1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshccp.c
Simon Tatham d0c74a115a Make log messages look slightly nicer.
I'd rather see the cipher and MAC named separately, with a hint that
the two are linked together in some way, than see the cipher called by
a name including the MAC and the MAC init message have an ugly
'<implicit>' in it.
2015-06-07 13:50:05 +01:00

543 lines
15 KiB
C

/*
* ChaCha20-Poly1305 Implementation for SSH-2
*
* Protocol spec:
* http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?rev=1.2&content-type=text/x-cvsweb-markup
*
* ChaCha20 spec:
* http://cr.yp.to/chacha/chacha-20080128.pdf
*
* Salsa20 spec:
* http://cr.yp.to/snuffle/spec.pdf
*
* Poly1305-AES spec:
* http://cr.yp.to/mac/poly1305-20050329.pdf
*
* The nonce for the Poly1305 is the second part of the key output
* from the first round of ChaCha20. This removes the AES requirement.
* This is undocumented!
*
* This has an intricate link between the cipher and the MAC. The
* keying of both is done in by the cipher and setting of the IV is
* done by the MAC. One cannot operate without the other. The
* configuration of the ssh2_cipher structure ensures that the MAC is
* set (and others ignored) if this cipher is chosen.
*
* This cipher also encrypts the length using a different
* instantiation of the cipher using a different key and IV made from
* the sequence number which is passed in addition when calling
* encrypt/decrypt on it.
*/
#include "ssh.h"
#ifndef INLINE
#define INLINE
#endif
/* ChaCha20 implementation, only supporting 256-bit keys */
/* State for each ChaCha20 instance */
struct chacha20 {
/* Current context, usually with the count incremented
* 0-3 are the static constant
* 4-11 are the key
* 12-13 are the counter
* 14-15 are the IV */
uint32 state[16];
/* The output of the state above ready to xor */
unsigned char current[64];
/* The index of the above currently used to allow a true streaming cipher */
int currentIndex;
};
static INLINE void chacha20_round(struct chacha20 *ctx)
{
int i;
uint32 copy[16];
/* Take a copy */
memcpy(copy, ctx->state, sizeof(copy));
/* A circular rotation for a 32bit number */
#define rotl(x, shift) x = ((x << shift) | (x >> (32 - shift)))
/* What to do for each quarter round operation */
#define qrop(a, b, c, d) \
copy[a] += copy[b]; \
copy[c] ^= copy[a]; \
rotl(copy[c], d)
/* A quarter round */
#define quarter(a, b, c, d) \
qrop(a, b, d, 16); \
qrop(c, d, b, 12); \
qrop(a, b, d, 8); \
qrop(c, d, b, 7)
/* Do 20 rounds, in pairs because every other is different */
for (i = 0; i < 20; i += 2) {
/* A round */
quarter(0, 4, 8, 12);
quarter(1, 5, 9, 13);
quarter(2, 6, 10, 14);
quarter(3, 7, 11, 15);
/* Another slightly different round */
quarter(0, 5, 10, 15);
quarter(1, 6, 11, 12);
quarter(2, 7, 8, 13);
quarter(3, 4, 9, 14);
}
/* Dump the macros, don't need them littering */
#undef rotl
#undef qrop
#undef quarter
/* Add the initial state */
for (i = 0; i < 16; ++i) {
copy[i] += ctx->state[i];
}
/* Update the content of the xor buffer */
for (i = 0; i < 16; ++i) {
ctx->current[i * 4 + 0] = copy[i] >> 0;
ctx->current[i * 4 + 1] = copy[i] >> 8;
ctx->current[i * 4 + 2] = copy[i] >> 16;
ctx->current[i * 4 + 3] = copy[i] >> 24;
}
/* State full, reset pointer to beginning */
ctx->currentIndex = 0;
smemclr(copy, sizeof(copy));
/* Increment round counter */
++ctx->state[12];
/* Check for overflow, not done in one line so the 32 bits are chopped by the type */
if (!(uint32)(ctx->state[12])) {
++ctx->state[13];
}
}
/* Initialise context with 256bit key */
static void chacha20_key(struct chacha20 *ctx, const unsigned char *key)
{
static const char constant[16] = "expand 32-byte k";
/* Add the fixed string to the start of the state */
ctx->state[0] = GET_32BIT_LSB_FIRST(constant + 0);
ctx->state[1] = GET_32BIT_LSB_FIRST(constant + 4);
ctx->state[2] = GET_32BIT_LSB_FIRST(constant + 8);
ctx->state[3] = GET_32BIT_LSB_FIRST(constant + 12);
/* Add the key */
ctx->state[4] = GET_32BIT_LSB_FIRST(key + 0);
ctx->state[5] = GET_32BIT_LSB_FIRST(key + 4);
ctx->state[6] = GET_32BIT_LSB_FIRST(key + 8);
ctx->state[7] = GET_32BIT_LSB_FIRST(key + 12);
ctx->state[8] = GET_32BIT_LSB_FIRST(key + 16);
ctx->state[9] = GET_32BIT_LSB_FIRST(key + 20);
ctx->state[10] = GET_32BIT_LSB_FIRST(key + 24);
ctx->state[11] = GET_32BIT_LSB_FIRST(key + 28);
/* New key, dump context */
ctx->currentIndex = 64;
}
static void chacha20_iv(struct chacha20 *ctx, const unsigned char *iv)
{
ctx->state[12] = 0;
ctx->state[13] = 0;
ctx->state[14] = GET_32BIT_MSB_FIRST(iv);
ctx->state[15] = GET_32BIT_MSB_FIRST(iv + 4);
/* New IV, dump context */
ctx->currentIndex = 64;
}
static void chacha20_encrypt(struct chacha20 *ctx, unsigned char *blk, int len)
{
while (len) {
/* If we don't have any state left, then cycle to the next */
if (ctx->currentIndex >= 64) {
chacha20_round(ctx);
}
/* Do the xor while there's some state left and some plaintext left */
while (ctx->currentIndex < 64 && len) {
*blk++ ^= ctx->current[ctx->currentIndex++];
--len;
}
}
}
/* Decrypt is encrypt... It's xor against a PRNG... */
static INLINE void chacha20_decrypt(struct chacha20 *ctx,
unsigned char *blk, int len)
{
chacha20_encrypt(ctx, blk, len);
}
/* Poly1305 implementation (no AES, nonce is not encrypted) */
struct poly1305 {
unsigned char nonce[16];
Bignum modulo;
Bignum r;
Bignum h;
/* Buffer in case we get less that a multiple of 16 bytes */
unsigned char buffer[16];
int bufferIndex;
};
static void poly1305_make(struct poly1305 *ctx)
{
static const unsigned char p[] = {
0x03,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfb
};
ctx->modulo = bignum_from_bytes(p, sizeof(p));
ctx->r = NULL;
ctx->h = NULL;
memset(ctx->nonce, 0, 16);
ctx->bufferIndex = 0;
}
static void poly1305_free(struct poly1305 *ctx)
{
if (ctx->modulo) {
freebn(ctx->modulo);
}
if (ctx->r) {
freebn(ctx->r);
}
if (ctx->h) {
freebn(ctx->h);
}
smemclr(ctx, sizeof(struct poly1305));
}
/* Takes a 256 bit key */
static void poly1305_key(struct poly1305 *ctx, const unsigned char *key)
{
unsigned char key_copy[16];
memcpy(key_copy, key, 16);
/* Key the MAC itself
* bytes 4, 8, 12 and 16 are required to have their top four bits clear */
key_copy[3] &= 0x0f;
key_copy[7] &= 0x0f;
key_copy[11] &= 0x0f;
key_copy[15] &= 0x0f;
/* bytes 5, 9 and 13 are required to have their bottom two bits clear */
key_copy[4] &= 0xfc;
key_copy[8] &= 0xfc;
key_copy[12] &= 0xfc;
if (ctx->r) {
freebn(ctx->r);
}
ctx->r = bignum_from_bytes_le(key_copy, 16);
smemclr(key_copy, sizeof(key_copy));
/* Use second 128 bits are the nonce */
memcpy(ctx->nonce, key+16, 16);
}
/* Feed up to 16 bytes (should only be less for the last chunk) */
static void poly1305_feed_chunk(struct poly1305 *ctx,
const unsigned char *chunk, int len)
{
Bignum tmp, tmp2;
Bignum c = bignum_from_bytes_le(chunk, len);
tmp = bignum_lshift(One, 8 * len);
tmp2 = bigadd(c, tmp);
freebn(tmp);
freebn(c);
if (ctx->h) {
tmp = bigadd(ctx->h, tmp2);
freebn(tmp2);
freebn(ctx->h);
} else {
tmp = tmp2;
}
ctx->h = modmul(tmp, ctx->r, ctx->modulo);
freebn(tmp);
}
static void poly1305_feed(struct poly1305 *ctx,
const unsigned char *buf, int len)
{
/* Check for stuff left in the buffer from last time */
if (ctx->bufferIndex) {
/* Try to fill up to 16 */
while (ctx->bufferIndex < 16 && len) {
ctx->buffer[ctx->bufferIndex++] = *buf++;
--len;
}
if (ctx->bufferIndex == 16) {
poly1305_feed_chunk(ctx, ctx->buffer, 16);
ctx->bufferIndex = 0;
}
}
/* Process 16 byte whole chunks */
while (len >= 16) {
poly1305_feed_chunk(ctx, buf, 16);
len -= 16;
buf += 16;
}
/* Cache stuff that's left over */
if (len) {
memcpy(ctx->buffer, buf, len);
ctx->bufferIndex = len;
}
}
/* Finalise and populate buffer with 16 byte with MAC */
static void poly1305_finalise(struct poly1305 *ctx, unsigned char *mac)
{
Bignum tmp, tmp2;
int i;
if (ctx->bufferIndex) {
poly1305_feed_chunk(ctx, ctx->buffer, ctx->bufferIndex);
}
tmp = bignum_from_bytes_le(ctx->nonce, 16);
tmp2 = bigadd(ctx->h, tmp);
freebn(tmp);
for (i = 0; i < 16; ++i) {
mac[i] = bignum_byte(tmp2, i);
}
freebn(tmp2);
}
/* SSH-2 wrapper */
struct ccp_context {
struct chacha20 a_cipher; /* Used for length */
struct chacha20 b_cipher; /* Used for content */
/* Cache of the first 4 bytes because they are the sequence number */
/* Kept in 8 bytes with the top as zero to allow easy passing to setiv */
int mac_initialised; /* Where we have got to in filling mac_iv */
unsigned char mac_iv[8];
struct poly1305 mac;
};
static void *poly_make_context(void *ctx)
{
return ctx;
}
static void poly_free_context(void *ctx)
{
/* Not allocated, just forwarded, no need to free */
}
static void poly_setkey(void *ctx, unsigned char *key)
{
/* Uses the same context as ChaCha20, so ignore */
}
static void poly_start(void *handle)
{
struct ccp_context *ctx = (struct ccp_context *)handle;
ctx->mac_initialised = 0;
memset(ctx->mac_iv, 0, 8);
poly1305_free(&ctx->mac);
poly1305_make(&ctx->mac);
}
static void poly_bytes(void *handle, unsigned char const *blk, int len)
{
struct ccp_context *ctx = (struct ccp_context *)handle;
/* First 4 bytes are the IV */
while (ctx->mac_initialised < 4 && len) {
ctx->mac_iv[7 - ctx->mac_initialised] = *blk++;
++ctx->mac_initialised;
--len;
}
/* Initialise the IV if needed */
if (ctx->mac_initialised == 4) {
chacha20_iv(&ctx->b_cipher, ctx->mac_iv);
++ctx->mac_initialised; /* Don't do it again */
/* Do first rotation */
chacha20_round(&ctx->b_cipher);
/* Set the poly key */
poly1305_key(&ctx->mac, ctx->b_cipher.current);
/* Set the first round as used */
ctx->b_cipher.currentIndex = 64;
}
/* Update the MAC with anything left */
if (len) {
poly1305_feed(&ctx->mac, blk, len);
}
}
static void poly_genresult(void *handle, unsigned char *blk)
{
struct ccp_context *ctx = (struct ccp_context *)handle;
poly1305_finalise(&ctx->mac, blk);
}
static int poly_verresult(void *handle, unsigned char const *blk)
{
struct ccp_context *ctx = (struct ccp_context *)handle;
int res;
unsigned char mac[16];
poly1305_finalise(&ctx->mac, mac);
res = smemeq(blk, mac, 16);
return res;
}
/* The generic poly operation used before generate and verify */
static void poly_op(void *handle, unsigned char *blk, int len, unsigned long seq)
{
unsigned char iv[4];
poly_start(handle);
PUT_32BIT_MSB_FIRST(iv, seq);
/* poly_bytes expects the first 4 bytes to be the IV */
poly_bytes(handle, iv, 4);
smemclr(iv, sizeof(iv));
poly_bytes(handle, blk, len);
}
static void poly_generate(void *handle, unsigned char *blk, int len, unsigned long seq)
{
poly_op(handle, blk, len, seq);
poly_genresult(handle, blk+len);
}
static int poly_verify(void *handle, unsigned char *blk, int len, unsigned long seq)
{
poly_op(handle, blk, len, seq);
return poly_verresult(handle, blk+len);
}
static const struct ssh_mac ssh2_poly1305 = {
poly_make_context, poly_free_context,
poly_setkey,
/* whole-packet operations */
poly_generate, poly_verify,
/* partial-packet operations */
poly_start, poly_bytes, poly_genresult, poly_verresult,
"", "", /* Not selectable individually, just part of ChaCha20-Poly1305 */
16, "Poly1305"
};
static void *ccp_make_context(void)
{
struct ccp_context *ctx = snew(struct ccp_context);
if (ctx) {
poly1305_make(&ctx->mac);
}
return ctx;
}
static void ccp_free_context(void *vctx)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
smemclr(&ctx->a_cipher, sizeof(ctx->a_cipher));
smemclr(&ctx->b_cipher, sizeof(ctx->b_cipher));
poly1305_free(&ctx->mac);
sfree(ctx);
}
static void ccp_iv(void *vctx, unsigned char *iv)
{
/* struct ccp_context *ctx = (struct ccp_context *)vctx; */
/* IV is set based on the sequence number */
}
static void ccp_key(void *vctx, unsigned char *key)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
/* Initialise the a_cipher (for decrypting lengths) with the first 256 bits */
chacha20_key(&ctx->a_cipher, key + 32);
/* Initialise the b_cipher (for content and MAC) with the second 256 bits */
chacha20_key(&ctx->b_cipher, key);
}
static void ccp_encrypt(void *vctx, unsigned char *blk, int len)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
chacha20_encrypt(&ctx->b_cipher, blk, len);
}
static void ccp_decrypt(void *vctx, unsigned char *blk, int len)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
chacha20_decrypt(&ctx->b_cipher, blk, len);
}
static void ccp_length_op(struct ccp_context *ctx, unsigned char *blk, int len,
unsigned long seq)
{
unsigned char iv[8];
PUT_32BIT_LSB_FIRST(iv, seq >> 32);
PUT_32BIT_LSB_FIRST(iv + 4, seq);
chacha20_iv(&ctx->a_cipher, iv);
chacha20_iv(&ctx->b_cipher, iv);
/* Reset content block count to 1, as the first is the key for Poly1305 */
++ctx->b_cipher.state[12];
smemclr(iv, sizeof(iv));
}
static void ccp_encrypt_length(void *vctx, unsigned char *blk, int len,
unsigned long seq)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
ccp_length_op(ctx, blk, len, seq);
chacha20_encrypt(&ctx->a_cipher, blk, len);
}
static void ccp_decrypt_length(void *vctx, unsigned char *blk, int len,
unsigned long seq)
{
struct ccp_context *ctx = (struct ccp_context *)vctx;
ccp_length_op(ctx, blk, len, seq);
chacha20_decrypt(&ctx->a_cipher, blk, len);
}
static const struct ssh2_cipher ssh2_chacha20_poly1305 = {
ccp_make_context,
ccp_free_context,
ccp_iv,
ccp_key,
ccp_encrypt,
ccp_decrypt,
ccp_encrypt_length,
ccp_decrypt_length,
"chacha20-poly1305@openssh.com",
1, 512, SSH_CIPHER_SEPARATE_LENGTH, "ChaCha20",
&ssh2_poly1305
};
static const struct ssh2_cipher *const ccp_list[] = {
&ssh2_chacha20_poly1305
};
const struct ssh2_ciphers ssh2_ccp = {
sizeof(ccp_list) / sizeof(*ccp_list),
ccp_list
};