AN))
types[0] = R;
else if(types[1] == L)
types[0] = L;
}
for(i=1; i<(count-1); i++)
{
if(types[i] == ON)
{
if(types[i-1] == L)
{
j=i;
while(j<(count-1) && types[j] == ON)
{
j++;
}
if(types[j] == L)
{
while(i<j)
{
types[i] = L;
i++;
}
}
}else if((types[i-1] == R) ||
(types[i-1] == EN) ||
(types[i-1] == AN))
{
j=i;
while(j<(count-1) && types[j] == ON)
{
j++;
}
if((types[j] == R) ||
(types[j] == EN) ||
(types[j] == AN))
{
while(i<j)
{
types[i] = R;
i++;
}
}
}
}
}
if(types[count-1] == ON)
{
if(types[count-2] == R || types[count-2] == EN || types[count-2] == AN)
types[count-1] = R;
else if(types[count-2] == L)
types[count-1] = L;
}
/* Rule (N2)
* N2. Any remaining neutrals take the embedding direction.
*/
for(i=0; i<count; i++)
{
if(types[i] == ON)
{
if((levels[i] % 2) == 0)
types[i] = L;
else
types[i] = R;
}
}
/* Rule (I1)
* I1. For all characters with an even (left-to-right) embedding
* direction, those of type R go up one level and those of type AN or
* EN go up two levels.
*/
for(i=0; i<count; i++)
{
if((levels[i] % 2) == 0)
{
if(types[i] == R)
levels[i] += 1;
else if(types[i] == AN || types[i] == EN)
levels[i] += 2;
}
}
/* Rule (I2)
* I2. For all characters with an odd (right-to-left) embedding direction,
* those of type L, EN or AN go up one level.
*/
for(i=0; i<count; i++)
{
if((levels[i] % 2) == 1)
{
if(types[i] == L || types[i] == EN || types[i] == AN)
levels[i] += 1;
}
}
/* Rule (L1)
* L1. On each line, reset the embedding level of the following characters
* to the paragraph embedding level:
* (1)segment separators, (2)paragraph separators,
* (3)any sequence of whitespace characters preceding
* a segment separator or paragraph separator,
* (4)and any sequence of white space characters
* at the end of the line.
* The types of characters used here are the original types, not those
* modified by the previous phase.
*/
j=count-1;
while(j>0 && (getType(line[j].wc) == WS))
{
j--;
}
if(j < (count-1))
{
for(j++; j<count; j++)
levels[j] = paragraphLevel;
}
for(i=0; i<count; i++)
{
tempType = getType(line[i].wc);
if(tempType == WS)
{
j=i;
while(j<count && (getType(line[j].wc) == WS))
{
j++;
}
if(j==count || getType(line[j].wc) == B ||
getType(line[j].wc) == S)
{
for(j--; j>=i ; j--)
{
levels[j] = paragraphLevel;
}
}
}else if(tempType == B || tempType == S)
levels[i] = paragraphLevel;
}
/* Rule (L4) NOT IMPLEMENTED
* L4. A character that possesses the mirrored property as specified by
* Section 4.7, Mirrored, must be depicted by a mirrored glyph if the
* resolved directionality of that character is R.
*/
/* Note: this is implemented before L2 for efficiency */
for(i=0; i<count; i++)
if((levels[i] % 2) == 1)
doMirror(&line[i].wc);
/* Rule (L2)
* L2. From the highest level found in the text to the lowest odd level on
* each line, including intermediate levels not actually present in the
* text, reverse any contiguous sequence of characters that are at that
* level or higher
*/
/* we flip the character string and leave the level array */
imax = 0;
i=0;
tempType = levels[0];
while(i < count)
{
if(levels[i] > tempType)
{
tempType = levels[i];
imax=i;
}
i++;
}
/* maximum level in tempType, its index in imax. */
while(tempType > 0) /* loop from highest level to the least odd, */
{ /* which i assume is 1 */
flipThisRun(line, levels, tempType, count);
tempType--;
}
/* Rule (L3) NOT IMPLEMENTED
* L3. Combining marks applied to a right-to-left base character will at
* this point precede their base character. If the rendering engine
* expects them to follow the base characters in the final display
* process, then the ordering of the marks and the base character must
* be reversed.
*/
free(types);
free(levels);
return R;
}
/*
* Bad, Horrible funtion
* takes a pointer to a character that is checked for
* having a mirror glyph.
*/
void doMirror(wchar_t* ch)
{
if((*ch & 0xFF00) == 0)
{
switch(*ch)
{
case 0x0028:
*ch = 0x0029;
break;
case 0x0029:
*ch = 0x0028;
break;
case 0x003C:
*ch = 0x003E;
break;
case 0x003E:
*ch = 0x003C;
break;
case 0x005B:
*ch = 0x005D;
break;
case 0x005D:
*ch = 0x005B;
break;
case 0x007B:
*ch = 0x007D;
break;
case 0x007D:
*ch = 0x007B;
break;
case 0x00AB:
*ch = 0x00BB;
break;
case 0x00BB:
*ch = 0x00AB;
break;
}
}
else if((*ch & 0xFF00) == 0x2000)
{
switch(*ch)
{
case 0x2039:
*ch = 0x203A;
break;
case 0x203A:
*ch = 0x2039;
break;
case 0x2045:
*ch = 0x2046;
break;
case 0x2046:
*ch = 0x2045;
break;
case 0x207D:
*ch = 0x207E;
break;
case 0x207E:
*ch = 0x207D;
break;
case 0x208D:
*ch = 0x208E;
break;
case 0x208E:
*ch = 0x208D;
break;
}
}
else if((*ch & 0xFF00) == 0x2200)
{
switch(*ch)
{
case 0x2208:
*ch = 0x220B;
break;
case 0x2209:
*ch = 0x220C;
break;
case 0x220A:
*ch = 0x220D;
break;
case 0x220B:
*ch = 0x2208;
break;
case 0x220C:
*ch = 0x2209;
break;
case 0x220D:
*ch = 0x220A;
break;
case 0x2215:
*ch = 0x29F5;
break;
case 0x223C:
*ch = 0x223D;
break;
case 0x223D:
*ch = 0x223C;
break;
case 0x2243:
*ch = 0x22CD;
break;
case 0x2252:
*ch = 0x2253;
break;
case 0x2253:
*ch = 0x2252;
break;
case 0x2254:
*ch = 0x2255;
break;
case 0x2255:
*ch = 0x2254;
break;
case 0x2264:
*ch = 0x2265;
break;
case 0x2265:
*ch = 0x2264;
break;
case 0x2266:
*ch = 0x2267;
break;
case 0x2267:
*ch = 0x2266;
break;
case 0x2268:
*ch = 0x2269;
break;
case 0x2269:
*ch = 0x2268;
break;
case 0x226A:
*ch = 0x226B;
break;
case 0x226B:
*ch = 0x226A;
break;
case 0x226E:
*ch = 0x226F;
break;
case 0x226F:
*ch = 0x226E;
break;
case 0x2270:
*ch = 0x2271;
break;
case 0x2271:
*ch = 0x2270;
break;
case 0x2272:
*ch = 0x2273;
break;
case 0x2273:
*ch = 0x2272;
break;
case 0x2274:
*ch = 0x2275;
break;
case 0x2275:
*ch = 0x2274;
break;
case 0x2276:
*ch = 0x2277;
break;
case 0x2277:
*ch = 0x2276;
break;
case 0x2278:
*ch = 0x2279;
break;
case 0x2279:
*ch = 0x2278;
break;
case 0x227A:
*ch = 0x227B;
break;
case 0x227B:
*ch = 0x227A;
break;
case 0x227C:
*ch = 0x227D;
break;
case 0x227D:
*ch = 0x227C;
break;
case 0x227E:
*ch = 0x227F;
break;
case 0x227F:
*ch = 0x227E;
break;
case 0x2280:
*ch = 0x2281;
break;
case 0x2281:
*ch = 0x2280;
break;
case 0x2282:
*ch = 0x2283;
break;
case 0x2283:
*ch = 0x2282;
break;
case 0x2284:
*ch = 0x2285;
break;
case 0x2285:
*ch = 0x2284;
break;
case 0x2286:
*ch = 0x2287;
break;
case 0x2287:
*ch = 0x2286;
break;
case 0x2288:
*ch = 0x2289;
break;
case 0x2289:
*ch = 0x2288;
break;
case 0x228A:
*ch = 0x228B;
break;
case 0x228B:
*ch = 0x228A;
break;
case 0x228F:
*ch = 0x2290;
break;
case 0x2290:
*ch = 0x228F;
break;
case 0x2291:
*ch = 0x2292;
break;
case 0x2292:
*ch = 0x2291;
break;
case 0x2298:
*ch = 0x29B8;
break;
case 0x22A2:
*ch = 0x22A3;
break;
case 0x22A3:
*ch = 0x22A2;
break;
case 0x22A6:
*ch = 0x2ADE;
break;
case 0x22A8:
*ch = 0x2AE4;
break;
case 0x22A9:
*ch = 0x2AE3;
break;
case 0x22AB:
*ch = 0x2AE5;
break;
case 0x22B0:
*ch = 0x22B1;
break;
case 0x22B1:
*ch = 0x22B0;
break;
case 0x22B2:
*ch = 0x22B3;
break;
case 0x22B3:
*ch = 0x22B2;
break;
case 0x22B4:
*ch = 0x22B5;
break;
case 0x22B5:
*ch = 0x22B4;
break;
case 0x22B6:
*ch = 0x22B7;
break;
case 0x22B7:
*ch = 0x22B6;
break;
case 0x22C9:
*ch = 0x22CA;
break;
case 0x22CA:
*ch = 0x22C9;
break;
case 0x22CB:
*ch = 0x22CC;
break;
case 0x22CC:
*ch = 0x22CB;
break;
case 0x22CD:
*ch = 0x2243;
break;
case 0x22D0:
*ch = 0x22D1;
break;
case 0x22D1:
*ch = 0x22D0;
break;
case 0x22D6:
*ch = 0x22D7;
break;
case 0x22D7:
*ch = 0x22D6;
break;
case 0x22D8:
*ch = 0x22D9;
break;
case 0x22D9:
*ch = 0x22D8;
break;
case 0x22DA:
*ch = 0x22DB;
break;
case 0x22DB:
*ch = 0x22DA;
break;
case 0x22DC:
*ch = 0x22DD;
break;
case 0x22DD:
*ch = 0x22DC;
break;
case 0x22DE:
*ch = 0x22DF;
break;
case 0x22DF:
*ch = 0x22DE;
break;
case 0x22E0:
*ch = 0x22E1;
break;
case 0x22E1:
*ch = 0x22E0;
break;
case 0x22E2:
*ch = 0x22E3;
break;
case 0x22E3:
*ch = 0x22E2;
break;
case 0x22E4:
*ch = 0x22E5;
break;
case 0x22E5:
*ch = 0x22E4;
break;
case 0x22E6:
*ch = 0x22E7;
break;
case 0x22E7:
*ch = 0x22E6;
break;
case 0x22E8:
*ch = 0x22E9;
break;
case 0x22E9:
*ch = 0x22E8;
break;
case 0x22EA:
*ch = 0x22EB;
break;
case 0x22EB:
*ch = 0x22EA;
break;
case 0x22EC:
*ch = 0x22ED;
break;
case 0x22ED:
*ch = 0x22EC;
break;
case 0x22F0:
*ch = 0x22F1;
break;
case 0x22F1:
*ch = 0x22F0;
break;
case 0x22F2:
*ch = 0x22FA;
break;
case 0x22F3:
*ch = 0x22FB;
break;
case 0x22F4:
*ch = 0x22FC;
break;
case 0x22F6:
*ch = 0x22FD;
break;
case 0x22F7:
*ch = 0x22FE;
break;
case 0x22FA:
*ch = 0x22F2;
break;
case 0x22FB:
*ch = 0x22F3;
break;
case 0x22FC:
*ch = 0x22F4;
break;
case 0x22FD:
*ch = 0x22F6;
break;
case 0x22FE:
*ch = 0x22F7;
break;
}
}else if((*ch & 0xFF00) == 0x2300)
{
switch(*ch)
{
case 0x2308:
*ch = 0x2309;
break;
case 0x2309:
*ch = 0x2308;
break;
case 0x230A:
*ch = 0x230B;
break;
case 0x230B:
*ch = 0x230A;
break;
case 0x2329:
*ch = 0x232A;
break;
case 0x232A:
*ch = 0x2329;
break;
}
}
else if((*ch & 0xFF00) == 0x2700)
{
switch(*ch)
{
case 0x2768:
*ch = 0x2769;
break;
case 0x2769:
*ch = 0x2768;
break;
case 0x276A:
*ch = 0x276B;
break;
case 0x276B:
*ch = 0x276A;
break;
case 0x276C:
*ch = 0x276D;
break;
case 0x276D:
*ch = 0x276C;
break;
case 0x276E:
*ch = 0x276F;
break;
case 0x276F:
*ch = 0x276E;
break;
case 0x2770:
*ch = 0x2771;
break;
case 0x2771:
*ch = 0x2770;
break;
case 0x2772:
*ch = 0x2773;
break;
case 0x2773:
*ch = 0x2772;
break;
case 0x2774:
*ch = 0x2775;
break;
case 0x2775:
*ch = 0x2774;
break;
case 0x27D5:
*ch = 0x27D6;
break;
case 0x27D6:
*ch = 0x27D5;
break;
case 0x27DD:
*ch = 0x27DE;
break;
case 0x27DE:
*ch = 0x27DD;
break;
case 0x27E2:
*ch = 0x27E3;
break;
case 0x27E3:
*ch = 0x27E2;
break;
case 0x27E4:
*ch = 0x27E5;
break;
case 0x27E5:
*ch = 0x27E4;
break;
case 0x27E6:
*ch = 0x27E7;
break;
case 0x27E7:
*ch = 0x27E6;
break;
case 0x27E8:
*ch = 0x27E9;
break;
case 0x27E9:
*ch = 0x27E8;
break;
case 0x27EA:
*ch = 0x27EB;
break;
case 0x27EB:
*ch = 0x27EA;
break;
}
}
else if((*ch & 0xFF00) == 0x2900)
{
switch(*ch)
{
case 0x2983:
*ch = 0x2984;
break;
case 0x2984:
*ch = 0x2983;
break;
case 0x2985:
*ch = 0x2986;
break;
case 0x2986:
*ch = 0x2985;
break;
case 0x2987:
*ch = 0x2988;
break;
case 0x2988:
*ch = 0x2987;
break;
case 0x2989:
*ch = 0x298A;
break;
case 0x298A:
*ch = 0x2989;
break;
case 0x298B:
*ch = 0x298C;
break;
case 0x298C:
*ch = 0x298B;
break;
case 0x298D:
*ch = 0x2990;
break;
case 0x298E:
*ch = 0x298F;
break;
case 0x298F:
*ch = 0x298E;
break;
case 0x2990:
*ch = 0x298D;
break;
case 0x2991:
*ch = 0x2992;
break;
case 0x2992:
*ch = 0x2991;
break;
case 0x2993:
*ch = 0x2994;
break;
case 0x2994:
*ch = 0x2993;
break;
case 0x2995:
*ch = 0x2996;
break;
case 0x2996:
*ch = 0x2995;
break;
case 0x2997:
*ch = 0x2998;
break;
case 0x2998:
*ch = 0x2997;
break;
case 0x29B8:
*ch = 0x2298;
break;
case 0x29C0:
*ch = 0x29C1;
break;
case 0x29C1:
*ch = 0x29C0;
break;
case 0x29C4:
*ch = 0x29C5;
break;
case 0x29C5:
*ch = 0x29C4;
break;
case 0x29CF:
*ch = 0x29D0;
break;
case 0x29D0:
*ch = 0x29CF;
break;
case 0x29D1:
*ch = 0x29D2;
break;
case 0x29D2:
*ch = 0x29D1;
break;
case 0x29D4:
*ch = 0x29D5;
break;
case 0x29D5:
*ch = 0x29D4;
break;
case 0x29D8:
*ch = 0x29D9;
break;
case 0x29D9:
*ch = 0x29D8;
break;
case 0x29DA:
*ch = 0x29DB;
break;
case 0x29DB:
*ch = 0x29DA;
break;
case 0x29F5:
*ch = 0x2215;
break;
case 0x29F8:
*ch = 0x29F9;
break;
case 0x29F9:
*ch = 0x29F8;
break;
case 0x29FC:
*ch = 0x29FD;
break;
case 0x29FD:
*ch = 0x29FC;
break;
}
}
else if((*ch & 0xFF00) == 0x2A00)
{
switch(*ch)
{
case 0x2A2B:
*ch = 0x2A2C;
break;
case 0x2A2C:
*ch = 0x2A2B;
break;
case 0x2A2D:
*ch = 0x2A2C;
break;
case 0x2A2E:
*ch = 0x2A2D;
break;
case 0x2A34:
*ch = 0x2A35;
break;
case 0x2A35:
*ch = 0x2A34;
break;
case 0x2A3C:
*ch = 0x2A3D;
break;
case 0x2A3D:
*ch = 0x2A3C;
break;
case 0x2A64:
*ch = 0x2A65;
break;
case 0x2A65:
*ch = 0x2A64;
break;
case 0x2A79:
*ch = 0x2A7A;
break;
case 0x2A7A:
*ch = 0x2A79;
break;
case 0x2A7D:
*ch = 0x2A7E;
break;
case 0x2A7E:
*ch = 0x2A7D;
break;
case 0x2A7F:
*ch = 0x2A80;
break;
case 0x2A80:
*ch = 0x2A7F;
break;
case 0x2A81:
*ch = 0x2A82;
break;
case 0x2A82:
*ch = 0x2A81;
break;
case 0x2A83:
*ch = 0x2A84;
break;
case 0x2A84:
*ch = 0x2A83;
break;
case 0x2A8B:
*ch = 0x2A8C;
break;
case 0x2A8C:
*ch = 0x2A8B;
break;
case 0x2A91:
*ch = 0x2A92;
break;
case 0x2A92:
*ch = 0x2A91;
break;
case 0x2A93:
*ch = 0x2A94;
break;
case 0x2A94:
*ch = 0x2A93;
break;
case 0x2A95:
*ch = 0x2A96;
break;
case 0x2A96:
*ch = 0x2A95;
break;
case 0x2A97:
*ch = 0x2A98;
break;
case 0x2A98:
*ch = 0x2A97;
break;
case 0x2A99:
*ch = 0x2A9A;
break;
case 0x2A9A:
*ch = 0x2A99;
break;
case 0x2A9B:
*ch = 0x2A9C;
break;
case 0x2A9C:
*ch = 0x2A9B;
break;
case 0x2AA1:
*ch = 0x2AA2;
break;
case 0x2AA2:
*ch = 0x2AA1;
break;
case 0x2AA6:
*ch = 0x2AA7;
break;
case 0x2AA7:
*ch = 0x2AA6;
break;
case 0x2AA8:
*ch = 0x2AA9;
break;
case 0x2AA9:
*ch = 0x2AA8;
break;
case 0x2AAA:
*ch = 0x2AAB;
break;
case 0x2AAB:
*ch = 0x2AAA;
break;
case 0x2AAC:
*ch = 0x2AAD;
break;
case 0x2AAD:
*ch = 0x2AAC;
break;
case 0x2AAF:
*ch = 0x2AB0;
break;
case 0x2AB0:
*ch = 0x2AAF;
break;
case 0x2AB3:
*ch = 0x2AB4;
break;
case 0x2AB4:
*ch = 0x2AB3;
break;
case 0x2ABB:
*ch = 0x2ABC;
break;
case 0x2ABC:
*ch = 0x2ABB;
break;
case 0x2ABD:
*ch = 0x2ABE;
break;
case 0x2ABE:
*ch = 0x2ABD;
break;
case 0x2ABF:
*ch = 0x2AC0;
break;
case 0x2AC0:
*ch = 0x2ABF;
break;
case 0x2AC1:
*ch = 0x2AC2;
break;
case 0x2AC2:
*ch = 0x2AC1;
break;
case 0x2AC3:
*ch = 0x2AC4;
break;
case 0x2AC4:
*ch = 0x2AC3;
break;
case 0x2AC5:
*ch = 0x2AC6;
break;
case 0x2AC6:
*ch = 0x2AC5;
break;
case 0x2ACD:
*ch = 0x2ACE;
break;
case 0x2ACE:
*ch = 0x2ACD;
break;
case 0x2ACF:
*ch = 0x2AD0;
break;
case 0x2AD0:
*ch = 0x2ACF;
break;
case 0x2AD1:
*ch = 0x2AD2;
break;
case 0x2AD2:
*ch = 0x2AD1;
break;
case 0x2AD3:
*ch = 0x2AD4;
break;
case 0x2AD4:
*ch = 0x2AD3;
break;
case 0x2AD5:
*ch = 0x2AD6;
break;
case 0x2AD6:
*ch = 0x2AD5;
break;
case 0x2ADE:
*ch = 0x22A6;
break;
case 0x2AE3:
*ch = 0x22A9;
break;
case 0x2AE4:
*ch = 0x22A8;
break;
case 0x2AE5:
*ch = 0x22AB;
break;
case 0x2AEC:
*ch = 0x2AED;
break;
case 0x2AED:
*ch = 0x2AEC;
break;
case 0x2AF7:
*ch = 0x2AF8;
break;
case 0x2AF8:
*ch = 0x2AF7;
break;
case 0x2AF9:
*ch = 0x2AFA;
break;
case 0x2AFA:
*ch = 0x2AF9;
break;
}
}
else if((*ch & 0xFF00) == 0x3000)
{
switch(*ch)
{
case 0x3008:
*ch = 0x3009;
break;
case 0x3009:
*ch = 0x3008;
break;
case 0x300A:
*ch = 0x300B;
break;
case 0x300B:
*ch = 0x300A;
break;
case 0x300C:
*ch = 0x300D;
break;
case 0x300D:
*ch = 0x300C;
break;
case 0x300E:
*ch = 0x300F;
break;
case 0x300F:
*ch = 0x300E;
break;
case 0x3010:
*ch = 0x3011;
break;
case 0x3011:
*ch = 0x3010;
break;
case 0x3014:
*ch = 0x3015;
break;
case 0x3015:
*ch = 0x3014;
break;
case 0x3016:
*ch = 0x3017;
break;
case 0x3017:
*ch = 0x3016;
break;
case 0x3018:
*ch = 0x3019;
break;
case 0x3019:
*ch = 0x3018;
break;
case 0x301A:
*ch = 0x301B;
break;
case 0x301B:
*ch = 0x301A;
break;
}
}
else if((*ch & 0xFF00) == 0xFF00)
{
switch(*ch)
{
case 0xFF08:
*ch = 0xFF09;
break;
case 0xFF09:
*ch = 0xFF08;
break;
case 0xFF1C:
*ch = 0xFF1E;
break;
case 0xFF1E:
*ch = 0xFF1C;
break;
case 0xFF3B:
*ch = 0xFF3D;
break;
case 0xFF3D:
*ch = 0xFF3B;
break;
case 0xFF5B:
*ch = 0xFF5D;
break;
case 0xFF5D:
*ch = 0xFF5B;
break;
case 0xFF5F:
*ch = 0xFF60;
break;
case 0xFF60:
*ch = 0xFF5F;
break;
case 0xFF62:
*ch = 0xFF63;
break;
case 0xFF63:
*ch = 0xFF62;
break;
}
}
}