1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/ssh/common.c
Simon Tatham cd8a7181fd Complete rework of terminal userpass input system.
The system for handling seat_get_userpass_input has always been
structured differently between GUI PuTTY and CLI tools like Plink.

In the CLI tools, password input is read directly from the OS
terminal/console device by console_get_userpass_input; this means that
you need to ensure the same terminal input data _hasn't_ already been
consumed by the main event loop and sent on to the backend. This is
achieved by the backend_sendok() method, which tells the event loop
when the backend has finished issuing password prompts, and hence,
when it's safe to start passing standard input to backend_send().

But in the GUI tools, input generated by the terminal window has
always been sent straight to backend_send(), regardless of whether
backend_sendok() says it wants it. So the terminal-based
implementation of username and password prompts has to work by
consuming input data that had _already_ been passed to the backend -
hence, any backend that needs to do that must keep its input on a
bufchain, and pass that bufchain to seat_get_userpass_input.

It's awkward that these two totally different systems coexist in the
first place. And now that SSH proxying needs to present interactive
prompts of its own, it's clear which one should win: the CLI style is
the Right Thing. So this change reworks the GUI side of the mechanism
to be more similar: terminal data now goes into a queue in the Ldisc,
and is not sent on to the backend until the backend says it's ready
for it via backend_sendok(). So terminal-based userpass prompts can
now consume data directly from that queue during the connection setup
stage.

As a result, the 'bufchain *' parameter has vanished from all the
userpass_input functions (both the official implementations of the
Seat trait method, and term_get_userpass_input() to which some of
those implementations delegate). The only function that actually used
that bufchain, namely term_get_userpass_input(), now instead reads
from the ldisc's input queue via a couple of new Ldisc functions.

(Not _trivial_ functions, since input buffered by Ldisc can be a
mixture of raw bytes and session specials like SS_EOL! The input queue
inside Ldisc is a bufchain containing a fiddly binary encoding that
can represent an arbitrary interleaving of those things.)

This greatly simplifies the calls to seat_get_userpass_input in
backends, which now don't have to mess about with passing their own
user_input bufchain around, or toggling their want_user_input flag
back and forth to request data to put on to that bufchain.

But the flip side is that now there has to be some _other_ method for
notifying the terminal when there's more input to be consumed during
an interactive prompt, and for notifying the backend when prompt input
has finished so that it can proceed to the next stage of the protocol.
This is done by a pair of extra callbacks: when more data is put on to
Ldisc's input queue, it triggers a call to term_get_userpass_input,
and when term_get_userpass_input finishes, it calls a callback
function provided in the prompts_t.

Therefore, any use of a prompts_t which *might* be asynchronous must
fill in the latter callback when setting up the prompts_t. In SSH, the
callback is centralised into a common PPL helper function, which
reinvokes the same PPL's process_queue coroutine; in rlogin we have to
set it up ourselves.

I'm sorry for this large and sprawling patch: I tried fairly hard to
break it up into individually comprehensible sub-patches, but I just
couldn't tease out any part of it that would stand sensibly alone.
2021-09-14 13:19:33 +01:00

962 lines
28 KiB
C

/*
* Supporting routines used in common by all the various components of
* the SSH system.
*/
#include <assert.h>
#include <stdlib.h>
#include "putty.h"
#include "mpint.h"
#include "ssh.h"
#include "bpp.h"
#include "ppl.h"
#include "channel.h"
/* ----------------------------------------------------------------------
* Implementation of PacketQueue.
*/
static void pq_ensure_unlinked(PacketQueueNode *node)
{
if (node->on_free_queue) {
node->next->prev = node->prev;
node->prev->next = node->next;
} else {
assert(!node->next);
assert(!node->prev);
}
}
void pq_base_push(PacketQueueBase *pqb, PacketQueueNode *node)
{
pq_ensure_unlinked(node);
node->next = &pqb->end;
node->prev = pqb->end.prev;
node->next->prev = node;
node->prev->next = node;
pqb->total_size += node->formal_size;
if (pqb->ic)
queue_idempotent_callback(pqb->ic);
}
void pq_base_push_front(PacketQueueBase *pqb, PacketQueueNode *node)
{
pq_ensure_unlinked(node);
node->prev = &pqb->end;
node->next = pqb->end.next;
node->next->prev = node;
node->prev->next = node;
pqb->total_size += node->formal_size;
if (pqb->ic)
queue_idempotent_callback(pqb->ic);
}
static PacketQueueNode pktin_freeq_head = {
&pktin_freeq_head, &pktin_freeq_head, true
};
static void pktin_free_queue_callback(void *vctx)
{
while (pktin_freeq_head.next != &pktin_freeq_head) {
PacketQueueNode *node = pktin_freeq_head.next;
PktIn *pktin = container_of(node, PktIn, qnode);
pktin_freeq_head.next = node->next;
sfree(pktin);
}
pktin_freeq_head.prev = &pktin_freeq_head;
}
static IdempotentCallback ic_pktin_free = {
pktin_free_queue_callback, NULL, false
};
static inline void pq_unlink_common(PacketQueueBase *pqb,
PacketQueueNode *node)
{
node->next->prev = node->prev;
node->prev->next = node->next;
/* Check total_size doesn't drift out of sync downwards, by
* ensuring it doesn't underflow when we do this subtraction */
assert(pqb->total_size >= node->formal_size);
pqb->total_size -= node->formal_size;
/* Check total_size doesn't drift out of sync upwards, by checking
* that it's returned to exactly zero whenever a queue is
* emptied */
assert(pqb->end.next != &pqb->end || pqb->total_size == 0);
}
static PktIn *pq_in_after(PacketQueueBase *pqb,
PacketQueueNode *prev, bool pop)
{
PacketQueueNode *node = prev->next;
if (node == &pqb->end)
return NULL;
if (pop) {
pq_unlink_common(pqb, node);
node->prev = pktin_freeq_head.prev;
node->next = &pktin_freeq_head;
node->next->prev = node;
node->prev->next = node;
node->on_free_queue = true;
queue_idempotent_callback(&ic_pktin_free);
}
return container_of(node, PktIn, qnode);
}
static PktOut *pq_out_after(PacketQueueBase *pqb,
PacketQueueNode *prev, bool pop)
{
PacketQueueNode *node = prev->next;
if (node == &pqb->end)
return NULL;
if (pop) {
pq_unlink_common(pqb, node);
node->prev = node->next = NULL;
}
return container_of(node, PktOut, qnode);
}
void pq_in_init(PktInQueue *pq)
{
pq->pqb.ic = NULL;
pq->pqb.end.next = pq->pqb.end.prev = &pq->pqb.end;
pq->after = pq_in_after;
pq->pqb.total_size = 0;
}
void pq_out_init(PktOutQueue *pq)
{
pq->pqb.ic = NULL;
pq->pqb.end.next = pq->pqb.end.prev = &pq->pqb.end;
pq->after = pq_out_after;
pq->pqb.total_size = 0;
}
void pq_in_clear(PktInQueue *pq)
{
PktIn *pkt;
pq->pqb.ic = NULL;
while ((pkt = pq_pop(pq)) != NULL) {
/* No need to actually free these packets: pq_pop on a
* PktInQueue will automatically move them to the free
* queue. */
}
}
void pq_out_clear(PktOutQueue *pq)
{
PktOut *pkt;
pq->pqb.ic = NULL;
while ((pkt = pq_pop(pq)) != NULL)
ssh_free_pktout(pkt);
}
/*
* Concatenate the contents of the two queues q1 and q2, and leave the
* result in qdest. qdest must be either empty, or one of the input
* queues.
*/
void pq_base_concatenate(PacketQueueBase *qdest,
PacketQueueBase *q1, PacketQueueBase *q2)
{
struct PacketQueueNode *head1, *tail1, *head2, *tail2;
size_t total_size = q1->total_size + q2->total_size;
/*
* Extract the contents from both input queues, and empty them.
*/
head1 = (q1->end.next == &q1->end ? NULL : q1->end.next);
tail1 = (q1->end.prev == &q1->end ? NULL : q1->end.prev);
head2 = (q2->end.next == &q2->end ? NULL : q2->end.next);
tail2 = (q2->end.prev == &q2->end ? NULL : q2->end.prev);
q1->end.next = q1->end.prev = &q1->end;
q2->end.next = q2->end.prev = &q2->end;
q1->total_size = q2->total_size = 0;
/*
* Link the two lists together, handling the case where one or
* both is empty.
*/
if (tail1)
tail1->next = head2;
else
head1 = head2;
if (head2)
head2->prev = tail1;
else
tail2 = tail1;
/*
* Check the destination queue is currently empty. (If it was one
* of the input queues, then it will be, because we emptied both
* of those just a moment ago.)
*/
assert(qdest->end.next == &qdest->end);
assert(qdest->end.prev == &qdest->end);
/*
* If our concatenated list has anything in it, then put it in
* dest.
*/
if (!head1) {
assert(!tail2);
} else {
assert(tail2);
qdest->end.next = head1;
qdest->end.prev = tail2;
head1->prev = &qdest->end;
tail2->next = &qdest->end;
if (qdest->ic)
queue_idempotent_callback(qdest->ic);
}
qdest->total_size = total_size;
}
/* ----------------------------------------------------------------------
* Low-level functions for the packet structures themselves.
*/
static void ssh_pkt_BinarySink_write(BinarySink *bs,
const void *data, size_t len);
PktOut *ssh_new_packet(void)
{
PktOut *pkt = snew(PktOut);
BinarySink_INIT(pkt, ssh_pkt_BinarySink_write);
pkt->data = NULL;
pkt->length = 0;
pkt->maxlen = 0;
pkt->downstream_id = 0;
pkt->additional_log_text = NULL;
pkt->qnode.next = pkt->qnode.prev = NULL;
pkt->qnode.on_free_queue = false;
return pkt;
}
static void ssh_pkt_adddata(PktOut *pkt, const void *data, int len)
{
sgrowarrayn_nm(pkt->data, pkt->maxlen, pkt->length, len);
memcpy(pkt->data + pkt->length, data, len);
pkt->length += len;
pkt->qnode.formal_size = pkt->length;
}
static void ssh_pkt_BinarySink_write(BinarySink *bs,
const void *data, size_t len)
{
PktOut *pkt = BinarySink_DOWNCAST(bs, PktOut);
ssh_pkt_adddata(pkt, data, len);
}
void ssh_free_pktout(PktOut *pkt)
{
sfree(pkt->data);
sfree(pkt);
}
/* ----------------------------------------------------------------------
* Implement zombiechan_new() and its trivial vtable.
*/
static void zombiechan_free(Channel *chan);
static size_t zombiechan_send(
Channel *chan, bool is_stderr, const void *, size_t);
static void zombiechan_set_input_wanted(Channel *chan, bool wanted);
static void zombiechan_do_nothing(Channel *chan);
static void zombiechan_open_failure(Channel *chan, const char *);
static bool zombiechan_want_close(Channel *chan, bool sent_eof, bool rcvd_eof);
static char *zombiechan_log_close_msg(Channel *chan) { return NULL; }
static const ChannelVtable zombiechan_channelvt = {
.free = zombiechan_free,
.open_confirmation = zombiechan_do_nothing,
.open_failed = zombiechan_open_failure,
.send = zombiechan_send,
.send_eof = zombiechan_do_nothing,
.set_input_wanted = zombiechan_set_input_wanted,
.log_close_msg = zombiechan_log_close_msg,
.want_close = zombiechan_want_close,
.rcvd_exit_status = chan_no_exit_status,
.rcvd_exit_signal = chan_no_exit_signal,
.rcvd_exit_signal_numeric = chan_no_exit_signal_numeric,
.run_shell = chan_no_run_shell,
.run_command = chan_no_run_command,
.run_subsystem = chan_no_run_subsystem,
.enable_x11_forwarding = chan_no_enable_x11_forwarding,
.enable_agent_forwarding = chan_no_enable_agent_forwarding,
.allocate_pty = chan_no_allocate_pty,
.set_env = chan_no_set_env,
.send_break = chan_no_send_break,
.send_signal = chan_no_send_signal,
.change_window_size = chan_no_change_window_size,
.request_response = chan_no_request_response,
};
Channel *zombiechan_new(void)
{
Channel *chan = snew(Channel);
chan->vt = &zombiechan_channelvt;
chan->initial_fixed_window_size = 0;
return chan;
}
static void zombiechan_free(Channel *chan)
{
assert(chan->vt == &zombiechan_channelvt);
sfree(chan);
}
static void zombiechan_do_nothing(Channel *chan)
{
assert(chan->vt == &zombiechan_channelvt);
}
static void zombiechan_open_failure(Channel *chan, const char *errtext)
{
assert(chan->vt == &zombiechan_channelvt);
}
static size_t zombiechan_send(Channel *chan, bool is_stderr,
const void *data, size_t length)
{
assert(chan->vt == &zombiechan_channelvt);
return 0;
}
static void zombiechan_set_input_wanted(Channel *chan, bool enable)
{
assert(chan->vt == &zombiechan_channelvt);
}
static bool zombiechan_want_close(Channel *chan, bool sent_eof, bool rcvd_eof)
{
return true;
}
/* ----------------------------------------------------------------------
* Common routines for handling SSH tty modes.
*/
static unsigned real_ttymode_opcode(unsigned our_opcode, int ssh_version)
{
switch (our_opcode) {
case TTYMODE_ISPEED:
return ssh_version == 1 ? TTYMODE_ISPEED_SSH1 : TTYMODE_ISPEED_SSH2;
case TTYMODE_OSPEED:
return ssh_version == 1 ? TTYMODE_OSPEED_SSH1 : TTYMODE_OSPEED_SSH2;
default:
return our_opcode;
}
}
static unsigned our_ttymode_opcode(unsigned real_opcode, int ssh_version)
{
if (ssh_version == 1) {
switch (real_opcode) {
case TTYMODE_ISPEED_SSH1:
return TTYMODE_ISPEED;
case TTYMODE_OSPEED_SSH1:
return TTYMODE_OSPEED;
default:
return real_opcode;
}
} else {
switch (real_opcode) {
case TTYMODE_ISPEED_SSH2:
return TTYMODE_ISPEED;
case TTYMODE_OSPEED_SSH2:
return TTYMODE_OSPEED;
default:
return real_opcode;
}
}
}
struct ssh_ttymodes get_ttymodes_from_conf(Seat *seat, Conf *conf)
{
struct ssh_ttymodes modes;
size_t i;
static const struct mode_name_type {
const char *mode;
int opcode;
enum { TYPE_CHAR, TYPE_BOOL } type;
} modes_names_types[] = {
#define TTYMODE_CHAR(name, val, index) { #name, val, TYPE_CHAR },
#define TTYMODE_FLAG(name, val, field, mask) { #name, val, TYPE_BOOL },
#include "ttymode-list.h"
#undef TTYMODE_CHAR
#undef TTYMODE_FLAG
};
memset(&modes, 0, sizeof(modes));
for (i = 0; i < lenof(modes_names_types); i++) {
const struct mode_name_type *mode = &modes_names_types[i];
const char *sval = conf_get_str_str(conf, CONF_ttymodes, mode->mode);
char *to_free = NULL;
if (!sval)
sval = "N"; /* just in case */
/*
* sval[0] can be
* - 'V', indicating that an explicit value follows it;
* - 'A', indicating that we should pass the value through from
* the local environment via get_ttymode; or
* - 'N', indicating that we should explicitly not send this
* mode.
*/
if (sval[0] == 'A') {
sval = to_free = seat_get_ttymode(seat, mode->mode);
} else if (sval[0] == 'V') {
sval++; /* skip the 'V' */
} else {
/* else 'N', or something from the future we don't understand */
continue;
}
if (sval) {
/*
* Parse the string representation of the tty mode
* into the integer value it will take on the wire.
*/
unsigned ival = 0;
switch (mode->type) {
case TYPE_CHAR:
if (*sval) {
char *next = NULL;
/* We know ctrlparse won't write to the string, so
* casting away const is ugly but allowable. */
ival = ctrlparse((char *)sval, &next);
if (!next)
ival = sval[0];
} else {
ival = 255; /* special value meaning "don't set" */
}
break;
case TYPE_BOOL:
if (stricmp(sval, "yes") == 0 ||
stricmp(sval, "on") == 0 ||
stricmp(sval, "true") == 0 ||
stricmp(sval, "+") == 0)
ival = 1; /* true */
else if (stricmp(sval, "no") == 0 ||
stricmp(sval, "off") == 0 ||
stricmp(sval, "false") == 0 ||
stricmp(sval, "-") == 0)
ival = 0; /* false */
else
ival = (atoi(sval) != 0);
break;
default:
unreachable("Bad mode->type");
}
modes.have_mode[mode->opcode] = true;
modes.mode_val[mode->opcode] = ival;
}
sfree(to_free);
}
{
unsigned ospeed, ispeed;
/* Unpick the terminal-speed config string. */
ospeed = ispeed = 38400; /* last-resort defaults */
sscanf(conf_get_str(conf, CONF_termspeed), "%u,%u", &ospeed, &ispeed);
/* Currently we unconditionally set these */
modes.have_mode[TTYMODE_ISPEED] = true;
modes.mode_val[TTYMODE_ISPEED] = ispeed;
modes.have_mode[TTYMODE_OSPEED] = true;
modes.mode_val[TTYMODE_OSPEED] = ospeed;
}
return modes;
}
struct ssh_ttymodes read_ttymodes_from_packet(
BinarySource *bs, int ssh_version)
{
struct ssh_ttymodes modes;
memset(&modes, 0, sizeof(modes));
while (1) {
unsigned real_opcode, our_opcode;
real_opcode = get_byte(bs);
if (real_opcode == TTYMODE_END_OF_LIST)
break;
if (real_opcode >= 160) {
/*
* RFC 4254 (and the SSH 1.5 spec): "Opcodes 160 to 255
* are not yet defined, and cause parsing to stop (they
* should only be used after any other data)."
*
* My interpretation of this is that if one of these
* opcodes appears, it's not a parse _error_, but it is
* something that we don't know how to parse even well
* enough to step over it to find the next opcode, so we
* stop parsing now and assume that the rest of the string
* is composed entirely of things we don't understand and
* (as usual for unsupported terminal modes) silently
* ignore.
*/
return modes;
}
our_opcode = our_ttymode_opcode(real_opcode, ssh_version);
assert(our_opcode < TTYMODE_LIMIT);
modes.have_mode[our_opcode] = true;
if (ssh_version == 1 && real_opcode >= 1 && real_opcode <= 127)
modes.mode_val[our_opcode] = get_byte(bs);
else
modes.mode_val[our_opcode] = get_uint32(bs);
}
return modes;
}
void write_ttymodes_to_packet(BinarySink *bs, int ssh_version,
struct ssh_ttymodes modes)
{
unsigned i;
for (i = 0; i < TTYMODE_LIMIT; i++) {
if (modes.have_mode[i]) {
unsigned val = modes.mode_val[i];
unsigned opcode = real_ttymode_opcode(i, ssh_version);
put_byte(bs, opcode);
if (ssh_version == 1 && opcode >= 1 && opcode <= 127)
put_byte(bs, val);
else
put_uint32(bs, val);
}
}
put_byte(bs, TTYMODE_END_OF_LIST);
}
/* ----------------------------------------------------------------------
* Routine for allocating a new channel ID, given a means of finding
* the index field in a given channel structure.
*/
unsigned alloc_channel_id_general(tree234 *channels, size_t localid_offset)
{
const unsigned CHANNEL_NUMBER_OFFSET = 256;
search234_state ss;
/*
* First-fit allocation of channel numbers: we always pick the
* lowest unused one.
*
* Every channel before that, and no channel after it, has an ID
* exactly equal to its tree index plus CHANNEL_NUMBER_OFFSET. So
* we can use the search234 system to identify the length of that
* initial sequence, in a single log-time pass down the channels
* tree.
*/
search234_start(&ss, channels);
while (ss.element) {
unsigned localid = *(unsigned *)((char *)ss.element + localid_offset);
if (localid == ss.index + CHANNEL_NUMBER_OFFSET)
search234_step(&ss, +1);
else
search234_step(&ss, -1);
}
/*
* Now ss.index gives exactly the number of channels in that
* initial sequence. So adding CHANNEL_NUMBER_OFFSET to it must
* give precisely the lowest unused channel number.
*/
return ss.index + CHANNEL_NUMBER_OFFSET;
}
/* ----------------------------------------------------------------------
* Functions for handling the comma-separated strings used to store
* lists of protocol identifiers in SSH-2.
*/
void add_to_commasep(strbuf *buf, const char *data)
{
if (buf->len > 0)
put_byte(buf, ',');
put_data(buf, data, strlen(data));
}
bool get_commasep_word(ptrlen *list, ptrlen *word)
{
const char *comma;
/*
* Discard empty list elements, should there be any, because we
* never want to return one as if it was a real string. (This
* introduces a mild tolerance of badly formatted data in lists we
* receive, but I think that's acceptable.)
*/
while (list->len > 0 && *(const char *)list->ptr == ',') {
list->ptr = (const char *)list->ptr + 1;
list->len--;
}
if (!list->len)
return false;
comma = memchr(list->ptr, ',', list->len);
if (!comma) {
*word = *list;
list->len = 0;
} else {
size_t wordlen = comma - (const char *)list->ptr;
word->ptr = list->ptr;
word->len = wordlen;
list->ptr = (const char *)list->ptr + wordlen + 1;
list->len -= wordlen + 1;
}
return true;
}
/* ----------------------------------------------------------------------
* Functions for translating SSH packet type codes into their symbolic
* string names.
*/
#define TRANSLATE_UNIVERSAL(y, name, value) \
if (type == value) return #name;
#define TRANSLATE_KEX(y, name, value, ctx) \
if (type == value && pkt_kctx == ctx) return #name;
#define TRANSLATE_AUTH(y, name, value, ctx) \
if (type == value && pkt_actx == ctx) return #name;
const char *ssh1_pkt_type(int type)
{
SSH1_MESSAGE_TYPES(TRANSLATE_UNIVERSAL, y);
return "unknown";
}
const char *ssh2_pkt_type(Pkt_KCtx pkt_kctx, Pkt_ACtx pkt_actx, int type)
{
SSH2_MESSAGE_TYPES(TRANSLATE_UNIVERSAL, TRANSLATE_KEX, TRANSLATE_AUTH, y);
return "unknown";
}
#undef TRANSLATE_UNIVERSAL
#undef TRANSLATE_KEX
#undef TRANSLATE_AUTH
/* ----------------------------------------------------------------------
* Common helper function for clients and implementations of
* PacketProtocolLayer.
*/
void ssh_ppl_replace(PacketProtocolLayer *old, PacketProtocolLayer *new)
{
new->bpp = old->bpp;
ssh_ppl_setup_queues(new, old->in_pq, old->out_pq);
new->selfptr = old->selfptr;
new->user_input = old->user_input;
new->seat = old->seat;
new->ssh = old->ssh;
*new->selfptr = new;
ssh_ppl_free(old);
/* The new layer might need to be the first one that sends a
* packet, so trigger a call to its main coroutine immediately. If
* it doesn't need to go first, the worst that will do is return
* straight away. */
queue_idempotent_callback(&new->ic_process_queue);
}
void ssh_ppl_free(PacketProtocolLayer *ppl)
{
delete_callbacks_for_context(ppl);
ppl->vt->free(ppl);
}
static void ssh_ppl_ic_process_queue_callback(void *context)
{
PacketProtocolLayer *ppl = (PacketProtocolLayer *)context;
ssh_ppl_process_queue(ppl);
}
void ssh_ppl_setup_queues(PacketProtocolLayer *ppl,
PktInQueue *inq, PktOutQueue *outq)
{
ppl->in_pq = inq;
ppl->out_pq = outq;
ppl->in_pq->pqb.ic = &ppl->ic_process_queue;
ppl->ic_process_queue.fn = ssh_ppl_ic_process_queue_callback;
ppl->ic_process_queue.ctx = ppl;
/* If there's already something on the input queue, it will want
* handling immediately. */
if (pq_peek(ppl->in_pq))
queue_idempotent_callback(&ppl->ic_process_queue);
}
void ssh_ppl_user_output_string_and_free(PacketProtocolLayer *ppl, char *text)
{
/* Messages sent via this function are from the SSH layer, not
* from the server-side process, so they always have the stderr
* flag set. */
seat_stderr_pl(ppl->seat, ptrlen_from_asciz(text));
sfree(text);
}
size_t ssh_ppl_default_queued_data_size(PacketProtocolLayer *ppl)
{
return ppl->out_pq->pqb.total_size;
}
static void ssh_ppl_prompts_callback(void *ctx)
{
ssh_ppl_process_queue((PacketProtocolLayer *)ctx);
}
prompts_t *ssh_ppl_new_prompts(PacketProtocolLayer *ppl)
{
prompts_t *p = new_prompts();
p->callback = ssh_ppl_prompts_callback;
p->callback_ctx = ppl;
return p;
}
/* ----------------------------------------------------------------------
* Common helper functions for clients and implementations of
* BinaryPacketProtocol.
*/
static void ssh_bpp_input_raw_data_callback(void *context)
{
BinaryPacketProtocol *bpp = (BinaryPacketProtocol *)context;
Ssh *ssh = bpp->ssh; /* in case bpp is about to get freed */
ssh_bpp_handle_input(bpp);
/* If we've now cleared enough backlog on the input connection, we
* may need to unfreeze it. */
ssh_conn_processed_data(ssh);
}
static void ssh_bpp_output_packet_callback(void *context)
{
BinaryPacketProtocol *bpp = (BinaryPacketProtocol *)context;
ssh_bpp_handle_output(bpp);
}
void ssh_bpp_common_setup(BinaryPacketProtocol *bpp)
{
pq_in_init(&bpp->in_pq);
pq_out_init(&bpp->out_pq);
bpp->input_eof = false;
bpp->ic_in_raw.fn = ssh_bpp_input_raw_data_callback;
bpp->ic_in_raw.ctx = bpp;
bpp->ic_out_pq.fn = ssh_bpp_output_packet_callback;
bpp->ic_out_pq.ctx = bpp;
bpp->out_pq.pqb.ic = &bpp->ic_out_pq;
}
void ssh_bpp_free(BinaryPacketProtocol *bpp)
{
delete_callbacks_for_context(bpp);
bpp->vt->free(bpp);
}
void ssh2_bpp_queue_disconnect(BinaryPacketProtocol *bpp,
const char *msg, int category)
{
PktOut *pkt = ssh_bpp_new_pktout(bpp, SSH2_MSG_DISCONNECT);
put_uint32(pkt, category);
put_stringz(pkt, msg);
put_stringz(pkt, "en"); /* language tag */
pq_push(&bpp->out_pq, pkt);
}
#define BITMAP_UNIVERSAL(y, name, value) \
| (value >= y && value < y+32 \
? 1UL << (value >= y && value < y+32 ? (value-y) : 0) \
: 0)
#define BITMAP_CONDITIONAL(y, name, value, ctx) \
BITMAP_UNIVERSAL(y, name, value)
#define SSH2_BITMAP_WORD(y) \
(0 SSH2_MESSAGE_TYPES(BITMAP_UNIVERSAL, BITMAP_CONDITIONAL, \
BITMAP_CONDITIONAL, (32*y)))
bool ssh2_bpp_check_unimplemented(BinaryPacketProtocol *bpp, PktIn *pktin)
{
static const unsigned valid_bitmap[] = {
SSH2_BITMAP_WORD(0),
SSH2_BITMAP_WORD(1),
SSH2_BITMAP_WORD(2),
SSH2_BITMAP_WORD(3),
SSH2_BITMAP_WORD(4),
SSH2_BITMAP_WORD(5),
SSH2_BITMAP_WORD(6),
SSH2_BITMAP_WORD(7),
};
if (pktin->type < 0x100 &&
!((valid_bitmap[pktin->type >> 5] >> (pktin->type & 0x1F)) & 1)) {
PktOut *pkt = ssh_bpp_new_pktout(bpp, SSH2_MSG_UNIMPLEMENTED);
put_uint32(pkt, pktin->sequence);
pq_push(&bpp->out_pq, pkt);
return true;
}
return false;
}
#undef BITMAP_UNIVERSAL
#undef BITMAP_CONDITIONAL
#undef SSH1_BITMAP_WORD
/* ----------------------------------------------------------------------
* Function to check a host key against any manually configured in Conf.
*/
int verify_ssh_manual_host_key(Conf *conf, char **fingerprints, ssh_key *key)
{
if (!conf_get_str_nthstrkey(conf, CONF_ssh_manual_hostkeys, 0))
return -1; /* no manual keys configured */
if (fingerprints) {
for (size_t i = 0; i < SSH_N_FPTYPES; i++) {
/*
* Each fingerprint string we've been given will have
* things like 'ssh-rsa 2048' at the front of it. Strip
* those off and narrow down to just the hash at the end
* of the string.
*/
const char *fingerprint = fingerprints[i];
if (!fingerprint)
continue;
const char *p = strrchr(fingerprint, ' ');
fingerprint = p ? p+1 : fingerprint;
if (conf_get_str_str_opt(conf, CONF_ssh_manual_hostkeys,
fingerprint))
return 1; /* success */
}
}
if (key) {
/*
* Construct the base64-encoded public key blob and see if
* that's listed.
*/
strbuf *binblob;
char *base64blob;
int atoms, i;
binblob = strbuf_new();
ssh_key_public_blob(key, BinarySink_UPCAST(binblob));
atoms = (binblob->len + 2) / 3;
base64blob = snewn(atoms * 4 + 1, char);
for (i = 0; i < atoms; i++)
base64_encode_atom(binblob->u + 3*i,
binblob->len - 3*i, base64blob + 4*i);
base64blob[atoms * 4] = '\0';
strbuf_free(binblob);
if (conf_get_str_str_opt(conf, CONF_ssh_manual_hostkeys, base64blob)) {
sfree(base64blob);
return 1; /* success */
}
sfree(base64blob);
}
return 0;
}
/* ----------------------------------------------------------------------
* Common functions shared between SSH-1 layers.
*/
bool ssh1_common_get_specials(
PacketProtocolLayer *ppl, add_special_fn_t add_special, void *ctx)
{
/*
* Don't bother offering IGNORE if we've decided the remote
* won't cope with it, since we wouldn't bother sending it if
* asked anyway.
*/
if (!(ppl->remote_bugs & BUG_CHOKES_ON_SSH1_IGNORE)) {
add_special(ctx, "IGNORE message", SS_NOP, 0);
return true;
}
return false;
}
bool ssh1_common_filter_queue(PacketProtocolLayer *ppl)
{
PktIn *pktin;
ptrlen msg;
while ((pktin = pq_peek(ppl->in_pq)) != NULL) {
switch (pktin->type) {
case SSH1_MSG_DISCONNECT:
msg = get_string(pktin);
ssh_remote_error(ppl->ssh,
"Remote side sent disconnect message:\n\"%.*s\"",
PTRLEN_PRINTF(msg));
/* don't try to pop the queue, because we've been freed! */
return true; /* indicate that we've been freed */
case SSH1_MSG_DEBUG:
msg = get_string(pktin);
ppl_logevent("Remote debug message: %.*s", PTRLEN_PRINTF(msg));
pq_pop(ppl->in_pq);
break;
case SSH1_MSG_IGNORE:
/* Do nothing, because we're ignoring it! Duhh. */
pq_pop(ppl->in_pq);
break;
default:
return false;
}
}
return false;
}
void ssh1_compute_session_id(
unsigned char *session_id, const unsigned char *cookie,
RSAKey *hostkey, RSAKey *servkey)
{
ssh_hash *hash = ssh_hash_new(&ssh_md5);
for (size_t i = (mp_get_nbits(hostkey->modulus) + 7) / 8; i-- ;)
put_byte(hash, mp_get_byte(hostkey->modulus, i));
for (size_t i = (mp_get_nbits(servkey->modulus) + 7) / 8; i-- ;)
put_byte(hash, mp_get_byte(servkey->modulus, i));
put_data(hash, cookie, 8);
ssh_hash_final(hash, session_id);
}