mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-24 16:52:24 +00:00
6520574e58
Thanks to Mark Wooding for explaining the method of doing this. At first glance it seemed _obviously_ impossible to run an algorithm that needs an iteration per factor of 2 in p-1, without a timing leak giving away the number of factors of 2 in p-1. But it's not, because you can do the M-R checks interleaved with each step of your whole modular exponentiation, and they're cheap enough that you can do them in _every_ step, even the ones where the exponent is too small for M-R to be interested in yet, and then do bitwise masking to exclude the spurious results from the final output.
3189 lines
165 KiB
Python
Executable File
3189 lines
165 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import unittest
|
|
import struct
|
|
import itertools
|
|
import functools
|
|
import contextlib
|
|
import hashlib
|
|
import binascii
|
|
import base64
|
|
import json
|
|
try:
|
|
from math import gcd
|
|
except ImportError:
|
|
from fractions import gcd
|
|
|
|
from eccref import *
|
|
from testcrypt import *
|
|
from ssh import *
|
|
|
|
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
|
|
|
|
try:
|
|
base64decode = base64.decodebytes
|
|
except AttributeError:
|
|
base64decode = base64.decodestring
|
|
|
|
def unhex(s):
|
|
return binascii.unhexlify(s.replace(" ", "").replace("\n", ""))
|
|
|
|
def rsa_bare(e, n):
|
|
rsa = rsa_new()
|
|
get_rsa_ssh1_pub(ssh_uint32(nbits(n)) + ssh1_mpint(e) + ssh1_mpint(n),
|
|
rsa, 'exponent_first')
|
|
return rsa
|
|
|
|
def find_non_square_mod(p):
|
|
# Find a non-square mod p, using the Jacobi symbol
|
|
# calculation function from eccref.py.
|
|
return next(z for z in itertools.count(2) if jacobi(z, p) == -1)
|
|
|
|
def fibonacci_scattered(n=10):
|
|
# Generate a list of Fibonacci numbers with power-of-2 indices
|
|
# (F_1, F_2, F_4, ...), to be used as test inputs of varying
|
|
# sizes. Also put F_0 = 0 into the list as a bonus.
|
|
yield 0
|
|
a, b, c = 0, 1, 1
|
|
while True:
|
|
yield b
|
|
n -= 1
|
|
if n <= 0:
|
|
break
|
|
a, b, c = (a**2+b**2, b*(a+c), b**2+c**2)
|
|
|
|
def fibonacci(n=10):
|
|
# Generate the full Fibonacci sequence starting from F_0 = 0.
|
|
a, b = 0, 1
|
|
while True:
|
|
yield a
|
|
n -= 1
|
|
if n <= 0:
|
|
break
|
|
a, b = b, a+b
|
|
|
|
def mp_mask(mp):
|
|
# Return the value that mp would represent if all its bits
|
|
# were set. Useful for masking a true mathematical output
|
|
# value (e.g. from an operation that can over/underflow, like
|
|
# mp_sub or mp_anything_into) to check it's right within the
|
|
# ability of that particular mp_int to represent.
|
|
return ((1 << mp_max_bits(mp))-1)
|
|
|
|
def adjtuples(iterable, n):
|
|
# Return all the contiguous n-tuples of an iterable, including
|
|
# overlapping ones. E.g. if called on [0,1,2,3,4] with n=3 it
|
|
# would return (0,1,2), (1,2,3), (2,3,4) and then stop.
|
|
it = iter(iterable)
|
|
toret = [next(it) for _ in range(n-1)]
|
|
for element in it:
|
|
toret.append(element)
|
|
yield tuple(toret)
|
|
toret[:1] = []
|
|
|
|
def last(iterable):
|
|
# Return the last element of an iterable, or None if it is empty.
|
|
it = iter(iterable)
|
|
toret = None
|
|
for toret in it:
|
|
pass
|
|
return toret
|
|
|
|
def le_integer(x, nbits):
|
|
assert nbits % 8 == 0
|
|
return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])
|
|
|
|
@contextlib.contextmanager
|
|
def queued_random_data(nbytes, seed):
|
|
hashsize = 512 // 8
|
|
data = b''.join(
|
|
hashlib.sha512("preimage:{:d}:{}".format(i, seed).encode('ascii'))
|
|
.digest() for i in range((nbytes + hashsize - 1) // hashsize))
|
|
data = data[:nbytes]
|
|
random_queue(data)
|
|
yield None
|
|
random_clear()
|
|
|
|
@contextlib.contextmanager
|
|
def queued_specific_random_data(data):
|
|
random_queue(data)
|
|
yield None
|
|
random_clear()
|
|
|
|
@contextlib.contextmanager
|
|
def random_prng(seed):
|
|
random_make_prng('sha256', seed)
|
|
yield None
|
|
random_clear()
|
|
|
|
def hash_str(alg, message):
|
|
h = ssh_hash_new(alg)
|
|
ssh_hash_update(h, message)
|
|
return ssh_hash_final(h)
|
|
|
|
def hash_str_iter(alg, message_iter):
|
|
h = ssh_hash_new(alg)
|
|
for string in message_iter:
|
|
ssh_hash_update(h, string)
|
|
return ssh_hash_final(h)
|
|
|
|
def mac_str(alg, key, message, cipher=None):
|
|
m = ssh2_mac_new(alg, cipher)
|
|
ssh2_mac_setkey(m, key)
|
|
ssh2_mac_start(m)
|
|
ssh2_mac_update(m, "dummy")
|
|
# Make sure ssh_mac_start erases previous state
|
|
ssh2_mac_start(m)
|
|
ssh2_mac_update(m, message)
|
|
return ssh2_mac_genresult(m)
|
|
|
|
def lcm(a, b):
|
|
return a * b // gcd(a, b)
|
|
|
|
def get_implementations(alg):
|
|
return get_implementations_commasep(alg).decode("ASCII").split(",")
|
|
|
|
def get_aes_impls():
|
|
return [impl.rsplit("_", 1)[-1]
|
|
for impl in get_implementations("aes128_cbc")
|
|
if impl.startswith("aes128_cbc_")]
|
|
|
|
class MyTestBase(unittest.TestCase):
|
|
"Intermediate class that adds useful helper methods."
|
|
def assertEqualBin(self, x, y):
|
|
# Like assertEqual, but produces more legible error reports
|
|
# for random-looking binary data.
|
|
self.assertEqual(binascii.hexlify(x), binascii.hexlify(y))
|
|
|
|
class mpint(MyTestBase):
|
|
def testCreation(self):
|
|
self.assertEqual(int(mp_new(128)), 0)
|
|
self.assertEqual(int(mp_from_bytes_be(b'ABCDEFGHIJKLMNOP')),
|
|
0x4142434445464748494a4b4c4d4e4f50)
|
|
self.assertEqual(int(mp_from_bytes_le(b'ABCDEFGHIJKLMNOP')),
|
|
0x504f4e4d4c4b4a494847464544434241)
|
|
self.assertEqual(int(mp_from_integer(12345)), 12345)
|
|
decstr = '91596559417721901505460351493238411077414937428167'
|
|
self.assertEqual(int(mp_from_decimal_pl(decstr)), int(decstr, 10))
|
|
self.assertEqual(int(mp_from_decimal(decstr)), int(decstr, 10))
|
|
self.assertEqual(int(mp_from_decimal("")), 0)
|
|
# For hex, test both upper and lower case digits
|
|
hexstr = 'ea7cb89f409ae845215822e37D32D0C63EC43E1381C2FF8094'
|
|
self.assertEqual(int(mp_from_hex_pl(hexstr)), int(hexstr, 16))
|
|
self.assertEqual(int(mp_from_hex(hexstr)), int(hexstr, 16))
|
|
self.assertEqual(int(mp_from_hex("")), 0)
|
|
p2 = mp_power_2(123)
|
|
self.assertEqual(int(p2), 1 << 123)
|
|
p2c = mp_copy(p2)
|
|
self.assertEqual(int(p2c), 1 << 123)
|
|
# Check mp_copy really makes a copy, not an alias (ok, that's
|
|
# testing the testcrypt system more than it's testing the
|
|
# underlying C functions)
|
|
mp_set_bit(p2c, 120, 1)
|
|
self.assertEqual(int(p2c), (1 << 123) + (1 << 120))
|
|
self.assertEqual(int(p2), 1 << 123)
|
|
|
|
def testBytesAndBits(self):
|
|
x = mp_new(128)
|
|
self.assertEqual(mp_get_byte(x, 2), 0)
|
|
mp_set_bit(x, 2*8+3, 1)
|
|
self.assertEqual(mp_get_byte(x, 2), 1<<3)
|
|
self.assertEqual(mp_get_bit(x, 2*8+3), 1)
|
|
mp_set_bit(x, 2*8+3, 0)
|
|
self.assertEqual(mp_get_byte(x, 2), 0)
|
|
self.assertEqual(mp_get_bit(x, 2*8+3), 0)
|
|
# Currently I expect 128 to be a multiple of any
|
|
# BIGNUM_INT_BITS value we might be running with, so these
|
|
# should be exact equality
|
|
self.assertEqual(mp_max_bytes(x), 128/8)
|
|
self.assertEqual(mp_max_bits(x), 128)
|
|
|
|
nb = lambda hexstr: mp_get_nbits(mp_from_hex(hexstr))
|
|
self.assertEqual(nb('00000000000000000000000000000000'), 0)
|
|
self.assertEqual(nb('00000000000000000000000000000001'), 1)
|
|
self.assertEqual(nb('00000000000000000000000000000002'), 2)
|
|
self.assertEqual(nb('00000000000000000000000000000003'), 2)
|
|
self.assertEqual(nb('00000000000000000000000000000004'), 3)
|
|
self.assertEqual(nb('000003ffffffffffffffffffffffffff'), 106)
|
|
self.assertEqual(nb('000003ffffffffff0000000000000000'), 106)
|
|
self.assertEqual(nb('80000000000000000000000000000000'), 128)
|
|
self.assertEqual(nb('ffffffffffffffffffffffffffffffff'), 128)
|
|
|
|
def testDecAndHex(self):
|
|
def checkHex(hexstr):
|
|
n = mp_from_hex(hexstr)
|
|
i = int(hexstr, 16)
|
|
self.assertEqual(mp_get_hex(n),
|
|
"{:x}".format(i).encode('ascii'))
|
|
self.assertEqual(mp_get_hex_uppercase(n),
|
|
"{:X}".format(i).encode('ascii'))
|
|
checkHex("0")
|
|
checkHex("f")
|
|
checkHex("00000000000000000000000000000000000000000000000000")
|
|
checkHex("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
|
|
checkHex("ffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
|
|
def checkDec(hexstr):
|
|
n = mp_from_hex(hexstr)
|
|
i = int(hexstr, 16)
|
|
self.assertEqual(mp_get_decimal(n),
|
|
"{:d}".format(i).encode('ascii'))
|
|
checkDec("0")
|
|
checkDec("f")
|
|
checkDec("00000000000000000000000000000000000000000000000000")
|
|
checkDec("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
|
|
checkDec("ffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
checkDec("f" * 512)
|
|
|
|
def testComparison(self):
|
|
inputs = [
|
|
"0", "1", "2", "10", "314159265358979", "FFFFFFFFFFFFFFFF",
|
|
|
|
# Test over-long versions of some of the same numbers we
|
|
# had short forms of above
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000001",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000002",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFF",
|
|
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
|
|
]
|
|
values = [(mp_from_hex(s), int(s, 16)) for s in inputs]
|
|
for am, ai in values:
|
|
for bm, bi in values:
|
|
self.assertEqual(mp_cmp_eq(am, bm) == 1, ai == bi)
|
|
self.assertEqual(mp_cmp_hs(am, bm) == 1, ai >= bi)
|
|
if (bi >> 64) == 0:
|
|
self.assertEqual(mp_eq_integer(am, bi) == 1, ai == bi)
|
|
self.assertEqual(mp_hs_integer(am, bi) == 1, ai >= bi)
|
|
|
|
# mp_{min,max}{,_into} is a reasonable thing to test
|
|
# here as well
|
|
self.assertEqual(int(mp_min(am, bm)), min(ai, bi))
|
|
self.assertEqual(int(mp_max(am, bm)), max(ai, bi))
|
|
am_small = mp_copy(am if ai<bi else bm)
|
|
mp_min_into(am_small, am, bm)
|
|
self.assertEqual(int(am_small), min(ai, bi))
|
|
am_big = mp_copy(am if ai>bi else bm)
|
|
mp_max_into(am_big, am, bm)
|
|
self.assertEqual(int(am_big), max(ai, bi))
|
|
|
|
# Test mp_{eq,hs}_integer in the case where the integer is as
|
|
# large as possible and the bignum contains very few words. In
|
|
# modes where BIGNUM_INT_BITS < 64, this used to go wrong.
|
|
mp10 = mp_new(4)
|
|
mp_copy_integer_into(mp10, 10)
|
|
highbit = 1 << 63
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 9), 0)
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 10), 0)
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 11), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 9), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 10), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 11), 0)
|
|
|
|
def testConditionals(self):
|
|
testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()]
|
|
for am, ai in testnumbers:
|
|
for bm, bi in testnumbers:
|
|
cm = mp_copy(am)
|
|
mp_select_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_select_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), bi & mp_mask(am))
|
|
|
|
mp_cond_add_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_cond_add_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), (ai+bi) & mp_mask(am))
|
|
|
|
mp_cond_sub_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_cond_sub_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), (ai-bi) & mp_mask(am))
|
|
|
|
maxbits = max(mp_max_bits(am), mp_max_bits(bm))
|
|
cm = mp_new(maxbits)
|
|
dm = mp_new(maxbits)
|
|
mp_copy_into(cm, am)
|
|
mp_copy_into(dm, bm)
|
|
|
|
self.assertEqual(int(cm), ai)
|
|
self.assertEqual(int(dm), bi)
|
|
mp_cond_swap(cm, dm, 0)
|
|
self.assertEqual(int(cm), ai)
|
|
self.assertEqual(int(dm), bi)
|
|
mp_cond_swap(cm, dm, 1)
|
|
self.assertEqual(int(cm), bi)
|
|
self.assertEqual(int(dm), ai)
|
|
|
|
if bi != 0:
|
|
mp_cond_clear(cm, 0)
|
|
self.assertEqual(int(cm), bi)
|
|
mp_cond_clear(cm, 1)
|
|
self.assertEqual(int(cm), 0)
|
|
|
|
def testBasicArithmetic(self):
|
|
testnumbers = list(fibonacci_scattered(5))
|
|
testnumbers.extend([1 << (1 << i) for i in range(3,10)])
|
|
testnumbers.extend([(1 << (1 << i)) - 1 for i in range(3,10)])
|
|
|
|
testnumbers = [(mp_copy(n),n) for n in testnumbers]
|
|
|
|
for am, ai in testnumbers:
|
|
for bm, bi in testnumbers:
|
|
self.assertEqual(int(mp_add(am, bm)), ai + bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
# Cope with underflow in subtraction
|
|
diff = mp_sub(am, bm)
|
|
self.assertEqual(int(diff), (ai - bi) & mp_mask(diff))
|
|
|
|
for bits in range(64, 512, 64):
|
|
cm = mp_new(bits)
|
|
mp_add_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai + bi) & mp_mask(cm))
|
|
mp_mul_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai * bi) & mp_mask(cm))
|
|
mp_sub_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai - bi) & mp_mask(cm))
|
|
|
|
# A test cherry-picked from the old bignum test script,
|
|
# involving two numbers whose product has a single 1 bit miles
|
|
# in the air and then all 0s until a bunch of cruft at the
|
|
# bottom, the aim being to test that carry propagation works
|
|
# all the way up.
|
|
ai, bi = 0xb4ff6ed2c633847562087ed9354c5c17be212ac83b59c10c316250f50b7889e5b058bf6bfafd12825225ba225ede0cba583ffbd0882de88c9e62677385a6dbdedaf81959a273eb7909ebde21ae5d12e2a584501a6756fe50ccb93b93f0d6ee721b6052a0d88431e62f410d608532868cdf3a6de26886559e94cc2677eea9bd797918b70e2717e95b45918bd1f86530cb9989e68b632c496becff848aa1956cd57ed46676a65ce6dd9783f230c8796909eef5583fcfe4acbf9c8b4ea33a08ec3fd417cf7175f434025d032567a00fc329aee154ca20f799b961fbab8f841cb7351f561a44aea45746ceaf56874dad99b63a7d7af2769d2f185e2d1c656cc6630b5aba98399fa57, 0xb50a77c03ac195225021dc18d930a352f27c0404742f961ca828c972737bad3ada74b1144657ab1d15fe1b8aefde8784ad61783f3c8d4584aa5f22a4eeca619f90563ae351b5da46770df182cf348d8e23b25fda07670c6609118e916a57ce4043608752c91515708327e36f5bb5ebd92cd4cfb39424167a679870202b23593aa524bac541a3ad322c38102a01e9659b06a4335c78d50739a51027954ac2bf03e500f975c2fa4d0ab5dd84cc9334f219d2ae933946583e384ed5dbf6498f214480ca66987b867df0f69d92e4e14071e4b8545212dd5e29ff0248ed751e168d78934da7930bcbe10e9a212128a68de5d749c61f5e424cf8cf6aa329674de0cf49c6f9b4c8b8cc3
|
|
am = mp_copy(ai)
|
|
bm = mp_copy(bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
|
|
# A regression test for a bug that came up during development
|
|
# of mpint.c, relating to an intermediate value overflowing
|
|
# its container.
|
|
ai, bi = (2**8512 * 2 // 3), (2**4224 * 11 // 15)
|
|
am = mp_copy(ai)
|
|
bm = mp_copy(bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
|
|
def testAddInteger(self):
|
|
initial = mp_copy(4444444444444444444444444)
|
|
|
|
x = mp_new(mp_max_bits(initial) + 64)
|
|
|
|
# mp_{add,sub,copy}_integer_into should be able to cope with
|
|
# any uintmax_t. Test a number that requires more than 32 bits.
|
|
mp_add_integer_into(x, initial, 123123123123123)
|
|
self.assertEqual(int(x), 4444444444567567567567567)
|
|
mp_sub_integer_into(x, initial, 123123123123123)
|
|
self.assertEqual(int(x), 4444444444321321321321321)
|
|
mp_copy_integer_into(x, 123123123123123)
|
|
self.assertEqual(int(x), 123123123123123)
|
|
|
|
# mp_mul_integer_into only takes a uint16_t integer input
|
|
mp_mul_integer_into(x, initial, 10001)
|
|
self.assertEqual(int(x), 44448888888888888888888884444)
|
|
|
|
def testDivision(self):
|
|
divisors = [1, 2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
|
|
141421356237309504880168872420969807856967187537694807]
|
|
quotients = [0, 1, 2, 2**64-1, 2**64, 2**64+1, 17320508075688772935]
|
|
for d in divisors:
|
|
for q in quotients:
|
|
remainders = {0, 1, d-1, 2*d//3}
|
|
for r in sorted(remainders):
|
|
if r >= d:
|
|
continue # silly cases with tiny divisors
|
|
n = q*d + r
|
|
mq = mp_new(max(nbits(q), 1))
|
|
mr = mp_new(max(nbits(r), 1))
|
|
mp_divmod_into(n, d, mq, mr)
|
|
self.assertEqual(int(mq), q)
|
|
self.assertEqual(int(mr), r)
|
|
self.assertEqual(int(mp_div(n, d)), q)
|
|
self.assertEqual(int(mp_mod(n, d)), r)
|
|
|
|
# Make sure divmod_into can handle not getting one
|
|
# of its output pointers (or even both).
|
|
mp_clear(mq)
|
|
mp_divmod_into(n, d, mq, None)
|
|
self.assertEqual(int(mq), q)
|
|
mp_clear(mr)
|
|
mp_divmod_into(n, d, None, mr)
|
|
self.assertEqual(int(mr), r)
|
|
mp_divmod_into(n, d, None, None)
|
|
# No tests we can do after that last one - we just
|
|
# insist that it isn't allowed to have crashed!
|
|
|
|
def testNthRoot(self):
|
|
roots = [1, 13, 1234567654321,
|
|
57721566490153286060651209008240243104215933593992]
|
|
tests = []
|
|
tests.append((0, 2, 0, 0))
|
|
tests.append((0, 3, 0, 0))
|
|
for r in roots:
|
|
for n in 2, 3, 5:
|
|
tests.append((r**n, n, r, 0))
|
|
tests.append((r**n+1, n, r, 1))
|
|
tests.append((r**n-1, n, r-1, r**n - (r-1)**n - 1))
|
|
for x, n, eroot, eremainder in tests:
|
|
with self.subTest(x=x):
|
|
mx = mp_copy(x)
|
|
remainder = mp_copy(mx)
|
|
root = mp_nthroot(x, n, remainder)
|
|
self.assertEqual(int(root), eroot)
|
|
self.assertEqual(int(remainder), eremainder)
|
|
self.assertEqual(int(mp_nthroot(2*10**100, 2, None)),
|
|
141421356237309504880168872420969807856967187537694)
|
|
self.assertEqual(int(mp_nthroot(3*10**150, 3, None)),
|
|
144224957030740838232163831078010958839186925349935)
|
|
|
|
def testBitwise(self):
|
|
p = 0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e
|
|
e = 0x2b7e151628aed2a6abf7158809cf4f3c762e7160f38b4da56a784d9045190
|
|
x = mp_new(nbits(p))
|
|
|
|
mp_and_into(x, p, e)
|
|
self.assertEqual(int(x), p & e)
|
|
|
|
mp_or_into(x, p, e)
|
|
self.assertEqual(int(x), p | e)
|
|
|
|
mp_xor_into(x, p, e)
|
|
self.assertEqual(int(x), p ^ e)
|
|
|
|
mp_bic_into(x, p, e)
|
|
self.assertEqual(int(x), p & ~e)
|
|
|
|
def testInversion(self):
|
|
# Test mp_invert_mod_2to.
|
|
testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()
|
|
if n & 1]
|
|
for power2 in [1, 2, 3, 5, 13, 32, 64, 127, 128, 129]:
|
|
for am, ai in testnumbers:
|
|
bm = mp_invert_mod_2to(am, power2)
|
|
bi = int(bm)
|
|
self.assertEqual(((ai * bi) & ((1 << power2) - 1)), 1)
|
|
|
|
# mp_reduce_mod_2to is a much simpler function, but
|
|
# this is as good a place as any to test it.
|
|
rm = mp_copy(am)
|
|
mp_reduce_mod_2to(rm, power2)
|
|
self.assertEqual(int(rm), ai & ((1 << power2) - 1))
|
|
|
|
# Test mp_invert proper.
|
|
moduli = [2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
|
|
141421356237309504880168872420969807856967187537694807,
|
|
2**128-1]
|
|
for m in moduli:
|
|
# Prepare a MontyContext for the monty_invert test below
|
|
# (unless m is even, in which case we can't)
|
|
mc = monty_new(m) if m & 1 else None
|
|
|
|
to_invert = {1, 2, 3, 7, 19, m-1, 5*m//17, (m-1)//2, (m+1)//2}
|
|
for x in sorted(to_invert):
|
|
if gcd(x, m) != 1:
|
|
continue # filter out non-invertible cases
|
|
inv = int(mp_invert(x, m))
|
|
assert x * inv % m == 1
|
|
|
|
# Test monty_invert too, while we're here
|
|
if mc is not None:
|
|
self.assertEqual(
|
|
int(monty_invert(mc, monty_import(mc, x))),
|
|
int(monty_import(mc, inv)))
|
|
|
|
def testGCD(self):
|
|
powerpairs = [(0,0), (1,0), (1,1), (2,1), (2,2), (75,3), (17,23)]
|
|
for a2, b2 in powerpairs:
|
|
for a3, b3 in powerpairs:
|
|
for a5, b5 in powerpairs:
|
|
a = 2**a2 * 3**a3 * 5**a5 * 17 * 19 * 23
|
|
b = 2**b2 * 3**b3 * 5**b5 * 65423
|
|
d = 2**min(a2, b2) * 3**min(a3, b3) * 5**min(a5, b5)
|
|
|
|
ma = mp_copy(a)
|
|
mb = mp_copy(b)
|
|
|
|
self.assertEqual(int(mp_gcd(ma, mb)), d)
|
|
|
|
md = mp_new(nbits(d))
|
|
mA = mp_new(nbits(b))
|
|
mB = mp_new(nbits(a))
|
|
mp_gcd_into(ma, mb, md, mA, mB)
|
|
self.assertEqual(int(md), d)
|
|
A = int(mA)
|
|
B = int(mB)
|
|
self.assertEqual(a*A - b*B, d)
|
|
self.assertTrue(0 <= A < b//d)
|
|
self.assertTrue(0 <= B < a//d)
|
|
|
|
self.assertEqual(mp_coprime(ma, mb), 1 if d==1 else 0)
|
|
|
|
# Make sure gcd_into can handle not getting some
|
|
# of its output pointers.
|
|
mp_clear(md)
|
|
mp_gcd_into(ma, mb, md, None, None)
|
|
self.assertEqual(int(md), d)
|
|
mp_clear(mA)
|
|
mp_gcd_into(ma, mb, None, mA, None)
|
|
self.assertEqual(int(mA), A)
|
|
mp_clear(mB)
|
|
mp_gcd_into(ma, mb, None, None, mB)
|
|
self.assertEqual(int(mB), B)
|
|
mp_gcd_into(ma, mb, None, None, None)
|
|
# No tests we can do after that last one - we just
|
|
# insist that it isn't allowed to have crashed!
|
|
|
|
def testMonty(self):
|
|
moduli = [5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
|
|
293828847201107461142630006802421204703,
|
|
113064788724832491560079164581712332614996441637880086878209969852674997069759]
|
|
|
|
for m in moduli:
|
|
mc = monty_new(m)
|
|
|
|
# Import some numbers
|
|
inputs = [(monty_import(mc, n), n)
|
|
for n in sorted({0, 1, 2, 3, 2*m//3, m-1})]
|
|
|
|
# Check modulus and identity
|
|
self.assertEqual(int(monty_modulus(mc)), m)
|
|
self.assertEqual(int(monty_identity(mc)), int(inputs[1][0]))
|
|
|
|
# Check that all those numbers export OK
|
|
for mn, n in inputs:
|
|
self.assertEqual(int(monty_export(mc, mn)), n)
|
|
|
|
for ma, a in inputs:
|
|
for mb, b in inputs:
|
|
xprod = int(monty_export(mc, monty_mul(mc, ma, mb)))
|
|
self.assertEqual(xprod, a*b % m)
|
|
|
|
xsum = int(monty_export(mc, monty_add(mc, ma, mb)))
|
|
self.assertEqual(xsum, (a+b) % m)
|
|
|
|
xdiff = int(monty_export(mc, monty_sub(mc, ma, mb)))
|
|
self.assertEqual(xdiff, (a-b) % m)
|
|
|
|
# Test the ordinary mp_mod{add,sub,mul} at the
|
|
# same time, even though those don't do any
|
|
# montying at all
|
|
|
|
xprod = int(mp_modmul(a, b, m))
|
|
self.assertEqual(xprod, a*b % m)
|
|
|
|
xsum = int(mp_modadd(a, b, m))
|
|
self.assertEqual(xsum, (a+b) % m)
|
|
|
|
xdiff = int(mp_modsub(a, b, m))
|
|
self.assertEqual(xdiff, (a-b) % m)
|
|
|
|
for ma, a in inputs:
|
|
# Compute a^0, a^1, a^1, a^2, a^3, a^5, ...
|
|
indices = list(fibonacci())
|
|
powers = [int(monty_export(mc, monty_pow(mc, ma, power)))
|
|
for power in indices]
|
|
# Check the first two make sense
|
|
self.assertEqual(powers[0], 1)
|
|
self.assertEqual(powers[1], a)
|
|
# Check the others using the Fibonacci identity:
|
|
# F_n + F_{n+1} = F_{n+2}, so a^{F_n} a^{F_{n+1}} = a^{F_{n+2}}
|
|
for p0, p1, p2 in adjtuples(powers, 3):
|
|
self.assertEqual(p2, p0 * p1 % m)
|
|
|
|
# Test the ordinary mp_modpow here as well, while
|
|
# we've got the machinery available
|
|
for index, power in zip(indices, powers):
|
|
self.assertEqual(int(mp_modpow(a, index, m)), power)
|
|
|
|
# A regression test for a bug I encountered during initial
|
|
# development of mpint.c, in which an incomplete reduction
|
|
# happened somewhere in an intermediate value.
|
|
b, e, m = 0x2B5B93812F253FF91F56B3B4DAD01CA2884B6A80719B0DA4E2159A230C6009EDA97C5C8FD4636B324F9594706EE3AD444831571BA5E17B1B2DFA92DEA8B7E, 0x25, 0xC8FCFD0FD7371F4FE8D0150EFC124E220581569587CCD8E50423FA8D41E0B2A0127E100E92501E5EE3228D12EA422A568C17E0AD2E5C5FCC2AE9159D2B7FB8CB
|
|
assert(int(mp_modpow(b, e, m)) == pow(b, e, m))
|
|
|
|
# Make sure mp_modpow can handle a base larger than the
|
|
# modulus, by pre-reducing it
|
|
assert(int(mp_modpow(1<<877, 907, 999979)) == pow(2, 877*907, 999979))
|
|
|
|
def testModsqrt(self):
|
|
moduli = [
|
|
5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
|
|
293828847201107461142630006802421204703,
|
|
113064788724832491560079164581712332614996441637880086878209969852674997069759,
|
|
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6FFFFFFFF00000001]
|
|
for p in moduli:
|
|
# Count the factors of 2 in the group. (That is, we want
|
|
# p-1 to be an odd multiple of 2^{factors_of_2}.)
|
|
factors_of_2 = nbits((p-1) & (1-p)) - 1
|
|
assert (p & ((2 << factors_of_2)-1)) == ((1 << factors_of_2)+1)
|
|
|
|
z = find_non_square_mod(p)
|
|
|
|
sc = modsqrt_new(p, z)
|
|
|
|
def ptest(x):
|
|
root, success = mp_modsqrt(sc, x)
|
|
r = int(root)
|
|
self.assertTrue(success)
|
|
self.assertEqual((r * r - x) % p, 0)
|
|
|
|
def ntest(x):
|
|
root, success = mp_modsqrt(sc, x)
|
|
self.assertFalse(success)
|
|
|
|
# Make up some more or less random values mod p to square
|
|
v1 = pow(3, nbits(p), p)
|
|
v2 = pow(5, v1, p)
|
|
test_roots = [0, 1, 2, 3, 4, 3*p//4, v1, v2, v1+1, 12873*v1, v1*v2]
|
|
known_squares = {r*r % p for r in test_roots}
|
|
for s in known_squares:
|
|
ptest(s)
|
|
if s != 0:
|
|
ntest(z*s % p)
|
|
|
|
# Make sure we've tested a value that is in each of the
|
|
# subgroups of order (p-1)/2^k but not in the next one
|
|
# (with the exception of k=0, which just means 'have we
|
|
# tested a non-square?', which we have in the above loop).
|
|
#
|
|
# We do this by starting with a known non-square; then
|
|
# squaring it (factors_of_2) times will return values
|
|
# nested deeper and deeper in those subgroups.
|
|
vbase = z
|
|
for k in range(factors_of_2):
|
|
# Adjust vbase by an arbitrary odd power of
|
|
# z, so that it won't look too much like the previous
|
|
# value.
|
|
vbase = vbase * pow(z, (vbase + v1 + v2) | 1, p) % p
|
|
|
|
# Move vbase into the next smaller group by squaring
|
|
# it.
|
|
vbase = pow(vbase, 2, p)
|
|
|
|
ptest(vbase)
|
|
|
|
def testShifts(self):
|
|
x = ((1<<900) // 9949) | 1
|
|
for i in range(2049):
|
|
mp = mp_copy(x)
|
|
|
|
mp_lshift_fixed_into(mp, mp, i)
|
|
self.assertEqual(int(mp), (x << i) & mp_mask(mp))
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_lshift_safe_into(mp, mp, i)
|
|
self.assertEqual(int(mp), (x << i) & mp_mask(mp))
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_rshift_fixed_into(mp, mp, i)
|
|
self.assertEqual(int(mp), x >> i)
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_rshift_safe_into(mp, mp, i)
|
|
self.assertEqual(int(mp), x >> i)
|
|
|
|
self.assertEqual(int(mp_rshift_fixed(x, i)), x >> i)
|
|
|
|
self.assertEqual(int(mp_rshift_safe(x, i)), x >> i)
|
|
|
|
def testRandom(self):
|
|
# Test random_bits to ensure it correctly masks the return
|
|
# value, and uses exactly as many random bytes as we expect it
|
|
# to.
|
|
for bits in range(512):
|
|
bytes_needed = (bits + 7) // 8
|
|
with queued_random_data(bytes_needed, "random_bits test"):
|
|
mp = mp_random_bits(bits)
|
|
self.assertTrue(int(mp) < (1 << bits))
|
|
self.assertEqual(random_queue_len(), 0)
|
|
|
|
# Test mp_random_in_range to ensure it returns things in the
|
|
# right range.
|
|
for rangesize in [2, 3, 19, 35]:
|
|
for lo in [0, 1, 0x10001, 1<<512]:
|
|
hi = lo + rangesize
|
|
bytes_needed = mp_max_bytes(hi) + 16
|
|
for trial in range(rangesize*3):
|
|
with queued_random_data(
|
|
bytes_needed,
|
|
"random_in_range {:d}".format(trial)):
|
|
v = int(mp_random_in_range(lo, hi))
|
|
self.assertTrue(lo <= v < hi)
|
|
|
|
class ecc(MyTestBase):
|
|
def testWeierstrassSimple(self):
|
|
# Simple tests using a Weierstrass curve I made up myself,
|
|
# which (unlike the ones used for serious crypto) is small
|
|
# enough that you can fit all the coordinates for a curve on
|
|
# to your retina in one go.
|
|
|
|
p = 3141592661
|
|
a, b = -3 % p, 12345
|
|
rc = WeierstrassCurve(p, a, b)
|
|
wc = ecc_weierstrass_curve(p, a, b, None)
|
|
|
|
def check_point(wp, rp):
|
|
self.assertTrue(ecc_weierstrass_point_valid(wp))
|
|
is_id = ecc_weierstrass_is_identity(wp)
|
|
x, y = ecc_weierstrass_get_affine(wp)
|
|
if rp.infinite:
|
|
self.assertEqual(is_id, 1)
|
|
else:
|
|
self.assertEqual(is_id, 0)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
self.assertEqual(int(y), int(rp.y))
|
|
|
|
def make_point(x, y):
|
|
wp = ecc_weierstrass_point_new(wc, x, y)
|
|
rp = rc.point(x, y)
|
|
check_point(wp, rp)
|
|
return wp, rp
|
|
|
|
# Some sample points, including the identity and also a pair
|
|
# of mutual inverses.
|
|
wI, rI = ecc_weierstrass_point_new_identity(wc), rc.point()
|
|
wP, rP = make_point(102, 387427089)
|
|
wQ, rQ = make_point(1000, 546126574)
|
|
wmP, rmP = make_point(102, p - 387427089)
|
|
|
|
# Check the simple arithmetic functions.
|
|
check_point(ecc_weierstrass_add(wP, wQ), rP + rQ)
|
|
check_point(ecc_weierstrass_add(wQ, wP), rP + rQ)
|
|
check_point(ecc_weierstrass_double(wP), rP + rP)
|
|
check_point(ecc_weierstrass_double(wQ), rQ + rQ)
|
|
|
|
# Check all the special cases with add_general:
|
|
# Adding two finite unequal non-mutually-inverse points
|
|
check_point(ecc_weierstrass_add_general(wP, wQ), rP + rQ)
|
|
# Doubling a finite point
|
|
check_point(ecc_weierstrass_add_general(wP, wP), rP + rP)
|
|
check_point(ecc_weierstrass_add_general(wQ, wQ), rQ + rQ)
|
|
# Adding the identity to a point (both ways round)
|
|
check_point(ecc_weierstrass_add_general(wI, wP), rP)
|
|
check_point(ecc_weierstrass_add_general(wI, wQ), rQ)
|
|
check_point(ecc_weierstrass_add_general(wP, wI), rP)
|
|
check_point(ecc_weierstrass_add_general(wQ, wI), rQ)
|
|
# Doubling the identity
|
|
check_point(ecc_weierstrass_add_general(wI, wI), rI)
|
|
# Adding a point to its own inverse, giving the identity.
|
|
check_point(ecc_weierstrass_add_general(wmP, wP), rI)
|
|
check_point(ecc_weierstrass_add_general(wP, wmP), rI)
|
|
|
|
# Verify that point_valid fails if we pass it nonsense.
|
|
bogus = ecc_weierstrass_point_new(wc, int(rP.x), int(rP.y * 3))
|
|
self.assertFalse(ecc_weierstrass_point_valid(bogus))
|
|
|
|
# Re-instantiate the curve with the ability to take square
|
|
# roots, and check that we can reconstruct P and Q from their
|
|
# x coordinate and y parity only.
|
|
wc = ecc_weierstrass_curve(p, a, b, find_non_square_mod(p))
|
|
|
|
x, yp = int(rP.x), (int(rP.y) & 1)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rP)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp ^ 1), rmP)
|
|
x, yp = int(rQ.x), (int(rQ.y) & 1)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rQ)
|
|
|
|
def testMontgomerySimple(self):
|
|
p, a, b = 3141592661, 0xabc, 0xde
|
|
|
|
rc = MontgomeryCurve(p, a, b)
|
|
mc = ecc_montgomery_curve(p, a, b)
|
|
|
|
rP = rc.cpoint(0x1001)
|
|
rQ = rc.cpoint(0x20001)
|
|
rdiff = rP - rQ
|
|
rsum = rP + rQ
|
|
|
|
def make_mpoint(rp):
|
|
return ecc_montgomery_point_new(mc, int(rp.x))
|
|
|
|
mP = make_mpoint(rP)
|
|
mQ = make_mpoint(rQ)
|
|
mdiff = make_mpoint(rdiff)
|
|
msum = make_mpoint(rsum)
|
|
|
|
def check_point(mp, rp):
|
|
x = ecc_montgomery_get_affine(mp)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
|
|
check_point(ecc_montgomery_diff_add(mP, mQ, mdiff), rsum)
|
|
check_point(ecc_montgomery_diff_add(mQ, mP, mdiff), rsum)
|
|
check_point(ecc_montgomery_diff_add(mP, mQ, msum), rdiff)
|
|
check_point(ecc_montgomery_diff_add(mQ, mP, msum), rdiff)
|
|
check_point(ecc_montgomery_double(mP), rP + rP)
|
|
check_point(ecc_montgomery_double(mQ), rQ + rQ)
|
|
|
|
zero = ecc_montgomery_point_new(mc, 0)
|
|
self.assertEqual(ecc_montgomery_is_identity(zero), False)
|
|
identity = ecc_montgomery_double(zero)
|
|
ecc_montgomery_get_affine(identity)
|
|
self.assertEqual(ecc_montgomery_is_identity(identity), True)
|
|
|
|
def testEdwardsSimple(self):
|
|
p, d, a = 3141592661, 2688750488, 367934288
|
|
|
|
rc = TwistedEdwardsCurve(p, d, a)
|
|
ec = ecc_edwards_curve(p, d, a, None)
|
|
|
|
def check_point(ep, rp):
|
|
x, y = ecc_edwards_get_affine(ep)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
self.assertEqual(int(y), int(rp.y))
|
|
|
|
def make_point(x, y):
|
|
ep = ecc_edwards_point_new(ec, x, y)
|
|
rp = rc.point(x, y)
|
|
check_point(ep, rp)
|
|
return ep, rp
|
|
|
|
# Some sample points, including the identity and also a pair
|
|
# of mutual inverses.
|
|
eI, rI = make_point(0, 1)
|
|
eP, rP = make_point(196270812, 1576162644)
|
|
eQ, rQ = make_point(1777630975, 2717453445)
|
|
emP, rmP = make_point(p - 196270812, 1576162644)
|
|
|
|
# Check that the ordinary add function handles all the special
|
|
# cases.
|
|
|
|
# Adding two finite unequal non-mutually-inverse points
|
|
check_point(ecc_edwards_add(eP, eQ), rP + rQ)
|
|
check_point(ecc_edwards_add(eQ, eP), rP + rQ)
|
|
# Doubling a finite point
|
|
check_point(ecc_edwards_add(eP, eP), rP + rP)
|
|
check_point(ecc_edwards_add(eQ, eQ), rQ + rQ)
|
|
# Adding the identity to a point (both ways round)
|
|
check_point(ecc_edwards_add(eI, eP), rP)
|
|
check_point(ecc_edwards_add(eI, eQ), rQ)
|
|
check_point(ecc_edwards_add(eP, eI), rP)
|
|
check_point(ecc_edwards_add(eQ, eI), rQ)
|
|
# Doubling the identity
|
|
check_point(ecc_edwards_add(eI, eI), rI)
|
|
# Adding a point to its own inverse, giving the identity.
|
|
check_point(ecc_edwards_add(emP, eP), rI)
|
|
check_point(ecc_edwards_add(eP, emP), rI)
|
|
|
|
# Re-instantiate the curve with the ability to take square
|
|
# roots, and check that we can reconstruct P and Q from their
|
|
# y coordinate and x parity only.
|
|
ec = ecc_edwards_curve(p, d, a, find_non_square_mod(p))
|
|
|
|
y, xp = int(rP.y), (int(rP.x) & 1)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp), rP)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp ^ 1), rmP)
|
|
y, xp = int(rQ.y), (int(rQ.x) & 1)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp), rQ)
|
|
|
|
# For testing point multiplication, let's switch to the full-sized
|
|
# standard curves, because I want to have tested those a bit too.
|
|
|
|
def testWeierstrassMultiply(self):
|
|
wc = ecc_weierstrass_curve(p256.p, int(p256.a), int(p256.b), None)
|
|
wG = ecc_weierstrass_point_new(wc, int(p256.G.x), int(p256.G.y))
|
|
self.assertTrue(ecc_weierstrass_point_valid(wG))
|
|
|
|
ints = set(i % p256.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
wGi = ecc_weierstrass_multiply(wG, i)
|
|
x, y = ecc_weierstrass_get_affine(wGi)
|
|
rGi = p256.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
self.assertEqual(int(y), int(rGi.y))
|
|
|
|
def testMontgomeryMultiply(self):
|
|
mc = ecc_montgomery_curve(
|
|
curve25519.p, int(curve25519.a), int(curve25519.b))
|
|
mG = ecc_montgomery_point_new(mc, int(curve25519.G.x))
|
|
|
|
ints = set(i % p256.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
mGi = ecc_montgomery_multiply(mG, i)
|
|
x = ecc_montgomery_get_affine(mGi)
|
|
rGi = curve25519.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
|
|
def testEdwardsMultiply(self):
|
|
ec = ecc_edwards_curve(ed25519.p, int(ed25519.d), int(ed25519.a), None)
|
|
eG = ecc_edwards_point_new(ec, int(ed25519.G.x), int(ed25519.G.y))
|
|
|
|
ints = set(i % ed25519.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
eGi = ecc_edwards_multiply(eG, i)
|
|
x, y = ecc_edwards_get_affine(eGi)
|
|
rGi = ed25519.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
self.assertEqual(int(y), int(rGi.y))
|
|
|
|
class keygen(MyTestBase):
|
|
def testPrimeCandidateSource(self):
|
|
def inspect(pcs):
|
|
# Returns (pcs->limit, pcs->factor, pcs->addend) as Python integers
|
|
return tuple(map(int, pcs_inspect(pcs)))
|
|
|
|
# Test accumulating modular congruence requirements, by
|
|
# inspecting the internal values computed during
|
|
# require_residue. We ensure that the addend satisfies all our
|
|
# congruences and the factor is the lcm of all the moduli
|
|
# (hence, the arithmetic progression defined by those
|
|
# parameters is precisely the set of integers satisfying the
|
|
# requirements); we also ensure that the limiting values
|
|
# (addend itself at the low end, and addend + (limit-1) *
|
|
# factor at the high end) are the maximal subsequence of that
|
|
# progression that are within the originally specified range.
|
|
|
|
def check(pcs, lo, hi, mod_res_pairs):
|
|
limit, factor, addend = inspect(pcs)
|
|
|
|
for mod, res in mod_res_pairs:
|
|
self.assertEqual(addend % mod, res % mod)
|
|
|
|
self.assertEqual(factor, functools.reduce(
|
|
lcm, [mod for mod, res in mod_res_pairs]))
|
|
|
|
self.assertFalse(lo <= addend + (-1) * factor < hi)
|
|
self.assertTrue (lo <= addend < hi)
|
|
self.assertTrue (lo <= addend + (limit-1) * factor < hi)
|
|
self.assertFalse(lo <= addend + limit * factor < hi)
|
|
|
|
pcs = pcs_new(64)
|
|
check(pcs, 2**63, 2**64, [(2, 1)])
|
|
pcs_require_residue(pcs, 3, 2)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2)])
|
|
pcs_require_residue_1(pcs, 7)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1)])
|
|
pcs_require_residue(pcs, 16, 7)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7)])
|
|
pcs_require_residue(pcs, 49, 8)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7), (49, 8)])
|
|
|
|
# Now test-generate some actual values, and ensure they
|
|
# satisfy all the congruences, and also avoid one residue mod
|
|
# 5 that we told them to. Also, give a nontrivial range.
|
|
pcs = pcs_new_with_firstbits(64, 0xAB, 8)
|
|
pcs_require_residue(pcs, 0x100, 0xCD)
|
|
pcs_require_residue_1(pcs, 65537)
|
|
pcs_avoid_residue_small(pcs, 5, 3)
|
|
pcs_ready(pcs)
|
|
with random_prng("test seed"):
|
|
for i in range(100):
|
|
n = int(pcs_generate(pcs))
|
|
self.assertTrue((0xAB<<56) < n < (0xAC<<56))
|
|
self.assertEqual(n % 0x100, 0xCD)
|
|
self.assertEqual(n % 65537, 1)
|
|
self.assertNotEqual(n % 5, 3)
|
|
|
|
# I'm not actually testing here that the outputs of
|
|
# pcs_generate are non-multiples of _all_ primes up to
|
|
# 2^16. But checking this many for 100 turns is enough
|
|
# to be pretty sure. (If you take the product of
|
|
# (1-1/p) over all p in the list below, you find that
|
|
# a given random number has about a 13% chance of
|
|
# avoiding being a multiple of any of them. So 100
|
|
# trials without a mistake gives you 0.13^100 < 10^-88
|
|
# as the probability of it happening by chance. More
|
|
# likely the code is actually working :-)
|
|
|
|
for p in [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]:
|
|
self.assertNotEqual(n % p, 0)
|
|
|
|
def testPocklePositive(self):
|
|
def add_small(po, *ps):
|
|
for p in ps:
|
|
self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')
|
|
def add(po, *args):
|
|
self.assertEqual(pockle_add_prime(po, *args), 'POCKLE_OK')
|
|
|
|
# Transcription of the proof that 2^130-5 is prime from
|
|
# Theorem 3.1 from http://cr.yp.to/mac/poly1305-20050329.pdf
|
|
po = pockle_new()
|
|
p1 = (2**130 - 6) // 1517314646
|
|
p2 = (p1 - 1) // 222890620702
|
|
add_small(po, 37003, 221101)
|
|
add(po, p2, [37003, 221101], 2)
|
|
add(po, p1, [p2], 2)
|
|
add(po, 2**130 - 5, [p1], 2)
|
|
|
|
# My own proof that 2^255-19 is prime
|
|
po = pockle_new()
|
|
p1 = 8574133
|
|
p2 = 1919519569386763
|
|
p3 = 75445702479781427272750846543864801
|
|
p4 = (2**255 - 20) // (65147*12)
|
|
p = 2**255 - 19
|
|
add_small(po, p1)
|
|
add(po, p2, [p1], 2)
|
|
add(po, p3, [p2], 2)
|
|
add(po, p4, [p3], 2)
|
|
add(po, p, [p4], 2)
|
|
|
|
# And the prime used in Ed448, while I'm here
|
|
po = pockle_new()
|
|
p1 = 379979
|
|
p2 = 1764234391
|
|
p3 = 97859369123353
|
|
p4 = 34741861125639557
|
|
p5 = 36131535570665139281
|
|
p6 = 167773885276849215533569
|
|
p7 = 596242599987116128415063
|
|
p = 2**448 - 2**224 - 1
|
|
add_small(po, p1, p2)
|
|
add(po, p3, [p1], 2)
|
|
add(po, p4, [p2], 2)
|
|
add(po, p5, [p4], 2)
|
|
add(po, p6, [p3], 3)
|
|
add(po, p7, [p5], 3)
|
|
add(po, p, [p6, p7], 2)
|
|
|
|
p = 4095744004479977
|
|
factors = [2, 79999] # just enough factors to exceed cbrt(p)
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
add(po, p, factors, 3)
|
|
|
|
# The order of the generator in Ed25519
|
|
po = pockle_new()
|
|
p1a, p1b = 132667, 137849
|
|
p2 = 3044861653679985063343
|
|
p3 = 198211423230930754013084525763697
|
|
p = 2**252 + 0x14def9dea2f79cd65812631a5cf5d3ed
|
|
add_small(po, p1a, p1b)
|
|
add(po, p2, [p1a, p1b], 2)
|
|
add(po, p3, [p2], 2)
|
|
add(po, p, [p3], 2)
|
|
|
|
# And the one in Ed448
|
|
po = pockle_new()
|
|
p1 = 766223
|
|
p2 = 3009341
|
|
p3 = 7156907
|
|
p4 = 671065561
|
|
p5 = 342682509629
|
|
p6 = 6730519843040614479184435237013
|
|
p = 2**446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
|
|
add_small(po, p1, p2, p3, p4)
|
|
add(po, p5, [p1], 2)
|
|
add(po, p6, [p3,p4], 2)
|
|
add(po, p, [p2,p5,p6], 2)
|
|
|
|
# Combined certificate for the moduli and generator orders of
|
|
# the three NIST curves, generated by contrib/proveprime.py
|
|
# (with some cosmetic tidying)
|
|
p256 = 2**256 - 2**224 + 2**192 + 2**96 - 1
|
|
p384 = 2**384 - 2**128 - 2**96 + 2**32 - 1
|
|
p521 = 2**521 - 1
|
|
order256 = p256 - 0x4319055358e8617b0c46353d039cdaae
|
|
order384 = p384 - 0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c
|
|
t = 0x5ae79787c40d069948033feb708f65a2fc44a36477663b851449048e16ec79bf6
|
|
order521 = p521 - t
|
|
p0 = order384 // 12895580879789762060783039592702
|
|
p1 = 1059392654943455286185473617842338478315215895509773412096307
|
|
p2 = 55942463741690639
|
|
p3 = 37344768852931
|
|
p4 = order521 // 1898873518475180724503002533770555108536
|
|
p5 = p4 // 994165722
|
|
p6 = 144471089338257942164514676806340723
|
|
p7 = p384 // 2054993070433694
|
|
p8 = 1357291859799823621
|
|
po = pockle_new()
|
|
add_small(po, 2, 3, 5, 11, 17, 19, 31, 41, 53, 67, 71, 109, 131, 149,
|
|
157, 257, 521, 641, 1613, 2731, 3407, 6317, 8191, 8389,
|
|
14461, 17449, 38189, 38557, 42641, 51481, 61681, 65537,
|
|
133279, 248431, 312289, 409891, 490463, 858001, 6700417,
|
|
187019741)
|
|
add(po, p3, [149, 11, 5, 3, 2], 3)
|
|
add(po, p2, [p3], 2)
|
|
add(po, p8, [6317, 67, 2, 2], 2)
|
|
add(po, p6, [133279, 14461, 109, 3], 7)
|
|
add(po, p1, [p2, 248431], 2)
|
|
add(po, order256, [187019741, 38189, 17449, 3407, 131, 71, 2, 2, 2, 2],
|
|
7)
|
|
add(po, p256, [6700417, 490463, 65537, 641, 257, 17, 5, 5, 3, 2], 6)
|
|
add(po, p0, [p1], 2)
|
|
add(po, p7, [p8, 312289, 38557, 8389, 11, 2], 3)
|
|
add(po, p5, [p6, 19], 2)
|
|
add(po, order384, [p0], 2)
|
|
add(po, p384, [p7], 2)
|
|
add(po, p4, [p5], 2)
|
|
add(po, order521, [p4], 2)
|
|
add(po, p521, [858001, 409891, 61681, 51481, 42641, 8191, 2731, 1613,
|
|
521, 157, 131, 53, 41, 31, 17, 11, 5, 5, 3, 2], 3)
|
|
|
|
def testPockleNegative(self):
|
|
def add_small(po, p):
|
|
self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')
|
|
|
|
po = pockle_new()
|
|
self.assertEqual(pockle_add_small_prime(po, 0),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
self.assertEqual(pockle_add_small_prime(po, 1),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
self.assertEqual(pockle_add_small_prime(po, 2**61 - 1),
|
|
'POCKLE_SMALL_PRIME_NOT_SMALL')
|
|
self.assertEqual(pockle_add_small_prime(po, 4),
|
|
'POCKLE_SMALL_PRIME_NOT_PRIME')
|
|
|
|
po = pockle_new()
|
|
self.assertEqual(pockle_add_prime(po, 1919519569386763, [8574133], 2),
|
|
'POCKLE_FACTOR_NOT_KNOWN_PRIME')
|
|
|
|
po = pockle_new()
|
|
add_small(po, 8574133)
|
|
self.assertEqual(pockle_add_prime(po, 1919519569386765, [8574133], 2),
|
|
'POCKLE_FACTOR_NOT_A_FACTOR')
|
|
|
|
p = 4095744004479977
|
|
factors = [2, 79997] # not quite enough factors to reach cbrt(p)
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL')
|
|
|
|
p = 1999527 * 3999053
|
|
factors = [999763]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_DISCRIMINANT_IS_SQUARE')
|
|
|
|
p = 9999929 * 9999931
|
|
factors = [257, 2593]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_FERMAT_TEST_FAILED')
|
|
|
|
p = 1713000920401 # a Carmichael number
|
|
po = pockle_new()
|
|
add_small(po, 561787)
|
|
self.assertEqual(pockle_add_prime(po, p, [561787], 2),
|
|
'POCKLE_WITNESS_POWER_IS_1')
|
|
|
|
p = 4294971121
|
|
factors = [3, 5, 11, 17]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 17),
|
|
'POCKLE_WITNESS_POWER_NOT_COPRIME')
|
|
|
|
po = pockle_new()
|
|
add_small(po, 2)
|
|
self.assertEqual(pockle_add_prime(po, 1, [2], 1),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
|
|
def testMillerRabin(self):
|
|
# A prime congruent to 3 mod 4, so M-R can only do one
|
|
# iteration: either a^{(p-1)/2} == +1, or -1. Either counts as
|
|
# a pass; the latter also means the number is potentially a
|
|
# primitive root.
|
|
n = 0xe76e6aaa42b5d7423aa4da5613eb21c3
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 2), "passed+ppr")
|
|
self.assertEqual(miller_rabin_test(mr, 4), "passed")
|
|
|
|
# The 'potential primitive root' test only means that M-R
|
|
# didn't _rule out_ the number being a primitive root, by
|
|
# finding that any of the powers _it tested_ less than n-1
|
|
# came out to be 1. In this case, 2 really is a primitive
|
|
# root, but since 13 | n-1, the 13th powers mod n form a
|
|
# multiplicative subgroup. So 2^13 is not a primitive root,
|
|
# and yet, M-R can't tell the difference, because it only
|
|
# tried the exponent (n-1)/2, not the actual counterexample
|
|
# (n-1)/13.
|
|
self.assertEqual(miller_rabin_test(mr, 2**13), "passed+ppr")
|
|
|
|
# A prime congruent to 1 mod a reasonably large power of 2, so
|
|
# M-R has lots of scope to have different things happen. 3 is
|
|
# a primitive root, so we expect that 3, 3^2, 3^4, ..., 3^256
|
|
# should all pass for different reasons, with only the first
|
|
# of them returning passed+ppr.
|
|
n = 0xb1b65ebe489ff0ab4597bb67c3d22d01
|
|
mr = miller_rabin_new(n)
|
|
w = 3
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
|
|
for i in range(1, 10):
|
|
w = w * w % n
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed")
|
|
|
|
# A prime with an _absurdly_ large power-of-2 factor in its
|
|
# multiplicative group.
|
|
n = 0x600000000000000000000000000000000000000000000001
|
|
mr = miller_rabin_new(n)
|
|
w = 10
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
|
|
for i in range(1, 200):
|
|
w = w * w % n
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed")
|
|
|
|
# A blatantly composite number. But we still expect to see a
|
|
# pass if we give the witness 1 (which will give a maximal
|
|
# trailing string of 1s), or -1 (which will give -1 when
|
|
# raised to the maximal odd factor of n-1, or indeed any other
|
|
# odd power).
|
|
n = 0x1010101010101010101010101010101
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 1), "passed")
|
|
self.assertEqual(miller_rabin_test(mr, n-1), "passed")
|
|
self.assertEqual(miller_rabin_test(mr, 2), "failed")
|
|
|
|
# A Carmichael number, as a proper test that M-R detects
|
|
# things the Fermat test would not.
|
|
#
|
|
# (Its prime factorisation is 26823115100268314289505807 *
|
|
# 53646230200536628579011613 * 80469345300804942868517419,
|
|
# which is enough to re-check its Carmichaelness.)
|
|
n = 0xffffffffffffffffcf8032f3e044b4a8b1b1bf0b526538eae953d90f44d65511
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 16), "passed")
|
|
assert(pow(2, n-1, n) == 1) # Fermat test would pass, but ...
|
|
self.assertEqual(miller_rabin_test(mr, 2), "failed") # ... this fails
|
|
|
|
# A white-box test for the side-channel-safe M-R
|
|
# implementation, which has to check a^e against +-1 for every
|
|
# exponent e of the form floor((n-1) / power of 2), so as to
|
|
# avoid giving away exactly how many of the trailing values of
|
|
# that sequence are significant to the test.
|
|
#
|
|
# When the power of 2 is large enough that the division was
|
|
# not exact, the results of these comparisons are _not_
|
|
# significant to the test, and we're required to ignore them!
|
|
#
|
|
# This pair of values has the property that none of the values
|
|
# legitimately computed by M-R is either +1 _or_ -1, but if
|
|
# you shift n-1 right by one too many bits (losing the lowest
|
|
# set bit of 0x6d00 to get 0x36), then _that_ power of the
|
|
# witness integer is -1. This should not cause a spurious pass.
|
|
n = 0x6d01
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 0x251), "failed")
|
|
|
|
class crypt(MyTestBase):
|
|
def testSSH1Fingerprint(self):
|
|
# Example key and reference fingerprint value generated by
|
|
# OpenSSH 6.7 ssh-keygen
|
|
rsa = rsa_bare(65537, 984185866443261798625575612408956568591522723900235822424492423996716524817102482330189709310179009158443944785704183009867662230534501187034891091310377917105259938712348098594526746211645472854839799025154390701673823298369051411)
|
|
fp = rsa_ssh1_fingerprint(rsa)
|
|
self.assertEqual(
|
|
fp, b"768 96:12:c8:bc:e6:03:75:86:e8:c7:b9:af:d8:0c:15:75")
|
|
|
|
def testSSH2Fingerprints(self):
|
|
# A sensible key blob that we can make sense of.
|
|
sensible_blob = base64.decodebytes(
|
|
b'AAAAC3NzaC1lZDI1NTE5AAAAICWiV0VAD4lQ7taUN7vZ5Rkc'
|
|
b'SLJBW5ubn6ZINwCOzpn3')
|
|
self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "sha256"),
|
|
b'ssh-ed25519 255 SHA256:'
|
|
b'E4VmaHW0sUF7SUgSEOmMJ8WBtt0e/j3zbsKvyqfFnu4')
|
|
self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "md5"),
|
|
b'ssh-ed25519 255 '
|
|
b'35:73:80:df:a3:2c:1a:f2:2c:a6:5c:84:ce:48:6a:7e')
|
|
|
|
# A key blob with an unknown algorithm name, so that we can't
|
|
# extract the bit count.
|
|
silly_blob = ssh_string(b'foo') + ssh_string(b'key data')
|
|
self.assertEqual(ssh2_fingerprint_blob(silly_blob, "sha256"),
|
|
b'foo SHA256:'
|
|
b'mvfJTB4PaRI7hxYaYwn0sH8G6zW1HbLkbWnZE2YIKc4')
|
|
self.assertEqual(ssh2_fingerprint_blob(silly_blob, "md5"),
|
|
b'foo '
|
|
b'5f:5f:97:94:97:be:01:5c:f6:3f:e3:6e:55:46:ea:52')
|
|
|
|
# A key blob without even a valid algorithm-name string at the start.
|
|
very_silly_blob = b'foo'
|
|
self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "sha256"),
|
|
b'SHA256:'
|
|
b'LCa0a2j/xo/5m0U8HTBBNBNCLXBkg7+g+YpeiGJm564')
|
|
self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "md5"),
|
|
b'ac:bd:18:db:4c:c2:f8:5c:ed:ef:65:4f:cc:c4:a4:d8')
|
|
|
|
def testAES(self):
|
|
# My own test cases, generated by a mostly independent
|
|
# reference implementation of AES in Python. ('Mostly'
|
|
# independent in that it was written by me.)
|
|
|
|
def vector(cipherbase, key, iv, plaintext, ciphertext):
|
|
for cipher in get_implementations(cipherbase):
|
|
c = ssh_cipher_new(cipher)
|
|
if c is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(c, key)
|
|
ssh_cipher_setiv(c, iv)
|
|
self.assertEqualBin(
|
|
ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
ssh_cipher_setiv(c, iv)
|
|
self.assertEqualBin(
|
|
ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# Tests of CBC mode.
|
|
|
|
key = unhex(
|
|
'98483c6eb40b6c31a448c22a66ded3b5e5e8d5119cac8327b655c8b5c4836489')
|
|
iv = unhex('38f87b0b9b736160bfc0cbd8447af6ee')
|
|
plaintext = unhex('''
|
|
ee16271827b12d828f61d56fddccc38ccaa69601da2b36d3af1a34c51947b71a
|
|
362f05e07bf5e7766c24599799b252ad2d5954353c0c6ca668c46779c2659c94
|
|
8df04e4179666e335470ff042e213c8bcff57f54842237fbf9f3c7e6111620ac
|
|
1c007180edd25f0e337c2a49d890a7173f6b52d61e3d2a21ddc8e41513a0e825
|
|
afd5932172270940b01014b5b7fb8495946151520a126518946b44ea32f9b2a9
|
|
''')
|
|
|
|
vector('aes128_cbc', key[:16], iv, plaintext, unhex('''
|
|
547ee90514cb6406d5bb00855c8092892c58299646edda0b4e7c044247795c8d
|
|
3c3eb3d91332e401215d4d528b94a691969d27b7890d1ae42fe3421b91c989d5
|
|
113fefa908921a573526259c6b4f8e4d90ea888e1d8b7747457ba3a43b5b79b9
|
|
34873ebf21102d14b51836709ee85ed590b7ca618a1e884f5c57c8ea73fe3d0d
|
|
6bf8c082dd602732bde28131159ed0b6e9cf67c353ffdd010a5a634815aaa963'''))
|
|
|
|
vector('aes192_cbc', key[:24], iv, plaintext, unhex('''
|
|
e3dee5122edd3fec5fab95e7db8c784c0cb617103e2a406fba4ae3b4508dd608
|
|
4ff5723a670316cc91ed86e413c11b35557c56a6f5a7a2c660fc6ee603d73814
|
|
73a287645be0f297cdda97aef6c51faeb2392fec9d33adb65138d60f954babd9
|
|
8ee0daab0d1decaa8d1e07007c4a3c7b726948025f9fb72dd7de41f74f2f36b4
|
|
23ac6a5b4b6b39682ec74f57d9d300e547f3c3e467b77f5e4009923b2f94c903'''))
|
|
|
|
vector('aes256_cbc', key[:32], iv, plaintext, unhex('''
|
|
088c6d4d41997bea79c408925255266f6c32c03ea465a5f607c2f076ec98e725
|
|
7e0beed79609b3577c16ebdf17d7a63f8865278e72e859e2367de81b3b1fe9ab
|
|
8f045e1d008388a3cfc4ff87daffedbb47807260489ad48566dbe73256ce9dd4
|
|
ae1689770a883b29695928f5983f33e8d7aec4668f64722e943b0b671c365709
|
|
dfa86c648d5fb00544ff11bd29121baf822d867e32da942ba3a0d26299bcee13'''))
|
|
|
|
# Tests of SDCTR mode, one with a random IV and one with an IV
|
|
# about to wrap round. More vigorous tests of IV carry and
|
|
# wraparound behaviour are in the testAESSDCTR method.
|
|
|
|
sdctrIVs = [
|
|
unhex('38f87b0b9b736160bfc0cbd8447af6ee'),
|
|
unhex('fffffffffffffffffffffffffffffffe'),
|
|
]
|
|
|
|
vector('aes128_ctr', key[:16], sdctrIVs[0], plaintext[:64], unhex('''
|
|
d0061d7b6e8c4ef4fe5614b95683383f46cdd2766e66b6fb0b0f0b3a24520b2d
|
|
15d869b06cbf685ede064bcf8fb5fb6726cfd68de7016696a126e9e84420af38'''))
|
|
vector('aes128_ctr', key[:16], sdctrIVs[1], plaintext[:64], unhex('''
|
|
49ac67164fd9ce8701caddbbc9a2b06ac6524d4aa0fdac95253971974b8f3bc2
|
|
bb8d7c970f6bcd79b25218cc95582edf7711aae2384f6cf91d8d07c9d9b370bc'''))
|
|
|
|
vector('aes192_ctr', key[:24], sdctrIVs[0], plaintext[:64], unhex('''
|
|
0baa86acbe8580845f0671b7ebad4856ca11b74e5108f515e34e54fa90f87a9a
|
|
c6eee26686253c19156f9be64957f0dbc4f8ecd7cabb1f4e0afefe33888faeec'''))
|
|
vector('aes192_ctr', key[:24], sdctrIVs[1], plaintext[:64], unhex('''
|
|
2da1791250100dc0d1461afe1bbfad8fa0320253ba5d7905d837386ba0a3a41f
|
|
01965c770fcfe01cf307b5316afb3981e0e4aa59a6e755f0a5784d9accdc52be'''))
|
|
|
|
vector('aes256_ctr', key[:32], sdctrIVs[0], plaintext[:64], unhex('''
|
|
49c7b284222d408544c770137b6ef17ef770c47e24f61fa66e7e46cae4888882
|
|
f980a0f2446956bf47d2aed55ebd2e0694bfc46527ed1fd33efe708fec2f8b1f'''))
|
|
vector('aes256_ctr', key[:32], sdctrIVs[1], plaintext[:64], unhex('''
|
|
f1d013c3913ccb4fc0091e25d165804480fb0a1d5c741bf012bba144afda6db2
|
|
c512f3942018574bd7a8fdd88285a73d25ef81e621aebffb6e9b8ecc8e2549d4'''))
|
|
|
|
def testAESSDCTR(self):
|
|
# A thorough test of the IV-incrementing component of SDCTR
|
|
# mode. We set up an AES-SDCTR cipher object with the given
|
|
# input IV; we encrypt two all-zero blocks, expecting the
|
|
# return values to be the AES-ECB encryptions of the input IV
|
|
# and the incremented version. Then we decrypt each of them by
|
|
# feeding them to an AES-CBC cipher object with its IV set to
|
|
# zero.
|
|
|
|
def increment(keylen, suffix, iv):
|
|
key = b'\xab' * (keylen//8)
|
|
sdctr = ssh_cipher_new("aes{}_ctr_{}".format(keylen, suffix))
|
|
if sdctr is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(sdctr, key)
|
|
cbc = ssh_cipher_new("aes{}_cbc_{}".format(keylen, suffix))
|
|
ssh_cipher_setkey(cbc, key)
|
|
|
|
ssh_cipher_setiv(sdctr, iv)
|
|
ec0 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
|
|
ec1 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
|
|
ssh_cipher_setiv(cbc, b'\x00' * 16)
|
|
dc0 = ssh_cipher_decrypt(cbc, ec0)
|
|
ssh_cipher_setiv(cbc, b'\x00' * 16)
|
|
dc1 = ssh_cipher_decrypt(cbc, ec1)
|
|
self.assertEqualBin(iv, dc0)
|
|
return dc1
|
|
|
|
def test(keylen, suffix, ivInteger):
|
|
mask = (1 << 128) - 1
|
|
ivInteger &= mask
|
|
ivBinary = unhex("{:032x}".format(ivInteger))
|
|
ivIntegerInc = (ivInteger + 1) & mask
|
|
ivBinaryInc = unhex("{:032x}".format((ivIntegerInc)))
|
|
actualResult = increment(keylen, suffix, ivBinary)
|
|
if actualResult is not None:
|
|
self.assertEqualBin(actualResult, ivBinaryInc)
|
|
|
|
# Check every input IV you can make by gluing together 32-bit
|
|
# pieces of the form 0, 1 or -1. This should test all the
|
|
# places where carry propagation within the 128-bit integer
|
|
# can go wrong.
|
|
#
|
|
# We also test this at all three AES key lengths, in case the
|
|
# core cipher routines are written separately for each one.
|
|
|
|
for suffix in get_aes_impls():
|
|
for keylen in [128, 192, 256]:
|
|
hexTestValues = ["00000000", "00000001", "ffffffff"]
|
|
for ivHexBytes in itertools.product(*([hexTestValues] * 4)):
|
|
ivInteger = int("".join(ivHexBytes), 16)
|
|
test(keylen, suffix, ivInteger)
|
|
|
|
def testAESParallelism(self):
|
|
# Since at least one of our implementations of AES works in
|
|
# parallel, here's a test that CBC decryption works the same
|
|
# way no matter how the input data is divided up.
|
|
|
|
# A pile of conveniently available random-looking test data.
|
|
test_ciphertext = ssh2_mpint(last(fibonacci_scattered(14)))
|
|
test_ciphertext += b"x" * (15 & -len(test_ciphertext)) # pad to a block
|
|
|
|
# Test key and IV.
|
|
test_key = b"foobarbazquxquuxFooBarBazQuxQuux"
|
|
test_iv = b"FOOBARBAZQUXQUUX"
|
|
|
|
for keylen in [128, 192, 256]:
|
|
decryptions = []
|
|
|
|
for suffix in get_aes_impls():
|
|
c = ssh_cipher_new("aes{:d}_cbc_{}".format(keylen, suffix))
|
|
if c is None: continue
|
|
ssh_cipher_setkey(c, test_key[:keylen//8])
|
|
for chunklen in range(16, 16*12, 16):
|
|
ssh_cipher_setiv(c, test_iv)
|
|
decryption = b""
|
|
for pos in range(0, len(test_ciphertext), chunklen):
|
|
chunk = test_ciphertext[pos:pos+chunklen]
|
|
decryption += ssh_cipher_decrypt(c, chunk)
|
|
decryptions.append(decryption)
|
|
|
|
for d in decryptions:
|
|
self.assertEqualBin(d, decryptions[0])
|
|
|
|
def testCRC32(self):
|
|
# Check the effect of every possible single-byte input to
|
|
# crc32_update. In the traditional implementation with a
|
|
# 256-word lookup table, this exercises every table entry; in
|
|
# _any_ implementation which iterates over the input one byte
|
|
# at a time, it should be a similarly exhaustive test. (But if
|
|
# a more optimised implementation absorbed _more_ than 8 bits
|
|
# at a time, then perhaps this test wouldn't be enough...)
|
|
|
|
# It would be nice if there was a functools.iterate() which
|
|
# would apply a function n times. Failing that, making shift1
|
|
# accept and ignore a second argument allows me to iterate it
|
|
# 8 times using functools.reduce.
|
|
shift1 = lambda x, dummy=None: (x >> 1) ^ (0xEDB88320 * (x & 1))
|
|
shift8 = lambda x: functools.reduce(shift1, [None]*8, x)
|
|
|
|
# A small selection of choices for the other input to
|
|
# crc32_update, just to check linearity.
|
|
test_prior_values = [0, 0xFFFFFFFF, 0x45CC1F6A, 0xA0C4ADCF, 0xD482CDF1]
|
|
|
|
for prior in test_prior_values:
|
|
prior_shifted = shift8(prior)
|
|
for i in range(256):
|
|
exp = shift8(i) ^ prior_shifted
|
|
self.assertEqual(crc32_update(prior, struct.pack("B", i)), exp)
|
|
|
|
# Check linearity of the _reference_ implementation, while
|
|
# we're at it!
|
|
self.assertEqual(shift8(i ^ prior), exp)
|
|
|
|
def testCRCDA(self):
|
|
def pattern(badblk, otherblks, pat):
|
|
# Arrange copies of the bad block in a pattern
|
|
# corresponding to the given bit string.
|
|
retstr = b""
|
|
while pat != 0:
|
|
retstr += (badblk if pat & 1 else next(otherblks))
|
|
pat >>= 1
|
|
return retstr
|
|
|
|
def testCases(pat):
|
|
badblock = b'muhahaha' # the block we'll maliciously repeat
|
|
|
|
# Various choices of the other blocks, including all the
|
|
# same, all different, and all different but only in the
|
|
# byte at one end.
|
|
for otherblocks in [
|
|
itertools.repeat(b'GoodData'),
|
|
(struct.pack('>Q', i) for i in itertools.count()),
|
|
(struct.pack('<Q', i) for i in itertools.count())]:
|
|
yield pattern(badblock, otherblocks, pat)
|
|
|
|
def positiveTest(pat):
|
|
for data in testCases(pat):
|
|
self.assertTrue(crcda_detect(data, ""))
|
|
self.assertTrue(crcda_detect(data[8:], data[:8]))
|
|
|
|
def negativeTest(pat):
|
|
for data in testCases(pat):
|
|
self.assertFalse(crcda_detect(data, ""))
|
|
self.assertFalse(crcda_detect(data[8:], data[:8]))
|
|
|
|
# Tests of successful attack detection, derived by taking
|
|
# multiples of the CRC polynomial itself.
|
|
#
|
|
# (The CRC32 polynomial is usually written as 0xEDB88320.
|
|
# That's in bit-reversed form, but then, that's the form we
|
|
# need anyway for these patterns. But it's also missing the
|
|
# leading term - really, 0xEDB88320 is the value you get by
|
|
# reducing X^32 modulo the real poly, i.e. the value you put
|
|
# back in to the CRC to compensate for an X^32 that's just
|
|
# been shifted out. If you put that bit back on - at the
|
|
# bottom, because of the bit-reversal - you get the less
|
|
# familiar-looking 0x1db710641.)
|
|
positiveTest(0x1db710641) # the CRC polynomial P itself
|
|
positiveTest(0x26d930ac3) # (X+1) * P
|
|
positiveTest(0xbdbdf21cf) # (X^3+X^2+X+1) * P
|
|
positiveTest(0x3a66a39b653f6889d)
|
|
positiveTest(0x170db3167dd9f782b9765214c03e71a18f685b7f3)
|
|
positiveTest(0x1751997d000000000000000000000000000000001)
|
|
positiveTest(0x800000000000000000000000000000000f128a2d1)
|
|
|
|
# Tests of non-detection.
|
|
negativeTest(0x1db711a41)
|
|
negativeTest(0x3a66a39b453f6889d)
|
|
negativeTest(0x170db3167dd9f782b9765214c03e71b18f685b7f3)
|
|
negativeTest(0x1751997d000000000000000000000001000000001)
|
|
negativeTest(0x800000000000002000000000000000000f128a2d1)
|
|
|
|
def testAuxEncryptFns(self):
|
|
# Test helper functions such as aes256_encrypt_pubkey. The
|
|
# test cases are all just things I made up at random, and the
|
|
# expected outputs are generated by running PuTTY's own code;
|
|
# this doesn't independently check them against any other
|
|
# implementation, but it at least means we're protected
|
|
# against code reorganisations changing the behaviour from
|
|
# what it was before.
|
|
|
|
p = b'three AES blocks, or six DES, of arbitrary input'
|
|
|
|
k = b'thirty-two-byte aes-256 test key'
|
|
iv = b'\0' * 16
|
|
c = unhex('7b112d00c0fc95bc13fcdacfd43281bf'
|
|
'de9389db1bbcfde79d59a303d41fd2eb'
|
|
'0955c9477ae4ee3a4d6c1fbe474c0ef6')
|
|
self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
|
|
self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)
|
|
|
|
# same k as in the previous case
|
|
iv = unhex('0102030405060708090a0b0c0d0e0f10')
|
|
c = unhex('9e9c8a91b739677b834397bdd8e70c05'
|
|
'c3e2cf6cce68d376d798a59848621c6d'
|
|
'42b9e7101260a438daadd7b742875a36')
|
|
self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
|
|
self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)
|
|
|
|
k = b'3des with keys distinct.'
|
|
iv = b'randomIV'
|
|
c = unhex('be81ff840d885869a54d63b03d7cd8db'
|
|
'd39ab875e5f7b9da1081f8434cb33c47'
|
|
'dee5bcd530a3f6c13a9fc73e321a843a')
|
|
self.assertEqualBin(des3_encrypt_pubkey_ossh(k, iv, p), c)
|
|
self.assertEqualBin(des3_decrypt_pubkey_ossh(k, iv, c), p)
|
|
|
|
k = b'3des, 2keys only'
|
|
c = unhex('0b845650d73f615cf16ee3ed20535b5c'
|
|
'd2a8866ee628547bbdad916e2b4b9f19'
|
|
'67c15bde33c5b03ff7f403b4f8cf2364')
|
|
self.assertEqualBin(des3_encrypt_pubkey(k, p), c)
|
|
self.assertEqualBin(des3_decrypt_pubkey(k, c), p)
|
|
|
|
k = b'7 bytes'
|
|
c = unhex('5cac9999cffc980a1d1184d84b71c8cb'
|
|
'313d12a1d25a7831179aeb11edaca5ad'
|
|
'9482b224105a61c27137587620edcba8')
|
|
self.assertEqualBin(des_encrypt_xdmauth(k, p), c)
|
|
self.assertEqualBin(des_decrypt_xdmauth(k, c), p)
|
|
|
|
def testSSHCiphers(self):
|
|
# Test all the SSH ciphers we support, on the same principle
|
|
# as testAuxCryptFns that we should have test cases to verify
|
|
# that things still work the same today as they did yesterday.
|
|
|
|
p = b'64 bytes of test input data, enough to check any cipher mode xyz'
|
|
k = b'sixty-four bytes of test key data, enough to key any cipher pqrs'
|
|
iv = b'16 bytes of IV w'
|
|
|
|
ciphers = [
|
|
("3des_ctr", 24, 8, False, unhex('83c17a29250d3d4fa81250fc0362c54e40456936445b77709a30fccf8b983d57129a969c59070d7c2977f3d25dd7d71163687c7b3cd2edb0d07514e6c77479f5')),
|
|
("3des_ssh2", 24, 8, True, unhex('d5f1cc25b8fbc62decc74b432344de674f7249b2e38871f764411eaae17a1097396bd97b66a1e4d49f08c219acaef2a483198ce837f75cc1ef67b37c2432da3e')),
|
|
("3des_ssh1", 24, 8, False, unhex('d5f1cc25b8fbc62de63590b9b92344adf6dd72753273ff0fb32d4dbc6af858529129f34242f3d557eed3a5c84204eb4f868474294964cf70df5d8f45dfccfc45')),
|
|
("des_cbc", 8, 8, True, unhex('051524e77fb40e109d9fffeceacf0f28c940e2f8415ddccc117020bdd2612af5036490b12085d0e46129919b8e499f51cb82a4b341d7a1a1ea3e65201ef248f6')),
|
|
("aes256_ctr", 32, 16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
|
|
("aes256_cbc", 32, 16, True, unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
|
|
("aes192_ctr", 24, 16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
|
|
("aes192_cbc", 24, 16, True, unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
|
|
("aes128_ctr", 16, 16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
|
|
("aes128_cbc", 16, 16, True, unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
|
|
("blowfish_ctr", 32, 8, False, unhex('079daf0f859363ccf72e975764d709232ec48adc74f88ccd1f342683f0bfa89ca0e8dbfccc8d4d99005d6b61e9cc4e6eaa2fd2a8163271b94bf08ef212129f01')),
|
|
("blowfish_ssh2", 16, 8, True, unhex('e986b7b01f17dfe80ee34cac81fa029b771ec0f859ae21ae3ec3df1674bc4ceb54a184c6c56c17dd2863c3e9c068e76fd9aef5673465995f0d648b0bb848017f')),
|
|
("blowfish_ssh1", 32, 8, True, unhex('d44092a9035d895acf564ba0365d19570fbb4f125d5a4fd2a1812ee6c8a1911a51bb181fbf7d1a261253cab71ee19346eb477b3e7ecf1d95dd941e635c1a4fbf')),
|
|
("arcfour256", 32, None, False, unhex('db68db4cd9bbc1d302cce5919ff3181659272f5d38753e464b3122fc69518793fe15dd0fbdd9cd742bd86c5e8a3ae126c17ecc420bd2d5204f1a24874d00fda3')),
|
|
("arcfour128", 16, None, False, unhex('fd4af54c5642cb29629e50a15d22e4944e21ffba77d0543b27590eafffe3886686d1aefae0484afc9e67edc0e67eb176bbb5340af1919ea39adfe866d066dd05')),
|
|
]
|
|
|
|
for algbase, keylen, ivlen, simple_cbc, c in ciphers:
|
|
for alg in get_implementations(algbase):
|
|
cipher = ssh_cipher_new(alg)
|
|
if cipher is None:
|
|
continue # hardware-accelerated cipher not available
|
|
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
if ivlen is not None:
|
|
ssh_cipher_setiv(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_encrypt(cipher, p), c)
|
|
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
if ivlen is not None:
|
|
ssh_cipher_setiv(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)
|
|
|
|
if simple_cbc:
|
|
# CBC ciphers (other than the three-layered CBC used
|
|
# by SSH-1 3DES) have more specific semantics for
|
|
# their IV than 'some kind of starting state for the
|
|
# cipher mode': the IV is specifically supposed to
|
|
# represent the previous block of ciphertext. So we
|
|
# can check that, by supplying the IV _as_ a
|
|
# ciphertext block via a call to decrypt(), and seeing
|
|
# if that causes our test ciphertext to decrypt the
|
|
# same way as when we provided the same IV via
|
|
# setiv().
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
ssh_cipher_decrypt(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)
|
|
|
|
def testRSAKex(self):
|
|
# Round-trip test of the RSA key exchange functions, plus a
|
|
# hardcoded plain/ciphertext pair to guard against the
|
|
# behaviour accidentally changing.
|
|
def blobs(n, e, d, p, q, iqmp):
|
|
# For RSA kex, the public blob is formatted exactly like
|
|
# any other SSH-2 RSA public key. But there's no private
|
|
# key blob format defined by the protocol, so for the
|
|
# purposes of making a test RSA private key, we borrow the
|
|
# function we already had that decodes one out of the wire
|
|
# format used in the SSH-1 agent protocol.
|
|
pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
|
|
privblob = (ssh_uint32(nbits(n)) + ssh1_mpint(n) + ssh1_mpint(e) +
|
|
ssh1_mpint(d) + ssh1_mpint(iqmp) +
|
|
ssh1_mpint(q) + ssh1_mpint(p))
|
|
return pubblob, privblob
|
|
|
|
# Parameters for a test key.
|
|
p = 0xf49e4d21c1ec3d1c20dc8656cc29aadb2644a12c98ed6c81a6161839d20d398d
|
|
q = 0xa5f0bc464bf23c4c83cf17a2f396b15136fbe205c07cb3bb3bdb7ed357d1cd13
|
|
n = p*q
|
|
e = 37
|
|
d = int(mp_invert(e, (p-1)*(q-1)))
|
|
iqmp = int(mp_invert(q, p))
|
|
assert iqmp * q % p == 1
|
|
assert d * e % (p-1) == 1
|
|
assert d * e % (q-1) == 1
|
|
|
|
pubblob, privblob = blobs(n, e, d, p, q, iqmp)
|
|
|
|
pubkey = ssh_rsakex_newkey(pubblob)
|
|
privkey = get_rsa_ssh1_priv_agent(privblob)
|
|
|
|
plain = 0x123456789abcdef
|
|
hashalg = 'md5'
|
|
with queued_random_data(64, "rsakex encrypt test"):
|
|
cipher = ssh_rsakex_encrypt(pubkey, hashalg, ssh2_mpint(plain))
|
|
decoded = ssh_rsakex_decrypt(privkey, hashalg, cipher)
|
|
self.assertEqual(int(decoded), plain)
|
|
self.assertEqualBin(cipher, unhex(
|
|
'34277d1060dc0a434d98b4239de9cec59902a4a7d17a763587cdf8c25d57f51a'
|
|
'7964541892e7511798e61dd78429358f4d6a887a50d2c5ebccf0e04f48fc665c'
|
|
))
|
|
|
|
def testMontgomeryKexLowOrderPoints(self):
|
|
# List of all the bad input values for Curve25519 which can
|
|
# end up generating a zero output key. You can find the first
|
|
# five (the ones in canonical representation, i.e. in
|
|
# [0,2^255-19)) by running
|
|
# find_montgomery_power2_order_x_values(curve25519.p, curve25519.a)
|
|
# and then encoding the results little-endian.
|
|
bad_keys_25519 = [
|
|
"0000000000000000000000000000000000000000000000000000000000000000",
|
|
"0100000000000000000000000000000000000000000000000000000000000000",
|
|
"5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f1157",
|
|
"e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b800",
|
|
"ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
|
|
# Input values less than 2^255 are reduced mod p, so those
|
|
# of the above values which are still in that range when
|
|
# you add 2^255-19 to them should also be caught.
|
|
"edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
"eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
|
|
# Input values are reduced mod 2^255 before reducing mod
|
|
# p. So setting the high-order bit of any of the above 7
|
|
# values should also lead to rejection, because it will be
|
|
# stripped off and then the value will be recognised as
|
|
# one of the above.
|
|
"0000000000000000000000000000000000000000000000000000000000000080",
|
|
"0100000000000000000000000000000000000000000000000000000000000080",
|
|
"5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f11d7",
|
|
"e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b880",
|
|
"ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
"edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
"eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
]
|
|
|
|
# Same for Curve448, found by the analogous eccref function call
|
|
# find_montgomery_power2_order_x_values(curve448.p, curve448.a)
|
|
bad_keys_448 = [
|
|
# The first three are the bad values in canonical
|
|
# representationm. In Curve448 these are just 0, 1 and -1.
|
|
'0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
|
|
'0100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
|
|
'fefffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',
|
|
|
|
# As with Curve25519, we must also include values in
|
|
# non-canonical representation that reduce to one of the
|
|
# above mod p.
|
|
'fffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',
|
|
'00000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff'
|
|
|
|
# But that's all, because Curve448 fits neatly into a
|
|
# whole number of bytes, so there's no secondary reduction
|
|
# mod a power of 2.
|
|
]
|
|
|
|
with random_prng("doesn't matter"):
|
|
ecdh25519 = ssh_ecdhkex_newkey('curve25519')
|
|
ecdh448 = ssh_ecdhkex_newkey('curve448')
|
|
for pub in bad_keys_25519:
|
|
key = ssh_ecdhkex_getkey(ecdh25519, unhex(pub))
|
|
self.assertEqual(key, None)
|
|
for pub in bad_keys_448:
|
|
key = ssh_ecdhkex_getkey(ecdh448, unhex(pub))
|
|
self.assertEqual(key, None)
|
|
|
|
def testPRNG(self):
|
|
hashalg = 'sha256'
|
|
seed = b"hello, world"
|
|
entropy = b'1234567890' * 100
|
|
|
|
# Replicate the generation of some random numbers. to ensure
|
|
# they really are the hashes of what they're supposed to be.
|
|
pr = prng_new(hashalg)
|
|
prng_seed_begin(pr)
|
|
prng_seed_update(pr, seed)
|
|
prng_seed_finish(pr)
|
|
data1 = prng_read(pr, 128)
|
|
data2 = prng_read(pr, 127) # a short read shouldn't confuse things
|
|
prng_add_entropy(pr, 0, entropy) # forces a reseed
|
|
data3 = prng_read(pr, 128)
|
|
|
|
le128 = lambda x: le_integer(x, 128)
|
|
|
|
key1 = hash_str(hashalg, b'R' + seed)
|
|
expected_data1 = b''.join(
|
|
hash_str(hashalg, key1 + b'G' + le128(counter))
|
|
for counter in range(4))
|
|
# After prng_read finishes, we expect the PRNG to have
|
|
# automatically reseeded itself, so that if its internal state
|
|
# is revealed then the previous output can't be reconstructed.
|
|
key2 = hash_str(hashalg, key1 + b'R')
|
|
expected_data2 = b''.join(
|
|
hash_str(hashalg, key2 + b'G' + le128(counter))
|
|
for counter in range(4,8))
|
|
# There will have been another reseed after the second
|
|
# prng_read, and then another due to the entropy.
|
|
key3 = hash_str(hashalg, key2 + b'R')
|
|
key4 = hash_str(hashalg, key3 + b'R' + hash_str(hashalg, entropy))
|
|
expected_data3 = b''.join(
|
|
hash_str(hashalg, key4 + b'G' + le128(counter))
|
|
for counter in range(8,12))
|
|
|
|
self.assertEqualBin(data1, expected_data1)
|
|
self.assertEqualBin(data2, expected_data2[:127])
|
|
self.assertEqualBin(data3, expected_data3)
|
|
|
|
def testHashPadding(self):
|
|
# A consistency test for hashes that use MD5/SHA-1/SHA-2 style
|
|
# padding of the message into a whole number of fixed-size
|
|
# blocks. We test-hash a message of every length up to twice
|
|
# the block length, to make sure there's no off-by-1 error in
|
|
# the code that decides how much padding to put on.
|
|
|
|
# Source: generated using Python hashlib as an independent
|
|
# implementation. The function below will do it, called with
|
|
# parameters such as (hashlib.sha256,128).
|
|
#
|
|
# def gen_testcase(hashclass, maxlen):
|
|
# return hashclass(b''.join(hashclass(text[:i]).digest()
|
|
# for i in range(maxlen))).hexdigest()
|
|
|
|
text = """
|
|
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
|
|
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
|
|
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
|
|
aliquip ex ea commodo consequat. Duis aute irure dolor in
|
|
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
|
|
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
|
|
culpa qui officia deserunt mollit anim id est laborum.
|
|
""".replace('\n', ' ').strip()
|
|
|
|
def test(hashname, maxlen, expected):
|
|
assert len(text) >= maxlen
|
|
buf = b''.join(hash_str(hashname, text[:i])
|
|
for i in range(maxlen))
|
|
self.assertEqualBin(hash_str(hashname, buf), unhex(expected))
|
|
|
|
test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15')
|
|
test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259')
|
|
test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232'
|
|
'35d4eed3368d876fdf10c9df27396640')
|
|
test('sha512', 256,
|
|
'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578'
|
|
'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055'
|
|
)
|
|
|
|
def testDSA(self):
|
|
p = 0xe93618c54716992ffd54e79df6e1b0edd517f7bbe4a49d64631eb3efe8105f676e8146248cfb4f05720862533210f0c2ab0f9dd61dbc0e5195200c4ebd95364b
|
|
q = 0xf3533bcece2e164ca7c5ce64bc1e395e9a15bbdd
|
|
g = 0x5ac9d0401c27d7abfbc5c17cdc1dc43323cd0ef18b79e1909bdace6d17af675a10d37dde8bd8b70e72a8666592216ccb00614629c27e870e4fbf393b812a9f05
|
|
y = 0xac3ddeb22d65a5a2ded4a28418b2a748d8e5e544ba5e818c137d7b042ef356b0ef6d66cfca0b3ab5affa2969522e7b07bee60562fa4869829a5afce0ad0c4cd0
|
|
x = 0x664f8250b7f1a5093047fe0c7fe4b58e46b73295
|
|
pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
|
|
privblob = ssh2_mpint(x)
|
|
pubkey = ssh_key_new_pub('dsa', pubblob)
|
|
privkey = ssh_key_new_priv('dsa', pubblob, privblob)
|
|
|
|
sig = ssh_key_sign(privkey, b"hello, world", 0)
|
|
self.assertTrue(ssh_key_verify(pubkey, sig, b"hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, sig, b"hello, again"))
|
|
|
|
badsig0 = unhex('{:040x}{:040x}'.format(1, 0))
|
|
badsigq = unhex('{:040x}{:040x}'.format(1, q))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))
|
|
|
|
def testBLAKE2b(self):
|
|
# The standard test vectors for BLAKE2b (in the separate class
|
|
# below) don't satisfy me because they only test one hash
|
|
# size. These additional tests exercise BLAKE2b's configurable
|
|
# output length. The expected results are derived from the
|
|
# BLAKE2 reference implementation.
|
|
|
|
def b2_with_len(data, length):
|
|
h = blake2b_new_general(length)
|
|
h.update(data)
|
|
return h.digest()[:length]
|
|
|
|
self.assertEqualBin(b2_with_len(b'hello', 1), unhex("29"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 2), unhex("accd"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 3), unhex("980032"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 5), unhex("9baecc38f2"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 8), unhex(
|
|
"a7b6eda801e5347d"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 13), unhex(
|
|
"6eedb122c6707328a66aa34a07"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 21), unhex(
|
|
"c7f0f74a227116547b3d2788e927ee2a76c87d8797"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 34), unhex(
|
|
"2f5fcdf2b870fa254051dd448193a1fb6e92be122efca539ba2aeac0bc6c77d0"
|
|
"dadc"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 55), unhex(
|
|
"daafcf2bd6fccf976cbc234b71cd9f4f7d56fe0eb33a40018707089a215c44a8"
|
|
"4b272d0329ae6d85a0f8acc7e964dc2facb715ba472bb6"))
|
|
|
|
def testArgon2LongHash(self):
|
|
# Unit-test the Argon2 long hash function H', which starts off
|
|
# the same as BLAKE2b, but comes with its own method of
|
|
# extending the output length past 64 bytes.
|
|
#
|
|
# I generated these test values using a test program linked
|
|
# against the reference implementation's libargon2.a and
|
|
# calling its blake2b_long function.
|
|
preimage = b'hello, world'
|
|
|
|
self.assertEqualBin(argon2_long_hash(1, preimage), unhex("8b"))
|
|
self.assertEqualBin(argon2_long_hash(2, preimage), unhex("1ff9"))
|
|
self.assertEqualBin(argon2_long_hash(63, preimage), unhex(
|
|
"e2c997721f1d64aa8c25e588fb8ab19646ce6d5c2a431fa560fcb813e55dd481"
|
|
"322d2630d95ca6b1b63317b13d6b111e5816170c80c3ca7d5b4bf894096de4"))
|
|
self.assertEqualBin(argon2_long_hash(64, preimage), unhex(
|
|
"0c7ba7ee6d510b4bb5c9b69ac91e25e0b11aa30dd6234b8e61b0fe1537c037b8"
|
|
"8ed5aa59a277e8cc07095c81aff26d08967e4dfdabd32db8b6af6ceb78cf8c47"))
|
|
self.assertEqualBin(argon2_long_hash(65, preimage), unhex(
|
|
"680941abbd8fc80f28c38d623e90903f08709bf76575e2775d4ce01c31b192c8"
|
|
"73038d9a31af8991c8b1ad4f2b1991f4d15f73ab0f4f3add415c297a12eb9ddb"
|
|
"76"))
|
|
self.assertEqualBin(argon2_long_hash(95, preimage), unhex(
|
|
"4be28c51850fed70d9403e1406b6ba68a83d98cf222a4ee162beef60fd3384df"
|
|
"eba3fce9d95f646982eb384ac943ce5263cb03428fd8d261cc41ffdb7ba328fe"
|
|
"098526f2b49593f9e7f38188598ce4693b59f4dd32db30c1be9a9d35784fa0"))
|
|
self.assertEqualBin(argon2_long_hash(96, preimage), unhex(
|
|
"20295ea01e822cca113f668f33e5e481ed5879bfd7de6359ea42d497da97be52"
|
|
"2cdd518d34ae32c44cabd45249b4e697626b0b14b6a33a2bd138be0a4bceeaf4"
|
|
"9528f93acef01b093ee84d8d871d1ee6cf7c10e83ad0619631aed19345166f03"))
|
|
self.assertEqualBin(argon2_long_hash(97, preimage), unhex(
|
|
"d24b31f3ac0baad168d524efc4bafee55fef743fd60b14e28b860d7523e319c7"
|
|
"520e2d5457cc3d06dc1044530afdf6990fa12e38d5802eb642f8e77fcfee2c0b"
|
|
"1f84a28877f2f2f049ed9299e1e0230f98af3a161185970aad21f0ea0f5184cf"
|
|
"90"))
|
|
self.assertEqualBin(argon2_long_hash(127, preimage), unhex(
|
|
"5d1e8380450dbc985418ed1f3700b925ae0719e4486e29131c81bca7083ac6b8"
|
|
"f535c3398488e34d3dc1390de44097f1eee498f10ebe85b579e99a7672023b01"
|
|
"ca5c20e63c595b640e00d80f113a52e3773719889b266ab4c65269c11fb212e4"
|
|
"75f2b769bb26321bb60ecc0d490821e5056d7dfc9def3cd065d3ba90360764"))
|
|
self.assertEqualBin(argon2_long_hash(128, preimage), unhex(
|
|
"be15b316f3483c4d0d00f71a65b974894a2025f441b79b9fe461bc740cb0b039"
|
|
"c4fe914f61c05a612d63ebc50a662b2d59b1996091e5e3474340544ea46a46cb"
|
|
"25c41ff700fafcd96c4f12ddc698cd2426558f960696837ea8170fd2fe284b54"
|
|
"8f585f97919ef14f2b3cbb351eb98872add7ba6d08c1401232df6cc878fbeb22"))
|
|
self.assertEqualBin(argon2_long_hash(129, preimage), unhex(
|
|
"83da464c278dcb12c29b6685fee6d32f0b461337c155369ad0d56b58b0aa5f80"
|
|
"9aa7b56bd41b664c8d768957f8f0e40999fb0178eb53cf83f31d725bf92881bc"
|
|
"900774bce4cdf56b6386ad3de6891d11a0ccd4564a3431fc4c24105a02d0a6a2"
|
|
"434712b9a7471f3223c72a6e64912200d0a3d149a19d06fe9dc8ec09d7ed5a48"
|
|
"bb"))
|
|
self.assertEqualBin(argon2_long_hash(511, preimage), unhex(
|
|
"30c0c0d0467e7665368db0b40a2324a61fb569d35172de2df53a9739a8d18e60"
|
|
"b4f25d521c8855604be3e24ea56302566074323d94c0bd3a33d08f185d8ba5ac"
|
|
"a2bc3fb2e4c4e5ffec5778daea67c6b5913c9cac16f2e5c7b7818e757fa747b3"
|
|
"69e586d616010a752762f69c604238ed8738430366fbdb7493454fa02391a76b"
|
|
"30f241695b9fa8d3a3116227c6bb6f72d325cf104ab153d15f928b22767d467d"
|
|
"4bf7e16176aaa7315954b7872061933c12d548f1f93a8abb9d73791661bee521"
|
|
"b2ae51be373a229dfef32787234c1be5846d133563002b9a029178716ad41e70"
|
|
"1539d3fad300c77607c5217701e3e485d72c980f3f71d525c8148375a2f8d22c"
|
|
"a211ba165330a90b7e0e6baa6073833925c23bdd388ee904f38463c7e6b85475"
|
|
"09b810aae5c9ffc5dd902c2ffe049c338e3ae2c6416d3b874d6a9d384089564c"
|
|
"0d8e4dce9b6e47e1d5ec9087bf526cc9fa35aab1893a0588d31b77fea37e0799"
|
|
"468deacde47629d2960a3519b3bcd4e22364a9cccd3b128cba21cac27f140d53"
|
|
"f79c11e4157e4cb48272eecdf62f52084a27e5b0933bbe66ded17e2df6f8d398"
|
|
"f6c479c3c716457820ad177b8bd9334cb594e03d09fcc4f82d4385e141eacd7d"
|
|
"9ad1e1c4cb42788af70bac0509f0a891e662960955490abf2763373803e8c89c"
|
|
"df632579cb9c647634b30df214a3d67b92fd55d283c42c63b470a48a78cd5b"))
|
|
self.assertEqualBin(argon2_long_hash(512, preimage), unhex(
|
|
"79a6974e29a9a6c069e0156774d35c5014a409f5ffc60013725367a7208d4929"
|
|
"7d228637751768a31a59e27aa89372f1bcc095a6fa331198a5bd5ad053ba2ebb"
|
|
"cbcc501ea55cf142e8d95209228c9ab60cd104d5077472f2a9ecaa071aed6ee9"
|
|
"5de29e188b7399d5b6b7ed897b2bc4dd1ea745eb9974e39ca6fb983380cc537a"
|
|
"c04dfe6caefe85faf206b1613092ebadf791eaa8a5b814c9a79a73a5733b0505"
|
|
"a47163c10a0f7309df6663896df6079a7c88c6879bb591a40abd398c6deda792"
|
|
"1cc3986435b1c840a768b2fa507446f2f77a406b1b2f739f7795db24789c8927"
|
|
"24b4c84b7005445123154f8cd2ba63a7ede672af5d197f846700732025c9931d"
|
|
"1c67c5493417ca394a8f68ba532645815cf7b5102af134ecb4fd9e326f53779a"
|
|
"3039dbef6a0880db9e38b6b61d2f9ead969e4224c2d9c69b5897e5eeb7032e83"
|
|
"334e192ff50017056ccb84d4cc8eee3ab248d2614643d0174fe18c72186dd967"
|
|
"92d8545645ddf4a9b2c7a91c9a71857a399449d7154077a8e9580f1a2d20227d"
|
|
"671b455ccb897cba0491e50892120d7877f7776d653cfdb176fa3f64a9e6f848"
|
|
"cd681c487b488775aaf698294eec813b2cca90d68d63b5d886d61c1a8e922aaa"
|
|
"330fd658ede56e34bcd288048e845eba7b8e2e7cc22ba6c91b523e48017aa878"
|
|
"8ce4f91d0e6d6c6706762fb0cc7f465cee3916684fb21e337cfe1b583e0b1e92"))
|
|
self.assertEqualBin(argon2_long_hash(513, preimage), unhex(
|
|
"32243cfbd7eca582d60b3b8ea3ba3d93783537689c7cbcd1d1cbde46200b8c86"
|
|
"617fc00e8a9ae991a1e2f91c67e07d5f0a777d982c1461d0c5474e4e164b053c"
|
|
"2808559e2b8a5ac4a46a5fcbc825b1d5302c7b0611940194eb494d45ce7113a2"
|
|
"3424b51c199c6a5100ab159ff323eda5feffee4da4155a028a81da9d44e4286b"
|
|
"ac3dab4ffce43a80b6ce97a47ea0ac51ee16e8b4d3b68942afdc20e1c21747c4"
|
|
"94859c3d3883e7dc19ea416a393a3507683d9d03e6a3a91f8f1cb8a7d5d9892e"
|
|
"80c8fb0222527a73a1f59b9dd41770982f2af177a6e96093064534803edd0713"
|
|
"71ede53024cedc291d768325bb4e4def9af1b5569c349b64816496c37a8787b5"
|
|
"4fbe248372ebadb5ce20e03eaa935dc55ff4b8cbe5d6d844c7b71d4656fef22c"
|
|
"5a49f13d75a7a8368a2dbc1e78d732b879bfc5c9467eda2bf4918f0c59037ae3"
|
|
"dee7880a171409dd1a4e143c814e60301ac77237f261fa7519a04e68000530f9"
|
|
"708ed9fda5609d655560a9491f80f5875ad5725e3120686b73319c6a727932e3"
|
|
"20a2174422523498c38fea47aeb20d135ff9fd93c6fa6db0005e0001685d7577"
|
|
"33a82a4dc9dd6556b938f7b8dafd0d670846780b9931b815063708189b17877b"
|
|
"825533bcc250fb576a28be4caa107e6a3a6f7b0c60fb51b0def27008b7e272ac"
|
|
"95d610bfa912339799a2e537ce543d7862dddbe31bb224fda4ae283571847a28"
|
|
"54"))
|
|
self.assertEqualBin(argon2_long_hash(1024, preimage), unhex(
|
|
"951252f6fa152124f381266a358d9b78b88e469d08d5fc78e4ea32253c7fc26c"
|
|
"3ff1c93529ab4ee6fcf00acf29bbaba934a4014ce2625e0806601c55e6ce70d7"
|
|
"121fd82f0904f335c5c7ba07dc6e6adf7582c92f7f255072203ea85844b4fe54"
|
|
"817476a20bb742710ffc42750361be94332d0fc721b192309acfa70da43db6ae"
|
|
"1d0f0bbe8a3250966a4532b36728162073c9eb3e119ea4c1c187c775dbb25a5d"
|
|
"d883e3f65706a5fca897cdc4a8aa7b68ba3f57940c72f3a3396c417e758ba071"
|
|
"95be4afba325237c0e2738a74d96fd1350fb623cb2ad40ea8b1e070cf398b98c"
|
|
"2865ea40225b81f031f2b405409ca01dc5d9903d3d8e1d6381fbe7ccfc8f3dab"
|
|
"eadafd7c976c0ba84a936f78ff7df0f112c089ba88f82bed7f9a6e31a91e5fee"
|
|
"f675755454b948de22695660b243b9eca3bcc89608f83d2baa1d73dd6b8bd4f9"
|
|
"b995ed9cb0f1edc6e98a49ed841b506c1bf59b43f4b3457a376bbff116c1a4f6"
|
|
"07cc62381fc5c19953c68f300c1b51198d40784d812d25810ba404862f04b680"
|
|
"6039a074f612ad8b84e0941ba23c915c3e7162c225fbecffdb7dc1ab559b2b54"
|
|
"32fe8a498c32e918d8e7e33254ff75077f648827705e987f4d90fba971e78e1a"
|
|
"6896b4d775c7359dc950f1e964fa04621aacf3c0988969490f4c72c54caf79e8"
|
|
"481053cc0a27ffcd3580aabf9ef1268d498d8a18bd70e9b8402e011753bb7dc7"
|
|
"e856c00d988fca924ee7cf61979c38cda8a872e4cc4fbdc90c23a0ded71eb944"
|
|
"bb816ab22d9a4380e3e9d1cec818165c2fba6c5d51dcbf452c0cb1779a384937"
|
|
"64d695370e13a301eca7be68d4112d2177381514efbb36fe08fc5bc2970301b8"
|
|
"06f8e5a57a780e894d5276e2025bb775b6d1861e33c54ab6e3eb72947fbe6f91"
|
|
"8174ce24eb4682efbb3c4f01233dc7ce9ef44792e9e876bb03e6751b3d559047"
|
|
"d045127d976aa042fc55c690c9048e200065e7b7de19d9353aa9ac9b3e7611f0"
|
|
"d1c42d069a300455ca1f7420a352bace89215e705106927510c11b3b1c1486d9"
|
|
"f3ab006d2de2ee2c94574f760ce8c246bca229f98c66f06042b14f1fff9a16c0"
|
|
"1550237e16d108ce5597299b1eb406a9ee505a29a6e0fa526b3e6beafd336aea"
|
|
"138b2f31971586f67c5ffffbd6826d1c75666038c43d0bdff4edfc294e064a49"
|
|
"2eed43e2dc78d00abc4e85edcd9563b8251b66f57b0f4b6d17f5a3f35c87c488"
|
|
"dbeeb84fd720286197c2dec8290eccf3a313747de285b9cd3548e90cf81b3838"
|
|
"3ffcc8c2a7f582feb369d05cb96b9b224d05902b3e39e5b96536032e9dddeb9b"
|
|
"9d4f40a9c8f544ca37cf8d39d7c8c6a33880e9184ed017bd642db9590759bd10"
|
|
"7362048ede5c0257feecc4984584592c566f37fba8469c064015339fb4f03023"
|
|
"56ece37fd3655aae2bfc989b9b4c1384efc3503c8866db901802cb36eda9fb00"))
|
|
|
|
def testArgon2(self):
|
|
# A few tests of my own of Argon2, derived from the reference
|
|
# implementation.
|
|
pwd = b"password"
|
|
salt = b"salt of at least 16 bytes"
|
|
secret = b"secret"
|
|
assoc = b"associated data"
|
|
|
|
# Smallest memory (8Kbyte) and parallelism (1) parameters the
|
|
# reference implementation will accept, but lots of passes
|
|
self.assertEqualBin(
|
|
argon2('i', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"314da280240a3ca1eedd1f1db417a76eb0741e7df64b8cdf"))
|
|
self.assertEqualBin(
|
|
argon2('d', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"9cc961cf43e0f86c2d4e202b816dc5bc5b2177e68faa0b08"))
|
|
self.assertEqualBin(
|
|
argon2('id', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"6cd6c490c582fa597721d772d4e3de166987792491b48c51"))
|
|
|
|
# Test a memory cost value that isn't a power of 2. This
|
|
# checks a wraparound case during the conversion of J1 to a
|
|
# block index, and is a regression test for a bug that nearly
|
|
# got past me during original development.
|
|
self.assertEqualBin(
|
|
argon2('i', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"a561963623f1073c9aa8caecdb600c73ffc6de677ba8d97c"))
|
|
self.assertEqualBin(
|
|
argon2('d', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"a9014db7f1d468fb25b88fa7fc0deac0f2e7f27e25d2cf6e"))
|
|
self.assertEqualBin(
|
|
argon2('id', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"64f3212b1e7725ffcf9ae2d1753d63e763bcd6970061a435"))
|
|
|
|
# Larger parameters that should exercise the pseudorandom
|
|
# block indexing reasonably thoroughly. Also generate plenty
|
|
# of output data.
|
|
self.assertEqualBin(
|
|
argon2('i', 1024, 5, 16, 77, pwd, salt, secret, assoc), unhex(
|
|
"b008a685ff57730fad0e6f3ef3b9189282c0d9b05303675f43b5f3054724"
|
|
"733fcbe8e2639cc2c930535b31b723339041bcd703bf2483455acf86c0e6"
|
|
"9ed88c545ad40f1f2068855e4d61e99407"))
|
|
self.assertEqualBin(
|
|
argon2('d', 1024, 5, 16, 111, pwd, salt, secret, assoc), unhex(
|
|
"399ffbcd720c47745b9deb391ed0de7d5e0ffe53aef9f8ef7a7918cfa212"
|
|
"53df8cc577affbd5e0c0f8bf6d93c11b2f63973f8fc8f89dccd832fc587e"
|
|
"5d61717be6e88ca33eef5d1e168c028bae632a2a723c6c83f8e755f39171"
|
|
"5eda1c77c8e2fe06fbdd4e56d35262587e7df73cd7"))
|
|
self.assertEqualBin(
|
|
argon2('id', 1024, 5, 16, 123, pwd, salt, secret, assoc), unhex(
|
|
"6636807289cb9b9c032f48dcc31ffed1de4ca6c1b97e1ce768d690486341"
|
|
"2ac84b39d568a81dd01d9ee3ceec6cc23441d95e6abeb4a2024f1f540d56"
|
|
"9b799277c4037ddc7195ba783c9158a901adc7d4a5df8357b34a3869e5d6"
|
|
"aeae2a21201eef5e347de22c922192e8f46274b0c9d33e965155a91e7686"
|
|
"9d530e"))
|
|
|
|
def testRSAVerify(self):
|
|
def blobs(n, e, d, p, q, iqmp):
|
|
pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
|
|
privblob = (ssh2_mpint(d) + ssh2_mpint(p) +
|
|
ssh2_mpint(q) + ssh2_mpint(iqmp))
|
|
return pubblob, privblob
|
|
|
|
def failure_test(*args):
|
|
pubblob, privblob = blobs(*args)
|
|
key = ssh_key_new_priv('rsa', pubblob, privblob)
|
|
self.assertEqual(key, None)
|
|
|
|
def success_test(*args):
|
|
pubblob, privblob = blobs(*args)
|
|
key = ssh_key_new_priv('rsa', pubblob, privblob)
|
|
self.assertNotEqual(key, None)
|
|
|
|
# Parameters for a (trivially small) test key.
|
|
n = 0xb5d545a2f6423eabd55ffede53e21628d5d4491541482e10676d9d6f2783b9a5
|
|
e = 0x25
|
|
d = 0x6733db6a546ac99fcc21ba2b28b0c077156e8a705976205a955c6d9cef98f419
|
|
p = 0xe30ebd7348bf10dca72b36f2724dafa7
|
|
q = 0xcd02c87a7f7c08c4e9dc80c9b9bad5d3
|
|
iqmp = 0x60a129b30db9227910efe1608976c513
|
|
|
|
# Check the test key makes sense unmodified.
|
|
success_test(n, e, d, p, q, iqmp)
|
|
|
|
# Try modifying the values one by one to ensure they are
|
|
# rejected, except iqmp, which sshrsa.c regenerates anyway so
|
|
# it won't matter at all.
|
|
failure_test(n+1, e, d, p, q, iqmp)
|
|
failure_test(n, e+1, d, p, q, iqmp)
|
|
failure_test(n, e, d+1, p, q, iqmp)
|
|
failure_test(n, e, d, p+1, q, iqmp)
|
|
failure_test(n, e, d, p, q+1, iqmp)
|
|
success_test(n, e, d, p, q, iqmp+1)
|
|
|
|
# The key should also be accepted with p,q reversed. (Again,
|
|
# iqmp gets regenerated, so it won't matter if that's wrong.)
|
|
success_test(n, e, d, q, p, iqmp)
|
|
|
|
# Replace each of p and q with 0, and with 1. These should
|
|
# still fail validation (obviously), but the point is that the
|
|
# validator should also avoid trying to divide by zero in the
|
|
# process.
|
|
failure_test(n, e, d, 0, q, iqmp)
|
|
failure_test(n, e, d, p, 0, iqmp)
|
|
failure_test(n, e, d, 1, q, iqmp)
|
|
failure_test(n, e, d, p, 1, iqmp)
|
|
|
|
def testKeyMethods(self):
|
|
# Exercise all the methods of the ssh_key trait on all key
|
|
# types, and ensure that they're consistent with each other.
|
|
# No particular test is done on the rightness of the
|
|
# signatures by any objective standard, only that the output
|
|
# from our signing method can be verified by the corresponding
|
|
# verification method.
|
|
#
|
|
# However, we do include the expected signature text in each
|
|
# case, which checks determinism in the sense of being
|
|
# independent of any random numbers, and also in the sense of
|
|
# tomorrow's change to the code not having accidentally
|
|
# changed the behaviour.
|
|
|
|
test_message = b"Message to be signed by crypt.testKeyMethods\n"
|
|
|
|
test_keys = [
|
|
('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
|
|
('ed448', 'AAAACXNzaC1lZDQ0OAAAADnRI0CQDym5IqUidLNDcSdHe54bYEwqjpjBlab8uKGoe6FRqqejha7+5U/VAHy7BmE23+ju26O9XgA=', 'AAAAObP9klqyiJSJsdFJf+xwZQdkbZGUqXE07K6e5plfRTGjYYkyWJFUNFH4jzIn9xH1TX9z9EGycPaXAA==', 448, b'0x4bf4a2b6586c60d8cdb52c2b45b897f6d2224bc37987489c0d70febb449e8c82964ed5785827be808e44d31dd31e6ff7c99f43e49f419928,0x5ebda3dbeee8df366106bb7c00d54fe5feae85a3a7aa51a17ba8a1b8fca695c1988e2a4c601b9e7b47277143b37422a522b9290f904023d1', [(0, 'AAAACXNzaC1lZDQ0OAAAAHLkSVioGMvLesZp3Tn+Z/sSK0Hl7RHsHP4q9flLzTpZG5h6JDH3VmZBEjTJ6iOLaa0v4FoNt0ng4wAB53WrlQC4h3iAusoGXnPMAKJLmqzplKOCi8HKXk8Xl8fsXbaoyhatv1OZpwJcffmh1x+x+LSgNQA=')]),
|
|
('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]),
|
|
('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]),
|
|
('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]),
|
|
('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]),
|
|
('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
|
|
]
|
|
|
|
for alg, pubb64, privb64, bits, cachestr, siglist in test_keys:
|
|
# Decode the blobs in the above test data.
|
|
pubblob = base64decode(pubb64.encode('ASCII'))
|
|
privblob = base64decode(privb64.encode('ASCII'))
|
|
|
|
# Check the method that examines a public blob directly
|
|
# and returns an integer showing the key size.
|
|
self.assertEqual(ssh_key_public_bits(alg, pubblob), bits)
|
|
|
|
# Make a public-only and a full ssh_key object.
|
|
pubkey = ssh_key_new_pub(alg, pubblob)
|
|
privkey = ssh_key_new_priv(alg, pubblob, privblob)
|
|
|
|
# Test that they re-export the public and private key
|
|
# blobs unchanged.
|
|
self.assertEqual(ssh_key_public_blob(pubkey), pubblob)
|
|
self.assertEqual(ssh_key_public_blob(privkey), pubblob)
|
|
self.assertEqual(ssh_key_private_blob(privkey), privblob)
|
|
|
|
# Round-trip through the OpenSSH wire encoding used by the
|
|
# agent protocol (and the newer OpenSSH key file format),
|
|
# and check the result still exports all the same blobs.
|
|
osshblob = ssh_key_openssh_blob(privkey)
|
|
privkey2 = ssh_key_new_priv_openssh(alg, osshblob)
|
|
self.assertEqual(ssh_key_public_blob(privkey2), pubblob)
|
|
self.assertEqual(ssh_key_private_blob(privkey2), privblob)
|
|
self.assertEqual(ssh_key_openssh_blob(privkey2), osshblob)
|
|
|
|
# Test that the string description used in the host key
|
|
# cache is as expected.
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertEqual(ssh_key_cache_str(key), cachestr)
|
|
|
|
# Now test signatures, separately for each provided flags
|
|
# value.
|
|
for flags, sigb64 in siglist:
|
|
# Decode the signature blob from the test data.
|
|
sigblob = base64decode(sigb64.encode('ASCII'))
|
|
|
|
# Sign our test message, and check it produces exactly
|
|
# the expected signature blob.
|
|
#
|
|
# We do this with both the original private key and
|
|
# the one we round-tripped through OpenSSH wire
|
|
# format, just in case that round trip made some kind
|
|
# of a mess that didn't show up in the re-extraction
|
|
# of the blobs.
|
|
for key in [privkey, privkey2]:
|
|
self.assertEqual(ssh_key_sign(
|
|
key, test_message, flags), sigblob)
|
|
|
|
if flags != 0:
|
|
# Currently we only support _generating_
|
|
# signatures with flags != 0, not verifying them.
|
|
continue
|
|
|
|
# Check the signature verifies successfully, with all
|
|
# three of the key objects we have.
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertTrue(ssh_key_verify(key, sigblob, test_message))
|
|
|
|
# A crude check that at least _something_ doesn't
|
|
# verify successfully: flip a bit of the signature
|
|
# and expect it to fail.
|
|
#
|
|
# We do this twice, at the 1/3 and 2/3 points along
|
|
# the signature's length, so that in the case of
|
|
# signatures in two parts (DSA-like) we try perturbing
|
|
# both parts. Other than that, we don't do much to
|
|
# make this a rigorous cryptographic test.
|
|
for n, d in [(1,3),(2,3)]:
|
|
sigbytes = list(sigblob)
|
|
bit = 8 * len(sigbytes) * n // d
|
|
sigbytes[bit // 8] ^= 1 << (bit % 8)
|
|
badsig = bytes(sigbytes)
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertFalse(ssh_key_verify(
|
|
key, badsig, test_message))
|
|
|
|
def testPPKLoadSave(self):
|
|
# Stability test of PPK load/save functions.
|
|
input_clear_key = b"""\
|
|
PuTTY-User-Key-File-3: ssh-ed25519
|
|
Encryption: none
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
|
|
Private-MAC: 816c84093fc4877e8411b8e5139c5ce35d8387a2630ff087214911d67417a54d
|
|
"""
|
|
input_encrypted_key = b"""\
|
|
PuTTY-User-Key-File-3: ssh-ed25519
|
|
Encryption: aes256-cbc
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Key-Derivation: Argon2id
|
|
Argon2-Memory: 8192
|
|
Argon2-Passes: 13
|
|
Argon2-Parallelism: 1
|
|
Argon2-Salt: 37c3911bfefc8c1d11ec579627d2b3d9
|
|
Private-Lines: 1
|
|
amviz4sVUBN64jLO3gt4HGXJosUArghc4Soi7aVVLb2Tir5Baj0OQClorycuaPRd
|
|
Private-MAC: 6f5e588e475e55434106ec2c3569695b03f423228b44993a9e97d52ffe7be5a8
|
|
"""
|
|
algorithm = b'ssh-ed25519'
|
|
comment = b'ed25519-key-20200105'
|
|
pp = b'test-passphrase'
|
|
public_blob = unhex(
|
|
'0000000b7373682d65643235353139000000207242b33387688f57ff218bb639'
|
|
'f6d9fd213ba54f3100d5b5cb64ca6e85247d56')
|
|
|
|
self.assertEqual(ppk_encrypted_s(input_clear_key), (False, comment))
|
|
self.assertEqual(ppk_encrypted_s(input_encrypted_key), (True, comment))
|
|
self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(ppk_loadpub_s(input_clear_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s(input_encrypted_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s("not a key file"),
|
|
(False, None, b'', None,
|
|
b'not a PuTTY SSH-2 private key'))
|
|
|
|
k1, c, e = ppk_load_s(input_clear_key, None)
|
|
self.assertEqual((c, e), (comment, None))
|
|
k2, c, e = ppk_load_s(input_encrypted_key, pp)
|
|
self.assertEqual((c, e), (comment, None))
|
|
privblob = ssh_key_private_blob(k1)
|
|
self.assertEqual(ssh_key_private_blob(k2), privblob)
|
|
|
|
salt = unhex('37c3911bfefc8c1d11ec579627d2b3d9')
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k1, comment, None,
|
|
3, 'id', 8192, 13, 1),
|
|
input_clear_key)
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k2, comment, None,
|
|
3, 'id', 8192, 13, 1),
|
|
input_clear_key)
|
|
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k1, comment, pp,
|
|
3, 'id', 8192, 13, 1),
|
|
input_encrypted_key)
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k2, comment, pp,
|
|
3, 'id', 8192, 13, 1),
|
|
input_encrypted_key)
|
|
|
|
# And check we can still handle v2 key files.
|
|
v2_clear_key = b"""\
|
|
PuTTY-User-Key-File-2: ssh-ed25519
|
|
Encryption: none
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
|
|
Private-MAC: 2a629acfcfbe28488a1ba9b6948c36406bc28422
|
|
"""
|
|
v2_encrypted_key = b"""\
|
|
PuTTY-User-Key-File-2: ssh-ed25519
|
|
Encryption: aes256-cbc
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
4/jKlTgC652oa9HLVGrMjHZw7tj0sKRuZaJPOuLhGTvb25Jzpcqpbi+Uf+y+uo+Z
|
|
Private-MAC: 5b1f6f4cc43eb0060d2c3e181bc0129343adba2b
|
|
"""
|
|
|
|
self.assertEqual(ppk_encrypted_s(v2_clear_key), (False, comment))
|
|
self.assertEqual(ppk_encrypted_s(v2_encrypted_key), (True, comment))
|
|
self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(ppk_loadpub_s(v2_clear_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s(v2_encrypted_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s("not a key file"),
|
|
(False, None, b'', None,
|
|
b'not a PuTTY SSH-2 private key'))
|
|
|
|
k1, c, e = ppk_load_s(v2_clear_key, None)
|
|
self.assertEqual((c, e), (comment, None))
|
|
k2, c, e = ppk_load_s(v2_encrypted_key, pp)
|
|
self.assertEqual((c, e), (comment, None))
|
|
self.assertEqual(ssh_key_private_blob(k1), privblob)
|
|
self.assertEqual(ssh_key_private_blob(k2), privblob)
|
|
|
|
self.assertEqual(ppk_save_sb(k2, comment, None,
|
|
2, 'id', 8192, 13, 1),
|
|
v2_clear_key)
|
|
self.assertEqual(ppk_save_sb(k1, comment, pp,
|
|
2, 'id', 8192, 13, 1),
|
|
v2_encrypted_key)
|
|
|
|
def testRSA1LoadSave(self):
|
|
# Stability test of SSH-1 RSA key-file load/save functions.
|
|
input_clear_key = unhex(
|
|
"5353482050524956415445204B45592046494C4520464F524D415420312E310A"
|
|
"000000000000000002000200BB115A85B741E84E3D940E690DF96A0CBFDC07CA"
|
|
"70E51DA8234D211DE77341CEF40C214CAA5DCF68BE2127447FD6C84CCB17D057"
|
|
"A74F2365B9D84A78906AEB51000625000000107273612D6B65792D3230323030"
|
|
"313036208E208E0200929EE615C6FC4E4B29585E52570F984F2E97B3144AA5BD"
|
|
"4C6EB2130999BB339305A21FFFA79442462A8397AF8CAC395A3A3827DE10457A"
|
|
"1F1B277ABFB8C069C100FF55B1CAD69B3BD9E42456CF28B1A4B98130AFCE08B2"
|
|
"8BCFFF5FFFED76C5D51E9F0100C5DE76889C62B1090A770AE68F087A19AB5126"
|
|
"E60DF87710093A2AD57B3380FB0100F2068AC47ECB33BF8F13DF402BABF35EE7"
|
|
"26BD32F7564E51502DF5C8F4888B2300000000")
|
|
input_encrypted_key = unhex(
|
|
"5353482050524956415445204b45592046494c4520464f524d415420312e310a"
|
|
"000300000000000002000200bb115a85b741e84e3d940e690df96a0cbfdc07ca"
|
|
"70e51da8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057"
|
|
"a74f2365b9d84a78906aeb51000625000000107273612d6b65792d3230323030"
|
|
"3130363377f926e811a5f044c52714801ecdcf9dd572ee0a193c4f67e87ab2ce"
|
|
"4569d0c5776fd6028909ed8b6d663bef15d207d3ef6307e7e21dbec56e8d8b4e"
|
|
"894ded34df891bb29bae6b2b74805ac80f7304926abf01ae314dd69c64240761"
|
|
"34f15d50c99f7573252993530ec9c4d5016dd1f5191730cda31a5d95d362628b"
|
|
"2a26f4bb21840d01c8360e4a6ce216c4686d25b8699d45cf361663bb185e2c5e"
|
|
"652012a1e0f9d6d19afbb28506f7775bfd8129")
|
|
|
|
comment = b'rsa-key-20200106'
|
|
pp = b'test-passphrase'
|
|
public_blob = unhex(
|
|
"000002000006250200bb115a85b741e84e3d940e690df96a0cbfdc07ca70e51d"
|
|
"a8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057a74f23"
|
|
"65b9d84a78906aeb51")
|
|
|
|
self.assertEqual(rsa1_encrypted_s(input_clear_key), (False, comment))
|
|
self.assertEqual(rsa1_encrypted_s(input_encrypted_key),
|
|
(True, comment))
|
|
self.assertEqual(rsa1_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(rsa1_loadpub_s(input_clear_key),
|
|
(1, public_blob, comment, None))
|
|
self.assertEqual(rsa1_loadpub_s(input_encrypted_key),
|
|
(1, public_blob, comment, None))
|
|
|
|
k1 = rsa_new()
|
|
status, c, e = rsa1_load_s(input_clear_key, k1, None)
|
|
self.assertEqual((status, c, e), (1, comment, None))
|
|
k2 = rsa_new()
|
|
status, c, e = rsa1_load_s(input_clear_key, k2, None)
|
|
self.assertEqual((status, c, e), (1, comment, None))
|
|
|
|
with queued_specific_random_data(unhex("208e")):
|
|
self.assertEqual(rsa1_save_sb(k1, comment, None), input_clear_key)
|
|
with queued_specific_random_data(unhex("208e")):
|
|
self.assertEqual(rsa1_save_sb(k2, comment, None), input_clear_key)
|
|
|
|
with queued_specific_random_data(unhex("99f3")):
|
|
self.assertEqual(rsa1_save_sb(k1, comment, pp),
|
|
input_encrypted_key)
|
|
with queued_specific_random_data(unhex("99f3")):
|
|
self.assertEqual(rsa1_save_sb(k2, comment, pp),
|
|
input_encrypted_key)
|
|
|
|
class standard_test_vectors(MyTestBase):
|
|
def testAES(self):
|
|
def vector(cipher, key, plaintext, ciphertext):
|
|
for suffix in get_aes_impls():
|
|
c = ssh_cipher_new("{}_{}".format(cipher, suffix))
|
|
if c is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(c, key)
|
|
|
|
# The AES test vectors are implicitly in ECB mode,
|
|
# because they're testing the cipher primitive rather
|
|
# than any mode layered on top of it. We fake this by
|
|
# using PuTTY's CBC setting, and clearing the IV to
|
|
# all zeroes before each operation.
|
|
|
|
ssh_cipher_setiv(c, b'\x00' * 16)
|
|
self.assertEqualBin(
|
|
ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
|
|
ssh_cipher_setiv(c, b'\x00' * 16)
|
|
self.assertEqualBin(
|
|
ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# The test vector from FIPS 197 appendix B. (This is also the
|
|
# same key whose key setup phase is shown in detail in
|
|
# appendix A.)
|
|
vector('aes128_cbc',
|
|
unhex('2b7e151628aed2a6abf7158809cf4f3c'),
|
|
unhex('3243f6a8885a308d313198a2e0370734'),
|
|
unhex('3925841d02dc09fbdc118597196a0b32'))
|
|
|
|
# The test vectors from FIPS 197 appendix C: the key bytes go
|
|
# 00 01 02 03 ... for as long as needed, and the plaintext
|
|
# bytes go 00 11 22 33 ... FF.
|
|
fullkey = struct.pack("B"*32, *range(32))
|
|
plaintext = struct.pack("B"*16, *[0x11*i for i in range(16)])
|
|
vector('aes128_cbc', fullkey[:16], plaintext,
|
|
unhex('69c4e0d86a7b0430d8cdb78070b4c55a'))
|
|
vector('aes192_cbc', fullkey[:24], plaintext,
|
|
unhex('dda97ca4864cdfe06eaf70a0ec0d7191'))
|
|
vector('aes256_cbc', fullkey[:32], plaintext,
|
|
unhex('8ea2b7ca516745bfeafc49904b496089'))
|
|
|
|
def testDES(self):
|
|
c = ssh_cipher_new("des_cbc")
|
|
def vector(key, plaintext, ciphertext):
|
|
key = unhex(key)
|
|
plaintext = unhex(plaintext)
|
|
ciphertext = unhex(ciphertext)
|
|
|
|
# Similarly to above, we fake DES ECB by using DES CBC and
|
|
# resetting the IV to zero all the time
|
|
ssh_cipher_setkey(c, key)
|
|
ssh_cipher_setiv(c, b'\x00' * 8)
|
|
self.assertEqualBin(ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
ssh_cipher_setiv(c, b'\x00' * 8)
|
|
self.assertEqualBin(ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# Source: FIPS SP PUB 500-20
|
|
|
|
# 'Initial permutation and expansion tests': key fixed at 8
|
|
# copies of the byte 01, but ciphertext and plaintext in turn
|
|
# run through all possible values with exactly 1 bit set.
|
|
# Expected plaintexts and ciphertexts (respectively) listed in
|
|
# the arrays below.
|
|
ipe_key = '01' * 8
|
|
ipe_plaintexts = [
|
|
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
|
|
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
|
|
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
|
|
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
|
|
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
|
|
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
|
|
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
|
|
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
|
|
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
|
|
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
|
|
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
|
|
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
|
|
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
|
|
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
|
|
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
|
|
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
|
|
]
|
|
ipe_ciphertexts = [
|
|
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
|
|
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
|
|
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
|
|
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
|
|
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
|
|
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
|
|
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
|
|
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
|
|
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
|
|
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
|
|
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
|
|
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
|
|
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
|
|
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
|
|
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
|
|
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
|
|
]
|
|
ipe_single_bits = ["{:016x}".format(1 << bit) for bit in range(64)]
|
|
for plaintext, ciphertext in zip(ipe_plaintexts, ipe_single_bits):
|
|
vector(ipe_key, plaintext, ciphertext)
|
|
for plaintext, ciphertext in zip(ipe_single_bits, ipe_ciphertexts):
|
|
vector(ipe_key, plaintext, ciphertext)
|
|
|
|
# 'Key permutation tests': plaintext fixed at all zeroes, key
|
|
# is a succession of tweaks of the previous key made by
|
|
# replacing each 01 byte in turn with one containing a
|
|
# different single set bit (e.g. 01 20 01 01 01 01 01 01).
|
|
# Expected ciphertexts listed.
|
|
kp_ciphertexts = [
|
|
'95A8D72813DAA94D', '0EEC1487DD8C26D5', '7AD16FFB79C45926', 'D3746294CA6A6CF3',
|
|
'809F5F873C1FD761', 'C02FAFFEC989D1FC', '4615AA1D33E72F10', '2055123350C00858',
|
|
'DF3B99D6577397C8', '31FE17369B5288C9', 'DFDD3CC64DAE1642', '178C83CE2B399D94',
|
|
'50F636324A9B7F80', 'A8468EE3BC18F06D', 'A2DC9E92FD3CDE92', 'CAC09F797D031287',
|
|
'90BA680B22AEB525', 'CE7A24F350E280B6', '882BFF0AA01A0B87', '25610288924511C2',
|
|
'C71516C29C75D170', '5199C29A52C9F059', 'C22F0A294A71F29F', 'EE371483714C02EA',
|
|
'A81FBD448F9E522F', '4F644C92E192DFED', '1AFA9A66A6DF92AE', 'B3C1CC715CB879D8',
|
|
'19D032E64AB0BD8B', '3CFAA7A7DC8720DC', 'B7265F7F447AC6F3', '9DB73B3C0D163F54',
|
|
'8181B65BABF4A975', '93C9B64042EAA240', '5570530829705592', '8638809E878787A0',
|
|
'41B9A79AF79AC208', '7A9BE42F2009A892', '29038D56BA6D2745', '5495C6ABF1E5DF51',
|
|
'AE13DBD561488933', '024D1FFA8904E389', 'D1399712F99BF02E', '14C1D7C1CFFEC79E',
|
|
'1DE5279DAE3BED6F', 'E941A33F85501303', 'DA99DBBC9A03F379', 'B7FC92F91D8E92E9',
|
|
'AE8E5CAA3CA04E85', '9CC62DF43B6EED74', 'D863DBB5C59A91A0', 'A1AB2190545B91D7',
|
|
'0875041E64C570F7', '5A594528BEBEF1CC', 'FCDB3291DE21F0C0', '869EFD7F9F265A09',
|
|
]
|
|
kp_key_repl_bytes = ["{:02x}".format(0x80>>i) for i in range(7)]
|
|
kp_keys = ['01'*j + b + '01'*(7-j)
|
|
for j in range(8) for b in kp_key_repl_bytes]
|
|
kp_plaintext = '0' * 16
|
|
for key, ciphertext in zip(kp_keys, kp_ciphertexts):
|
|
vector(key, kp_plaintext, ciphertext)
|
|
|
|
# 'Data permutation test': plaintext fixed at all zeroes,
|
|
# pairs of key and expected ciphertext listed below.
|
|
dp_keys_and_ciphertexts = [
|
|
'1046913489980131:88D55E54F54C97B4', '1007103489988020:0C0CC00C83EA48FD',
|
|
'10071034C8980120:83BC8EF3A6570183', '1046103489988020:DF725DCAD94EA2E9',
|
|
'1086911519190101:E652B53B550BE8B0', '1086911519580101:AF527120C485CBB0',
|
|
'5107B01519580101:0F04CE393DB926D5', '1007B01519190101:C9F00FFC74079067',
|
|
'3107915498080101:7CFD82A593252B4E', '3107919498080101:CB49A2F9E91363E3',
|
|
'10079115B9080140:00B588BE70D23F56', '3107911598080140:406A9A6AB43399AE',
|
|
'1007D01589980101:6CB773611DCA9ADA', '9107911589980101:67FD21C17DBB5D70',
|
|
'9107D01589190101:9592CB4110430787', '1007D01598980120:A6B7FF68A318DDD3',
|
|
'1007940498190101:4D102196C914CA16', '0107910491190401:2DFA9F4573594965',
|
|
'0107910491190101:B46604816C0E0774', '0107940491190401:6E7E6221A4F34E87',
|
|
'19079210981A0101:AA85E74643233199', '1007911998190801:2E5A19DB4D1962D6',
|
|
'10079119981A0801:23A866A809D30894', '1007921098190101:D812D961F017D320',
|
|
'100791159819010B:055605816E58608F', '1004801598190101:ABD88E8B1B7716F1',
|
|
'1004801598190102:537AC95BE69DA1E1', '1004801598190108:AED0F6AE3C25CDD8',
|
|
'1002911498100104:B3E35A5EE53E7B8D', '1002911598190104:61C79C71921A2EF8',
|
|
'1002911598100201:E2F5728F0995013C', '1002911698100101:1AEAC39A61F0A464',
|
|
]
|
|
dp_plaintext = '0' * 16
|
|
for key_and_ciphertext in dp_keys_and_ciphertexts:
|
|
key, ciphertext = key_and_ciphertext.split(":")
|
|
vector(key, dp_plaintext, ciphertext)
|
|
|
|
# Tests intended to select every entry in every S-box. Full
|
|
# arbitrary triples (key, plaintext, ciphertext).
|
|
sb_complete_tests = [
|
|
'7CA110454A1A6E57:01A1D6D039776742:690F5B0D9A26939B',
|
|
'0131D9619DC1376E:5CD54CA83DEF57DA:7A389D10354BD271',
|
|
'07A1133E4A0B2686:0248D43806F67172:868EBB51CAB4599A',
|
|
'3849674C2602319E:51454B582DDF440A:7178876E01F19B2A',
|
|
'04B915BA43FEB5B6:42FD443059577FA2:AF37FB421F8C4095',
|
|
'0113B970FD34F2CE:059B5E0851CF143A:86A560F10EC6D85B',
|
|
'0170F175468FB5E6:0756D8E0774761D2:0CD3DA020021DC09',
|
|
'43297FAD38E373FE:762514B829BF486A:EA676B2CB7DB2B7A',
|
|
'07A7137045DA2A16:3BDD119049372802:DFD64A815CAF1A0F',
|
|
'04689104C2FD3B2F:26955F6835AF609A:5C513C9C4886C088',
|
|
'37D06BB516CB7546:164D5E404F275232:0A2AEEAE3FF4AB77',
|
|
'1F08260D1AC2465E:6B056E18759F5CCA:EF1BF03E5DFA575A',
|
|
'584023641ABA6176:004BD6EF09176062:88BF0DB6D70DEE56',
|
|
'025816164629B007:480D39006EE762F2:A1F9915541020B56',
|
|
'49793EBC79B3258F:437540C8698F3CFA:6FBF1CAFCFFD0556',
|
|
'4FB05E1515AB73A7:072D43A077075292:2F22E49BAB7CA1AC',
|
|
'49E95D6D4CA229BF:02FE55778117F12A:5A6B612CC26CCE4A',
|
|
'018310DC409B26D6:1D9D5C5018F728C2:5F4C038ED12B2E41',
|
|
'1C587F1C13924FEF:305532286D6F295A:63FAC0D034D9F793',
|
|
]
|
|
for test in sb_complete_tests:
|
|
key, plaintext, ciphertext = test.split(":")
|
|
vector(key, plaintext, ciphertext)
|
|
|
|
def testMD5(self):
|
|
MD5 = lambda s: hash_str('md5', s)
|
|
|
|
# The test vectors from RFC 1321 section A.5.
|
|
self.assertEqualBin(MD5(""),
|
|
unhex('d41d8cd98f00b204e9800998ecf8427e'))
|
|
self.assertEqualBin(MD5("a"),
|
|
unhex('0cc175b9c0f1b6a831c399e269772661'))
|
|
self.assertEqualBin(MD5("abc"),
|
|
unhex('900150983cd24fb0d6963f7d28e17f72'))
|
|
self.assertEqualBin(MD5("message digest"),
|
|
unhex('f96b697d7cb7938d525a2f31aaf161d0'))
|
|
self.assertEqualBin(MD5("abcdefghijklmnopqrstuvwxyz"),
|
|
unhex('c3fcd3d76192e4007dfb496cca67e13b'))
|
|
self.assertEqualBin(MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz0123456789"),
|
|
unhex('d174ab98d277d9f5a5611c2c9f419d9f'))
|
|
self.assertEqualBin(MD5("1234567890123456789012345678901234567890"
|
|
"1234567890123456789012345678901234567890"),
|
|
unhex('57edf4a22be3c955ac49da2e2107b67a'))
|
|
|
|
def testHmacMD5(self):
|
|
# The test vectors from the RFC 2104 Appendix.
|
|
self.assertEqualBin(mac_str('hmac_md5', unhex('0b'*16), "Hi There"),
|
|
unhex('9294727a3638bb1c13f48ef8158bfc9d'))
|
|
self.assertEqualBin(mac_str('hmac_md5', "Jefe",
|
|
"what do ya want for nothing?"),
|
|
unhex('750c783e6ab0b503eaa86e310a5db738'))
|
|
self.assertEqualBin(mac_str('hmac_md5', unhex('aa'*16), unhex('dd'*50)),
|
|
unhex('56be34521d144c88dbb8c733f0e8b3f6'))
|
|
|
|
def testSHA1(self):
|
|
for hashname in get_implementations("sha1"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"), unhex(
|
|
"a9993e364706816aba3e25717850c26c9cd0d89d"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"),
|
|
unhex("84983e441c3bd26ebaae4aa1f95129e5e54670f1"))
|
|
self.assertEqualBin(hash_str_iter(hashname,
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
"34aa973cd4c4daa4f61eeb2bdbad27316534016f"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
"dea356a2cddd90c7a7ecedc5ebb563934f460452"))
|
|
self.assertEqualBin(hash_str(hashname, b"\x5e"), unhex(
|
|
"5e6f80a34a9798cafc6a5db96cc57ba4c4db59c2"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
unhex("9a7dfdf1ecead06ed646aa55fe757146")), unhex(
|
|
"82abff6605dbe1c17def12a394fa22a82b544a35"))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"f78f92141bcd170ae89b4fba15a1d59f"
|
|
"3fd84d223c9251bdacbbae61d05ed115"
|
|
"a06a7ce117b7beead24421ded9c32592"
|
|
"bd57edeae39c39fa1fe8946a84d0cf1f"
|
|
"7beead1713e2e0959897347f67c80b04"
|
|
"00c209815d6b10a683836fd5562a56ca"
|
|
"b1a28e81b6576654631cf16566b86e3b"
|
|
"33a108b05307c00aff14a768ed735060"
|
|
"6a0f85e6a91d396f5b5cbe577f9b3880"
|
|
"7c7d523d6d792f6ebc24a4ecf2b3a427"
|
|
"cdbbfb")), unhex(
|
|
"cb0082c8f197d260991ba6a460e76e202bad27b3"))
|
|
|
|
def testSHA256(self):
|
|
for hashname in get_implementations("sha256"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"),
|
|
unhex("ba7816bf8f01cfea414140de5dae2223"
|
|
"b00361a396177a9cb410ff61f20015ad"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdbcdecdefdefgefghfghighijhijk""ijkljklmklmnlmnomnopnopq"),
|
|
unhex("248d6a61d20638b8e5c026930c3e6039"
|
|
"a33ce45964ff2167f6ecedd419db06c1"))
|
|
self.assertEqualBin(
|
|
hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))),
|
|
unhex("cdc76e5c9914fb9281a1c7e284d73e67"
|
|
"f1809a48a497200e046d39ccc7112cd0"))
|
|
self.assertEqualBin(
|
|
hash_str(hashname, "01234567012345670123456701234567" * 20),
|
|
unhex("594847328451bdfa85056225462cc1d8"
|
|
"67d877fb388df0ce35f25ab5562bfbb5"))
|
|
self.assertEqualBin(hash_str(hashname, b"\x19"),
|
|
unhex("68aa2e2ee5dff96e3355e6c7ee373e3d"
|
|
"6a4e17f75f9518d843709c0c9bc3e3d4"))
|
|
self.assertEqualBin(
|
|
hash_str(hashname, unhex("e3d72570dcdd787ce3887ab2cd684652")),
|
|
unhex("175ee69b02ba9b58e2b0a5fd13819cea"
|
|
"573f3940a94f825128cf4209beabb4e8"))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"8326754e2277372f4fc12b20527afef0"
|
|
"4d8a056971b11ad57123a7c137760000"
|
|
"d7bef6f3c1f7a9083aa39d810db31077"
|
|
"7dab8b1e7f02b84a26c773325f8b2374"
|
|
"de7a4b5a58cb5c5cf35bcee6fb946e5b"
|
|
"d694fa593a8beb3f9d6592ecedaa66ca"
|
|
"82a29d0c51bcf9336230e5d784e4c0a4"
|
|
"3f8d79a30a165cbabe452b774b9c7109"
|
|
"a97d138f129228966f6c0adc106aad5a"
|
|
"9fdd30825769b2c671af6759df28eb39"
|
|
"3d54d6")), unhex(
|
|
"97dbca7df46d62c8a422c941dd7e835b"
|
|
"8ad3361763f7e9b2d95f4f0da6e1ccbc"))
|
|
|
|
def testSHA384(self):
|
|
for hashname in get_implementations("sha384"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str('sha384', "abc"), unhex(
|
|
'cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163'
|
|
'1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7'))
|
|
self.assertEqualBin(hash_str('sha384',
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
|
|
unhex('09330c33f71147e83d192fc782cd1b4753111b173b3b05d2'
|
|
'2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039'))
|
|
self.assertEqualBin(hash_str_iter('sha384',
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
'9d0e1809716474cb086e834e310a4a1ced149e9c00f24852'
|
|
'7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985'))
|
|
self.assertEqualBin(hash_str('sha384',
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
'2fc64a4f500ddb6828f6a3430b8dd72a368eb7f3a8322a70'
|
|
'bc84275b9c0b3ab00d27a5cc3c2d224aa6b61a0d79fb4596'))
|
|
self.assertEqualBin(hash_str('sha384', b"\xB9"), unhex(
|
|
'bc8089a19007c0b14195f4ecc74094fec64f01f90929282c'
|
|
'2fb392881578208ad466828b1c6c283d2722cf0ad1ab6938'))
|
|
self.assertEqualBin(hash_str('sha384',
|
|
unhex("a41c497779c0375ff10a7f4e08591739")), unhex(
|
|
'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591'
|
|
'3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7'))
|
|
self.assertEqualBin(hash_str('sha384', unhex(
|
|
"399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621"
|
|
"db0f3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202"
|
|
"fc3f5042e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d5286"
|
|
"5f25cc22b5e87784a12fc961d66cb6e89573199a2ce6565cbdf13dca4038"
|
|
"32cfcb0e8b7211e83af32a11ac17929ff1c073a51cc027aaedeff85aad7c"
|
|
"2b7c5a803e2404d96d2a77357bda1a6daeed17151cb9bc5125a422e941de"
|
|
"0ca0fc5011c23ecffefdd09676711cf3db0a3440720e1615c1f22fbc3c72"
|
|
"1de521e1b99ba1bd5577408642147ed096")), unhex(
|
|
'4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf'
|
|
'38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0'))
|
|
|
|
def testSHA512(self):
|
|
for hashname in get_implementations("sha512"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str('sha512', "abc"), unhex(
|
|
'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55'
|
|
'd39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94f'
|
|
'a54ca49f'))
|
|
self.assertEqualBin(hash_str('sha512',
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
|
|
unhex('8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299'
|
|
'aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26'
|
|
'545e96e55b874be909'))
|
|
self.assertEqualBin(hash_str_iter('sha512',
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa9'
|
|
'73ebde0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217'
|
|
'ad8cc09b'))
|
|
self.assertEqualBin(hash_str('sha512',
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
'89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2b'
|
|
'a8141a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f'
|
|
'3fb7bae9'))
|
|
self.assertEqualBin(hash_str('sha512', b"\xD0"), unhex(
|
|
'9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4a'
|
|
'ceeee50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4a'
|
|
'b3fbba15'))
|
|
self.assertEqualBin(hash_str('sha512',
|
|
unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex(
|
|
'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c98289'
|
|
'24c3ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0'
|
|
'c95c90f8'))
|
|
self.assertEqualBin(hash_str('sha512', unhex(
|
|
"a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0d"
|
|
"e1de6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d"
|
|
"03e56ff2f868002bc3e431edc44df2f0223d4bb3b243586e1a7d92493669"
|
|
"4fcbbaf88d9519e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab"
|
|
"4981164bbb6dc32f969087a145b0d9cc9c67c22b763299419cc4128be9a0"
|
|
"77b3ace634064e6d99283513dc06e7515d0d73132e9a0dc6d3b1f8b246f1"
|
|
"a98a3fc72941b1e3bb2098e8bf16f268d64f0b0f4707fe1ea1a1791ba2f3"
|
|
"c0c758e5f551863a96c949ad47d7fb40d2")), unhex(
|
|
'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d48'
|
|
'719377966b957a878e720584779a62825c18da26415e49a7176a894e7510'
|
|
'fd1451f5'))
|
|
|
|
def testSHA3(self):
|
|
# Source: all the SHA-3 test strings from
|
|
# https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values#aHashing
|
|
# which are a multiple of 8 bits long.
|
|
|
|
self.assertEqualBin(hash_str('sha3_224', ''), unhex("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7"))
|
|
self.assertEqualBin(hash_str('sha3_224', unhex('a3')*200), unhex("9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0"))
|
|
self.assertEqualBin(hash_str('sha3_256', ''), unhex("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a"))
|
|
self.assertEqualBin(hash_str('sha3_256', unhex('a3')*200), unhex("79f38adec5c20307a98ef76e8324afbfd46cfd81b22e3973c65fa1bd9de31787"))
|
|
self.assertEqualBin(hash_str('sha3_384', ''), unhex("0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004"))
|
|
self.assertEqualBin(hash_str('sha3_384', unhex('a3')*200), unhex("1881de2ca7e41ef95dc4732b8f5f002b189cc1e42b74168ed1732649ce1dbcdd76197a31fd55ee989f2d7050dd473e8f"))
|
|
self.assertEqualBin(hash_str('sha3_512', ''), unhex("a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26"))
|
|
self.assertEqualBin(hash_str('sha3_512', unhex('a3')*200), unhex("e76dfad22084a8b1467fcf2ffa58361bec7628edf5f3fdc0e4805dc48caeeca81b7c13c30adf52a3659584739a2df46be589c51ca1a4a8416df6545a1ce8ba00"))
|
|
self.assertEqualBin(hash_str('shake256_114bytes', ''), unhex("46b9dd2b0ba88d13233b3feb743eeb243fcd52ea62b81b82b50c27646ed5762fd75dc4ddd8c0f200cb05019d67b592f6fc821c49479ab48640292eacb3b7c4be141e96616fb13957692cc7edd0b45ae3dc07223c8e92937bef84bc0eab862853349ec75546f58fb7c2775c38462c5010d846"))
|
|
self.assertEqualBin(hash_str('shake256_114bytes', unhex('a3')*200), unhex("cd8a920ed141aa0407a22d59288652e9d9f1a7ee0c1e7c1ca699424da84a904d2d700caae7396ece96604440577da4f3aa22aeb8857f961c4cd8e06f0ae6610b1048a7f64e1074cd629e85ad7566048efc4fb500b486a3309a8f26724c0ed628001a1099422468de726f1061d99eb9e93604"))
|
|
|
|
def testBLAKE2b(self):
|
|
# Test case from RFC 7693 appendix A.
|
|
self.assertEqualBin(hash_str('blake2b', b'abc'), unhex(
|
|
"ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d1"
|
|
"7d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923"))
|
|
|
|
# A small number of test cases from the larger test vector
|
|
# set, testing multiple blocks and the empty input.
|
|
self.assertEqualBin(hash_str('blake2b', b''), unhex(
|
|
"786a02f742015903c6c6fd852552d272912f4740e15847618a86e217f71f5419"
|
|
"d25e1031afee585313896444934eb04b903a685b1448b755d56f701afe9be2ce"))
|
|
self.assertEqualBin(hash_str('blake2b', unhex('00')), unhex(
|
|
"2fa3f686df876995167e7c2e5d74c4c7b6e48f8068fe0e44208344d480f7904c"
|
|
"36963e44115fe3eb2a3ac8694c28bcb4f5a0f3276f2e79487d8219057a506e4b"))
|
|
self.assertEqualBin(hash_str('blake2b', bytes(range(255))), unhex(
|
|
"5b21c5fd8868367612474fa2e70e9cfa2201ffeee8fafab5797ad58fefa17c9b"
|
|
"5b107da4a3db6320baaf2c8617d5a51df914ae88da3867c2d41f0cc14fa67928"))
|
|
|
|
# You can get this test program to run the full version of the
|
|
# test vectors by modifying the source temporarily to set this
|
|
# variable to a pathname where you downloaded the JSON file
|
|
# blake2-kat.json.
|
|
blake2_test_vectors_path = None
|
|
if blake2_test_vectors_path is not None:
|
|
with open(blake2_test_vectors_path) as fh:
|
|
vectors = json.load(fh)
|
|
for vector in vectors:
|
|
if vector['hash'] != 'blake2b':
|
|
continue
|
|
if len(vector['key']) != 0:
|
|
continue
|
|
|
|
h = blake2b_new_general(len(vector['out']) // 2)
|
|
ssh_hash_update(h, unhex(vector['in']))
|
|
digest = ssh_hash_digest(h)
|
|
self.assertEqualBin(digest, unhex(vector['out']))
|
|
|
|
def testArgon2(self):
|
|
# draft-irtf-cfrg-argon2-12 section 5
|
|
self.assertEqualBin(
|
|
argon2('d', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("512b391b6f1162975371d30919734294"
|
|
"f868e3be3984f3c1a13a4db9fabe4acb"))
|
|
self.assertEqualBin(
|
|
argon2('i', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("c814d9d1dc7f37aa13f0d77f2494bda1"
|
|
"c8de6b016dd388d29952a4c4672b6ce8"))
|
|
self.assertEqualBin(
|
|
argon2('id', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("0d640df58d78766c08c037a34a8b53c9"
|
|
"d01ef0452d75b65eb52520e96b01e659"))
|
|
|
|
def testHmacSHA(self):
|
|
# Test cases from RFC 6234 section 8.5.
|
|
def vector(key, message, s1=None, s256=None):
|
|
if s1 is not None:
|
|
self.assertEqualBin(
|
|
mac_str('hmac_sha1', key, message), unhex(s1))
|
|
if s256 is not None:
|
|
self.assertEqualBin(
|
|
mac_str('hmac_sha256', key, message), unhex(s256))
|
|
vector(
|
|
unhex("0b"*20), "Hi There",
|
|
"b617318655057264e28bc0b6fb378c8ef146be00",
|
|
"b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7")
|
|
vector(
|
|
"Jefe", "what do ya want for nothing?",
|
|
"effcdf6ae5eb2fa2d27416d5f184df9c259a7c79",
|
|
"5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843")
|
|
vector(
|
|
unhex("aa"*20), unhex('dd'*50),
|
|
"125d7342b9ac11cd91a39af48aa17b4f63f175d3",
|
|
"773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565FE")
|
|
vector(
|
|
unhex("0102030405060708090a0b0c0d0e0f10111213141516171819"),
|
|
unhex("cd"*50),
|
|
"4c9007f4026250c6bc8414f9bf50c86c2d7235da",
|
|
"82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b")
|
|
vector(
|
|
unhex("aa"*80),
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
s1="aa4ae5e15272d00e95705637ce8a3b55ed402112")
|
|
vector(
|
|
unhex("aa"*131),
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
s256="60e431591ee0b67f0d8a26aacbf5b77f"
|
|
"8e0bc6213728c5140546040f0ee37f54")
|
|
vector(
|
|
unhex("aa"*80),
|
|
"Test Using Larger Than Block-Size Key and "
|
|
"Larger Than One Block-Size Data",
|
|
s1="e8e99d0f45237d786d6bbaa7965c7808bbff1a91")
|
|
vector(
|
|
unhex("aa"*131),
|
|
"This is a test using a larger than block-size key and a "
|
|
"larger than block-size data. The key needs to be hashed "
|
|
"before being used by the HMAC algorithm.",
|
|
s256="9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A35E2")
|
|
|
|
def testEd25519(self):
|
|
def vector(privkey, pubkey, message, signature):
|
|
x, y = ecc_edwards_get_affine(eddsa_public(
|
|
mp_from_bytes_le(privkey), 'ed25519'))
|
|
self.assertEqual(int(y) | ((int(x) & 1) << 255),
|
|
int(mp_from_bytes_le(pubkey)))
|
|
pubblob = ssh_string(b"ssh-ed25519") + ssh_string(pubkey)
|
|
privblob = ssh_string(privkey)
|
|
sigblob = ssh_string(b"ssh-ed25519") + ssh_string(signature)
|
|
pubkey = ssh_key_new_pub('ed25519', pubblob)
|
|
self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
|
|
privkey = ssh_key_new_priv('ed25519', pubblob, privblob)
|
|
# By testing that the signature is exactly the one expected in
|
|
# the test vector and not some equivalent one generated with a
|
|
# different nonce, we're verifying in particular that we do
|
|
# our deterministic nonce generation in the manner specified
|
|
# by Ed25519. Getting that wrong would lead to no obvious
|
|
# failure, but would surely turn out to be a bad idea sooner
|
|
# or later...
|
|
self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)
|
|
|
|
# A cherry-picked example from DJB's test vector data at
|
|
# https://ed25519.cr.yp.to/python/sign.input, which is too
|
|
# large to copy into here in full.
|
|
privkey = unhex(
|
|
'c89955e0f7741d905df0730b3dc2b0ce1a13134e44fef3d40d60c020ef19df77')
|
|
pubkey = unhex(
|
|
'fdb30673402faf1c8033714f3517e47cc0f91fe70cf3836d6c23636e3fd2287c')
|
|
message = unhex(
|
|
'507c94c8820d2a5793cbf3442b3d71936f35fe3afef316')
|
|
signature = unhex(
|
|
'7ef66e5e86f2360848e0014e94880ae2920ad8a3185a46b35d1e07dea8fa8ae4'
|
|
'f6b843ba174d99fa7986654a0891c12a794455669375bf92af4cc2770b579e0c')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
# You can get this test program to run the full version of
|
|
# DJB's test vectors by modifying the source temporarily to
|
|
# set this variable to a pathname where you downloaded the
|
|
# file.
|
|
ed25519_test_vector_path = None
|
|
if ed25519_test_vector_path is not None:
|
|
with open(ed25519_test_vector_path) as f:
|
|
for line in iter(f.readline, ""):
|
|
words = line.split(":")
|
|
# DJB's test vector input format concatenates a
|
|
# spare copy of the public key to the end of the
|
|
# private key, and a spare copy of the message to
|
|
# the end of the signature. Strip those off.
|
|
privkey = unhex(words[0])[:32]
|
|
pubkey = unhex(words[1])
|
|
message = unhex(words[2])
|
|
signature = unhex(words[3])[:64]
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
def testEd448(self):
|
|
def vector(privkey, pubkey, message, signature):
|
|
x, y = ecc_edwards_get_affine(eddsa_public(
|
|
mp_from_bytes_le(privkey), 'ed448'))
|
|
self.assertEqual(int(y) | ((int(x) & 1) << 455),
|
|
int(mp_from_bytes_le(pubkey)))
|
|
pubblob = ssh_string(b"ssh-ed448") + ssh_string(pubkey)
|
|
privblob = ssh_string(privkey)
|
|
sigblob = ssh_string(b"ssh-ed448") + ssh_string(signature)
|
|
pubkey = ssh_key_new_pub('ed448', pubblob)
|
|
self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
|
|
privkey = ssh_key_new_priv('ed448', pubblob, privblob)
|
|
# Deterministic signature check as in Ed25519
|
|
self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)
|
|
|
|
# Source: RFC 8032 section 7.4
|
|
|
|
privkey = unhex('6c82a562cb808d10d632be89c8513ebf6c929f34ddfa8c9f63c9960ef6e348a3528c8a3fcc2f044e39a3fc5b94492f8f032e7549a20098f95b')
|
|
pubkey = unhex('5fd7449b59b461fd2ce787ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf124769b46c7061bd6783df1e50f6cd1fa1abeafe8256180')
|
|
message = b''
|
|
signature = unhex('533a37f6bbe457251f023c0d88f976ae2dfb504a843e34d2074fd823d41a591f2b233f034f628281f2fd7a22ddd47d7828c59bd0a21bfd3980ff0d2028d4b18a9df63e006c5d1c2d345b925d8dc00b4104852db99ac5c7cdda8530a113a0f4dbb61149f05a7363268c71d95808ff2e652600')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('c4eab05d357007c632f3dbb48489924d552b08fe0c353a0d4a1f00acda2c463afbea67c5e8d2877c5e3bc397a659949ef8021e954e0a12274e')
|
|
pubkey = unhex('43ba28f430cdff456ae531545f7ecd0ac834a55d9358c0372bfa0c6c6798c0866aea01eb00742802b8438ea4cb82169c235160627b4c3a9480')
|
|
message = unhex('03')
|
|
signature = unhex('26b8f91727bd62897af15e41eb43c377efb9c610d48f2335cb0bd0087810f4352541b143c4b981b7e18f62de8ccdf633fc1bf037ab7cd779805e0dbcc0aae1cbcee1afb2e027df36bc04dcecbf154336c19f0af7e0a6472905e799f1953d2a0ff3348ab21aa4adafd1d234441cf807c03a00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('cd23d24f714274e744343237b93290f511f6425f98e64459ff203e8985083ffdf60500553abc0e05cd02184bdb89c4ccd67e187951267eb328')
|
|
pubkey = unhex('dcea9e78f35a1bf3499a831b10b86c90aac01cd84b67a0109b55a36e9328b1e365fce161d71ce7131a543ea4cb5f7e9f1d8b00696447001400')
|
|
message = unhex('0c3e544074ec63b0265e0c')
|
|
signature = unhex('1f0a8888ce25e8d458a21130879b840a9089d999aaba039eaf3e3afa090a09d389dba82c4ff2ae8ac5cdfb7c55e94d5d961a29fe0109941e00b8dbdeea6d3b051068df7254c0cdc129cbe62db2dc957dbb47b51fd3f213fb8698f064774250a5028961c9bf8ffd973fe5d5c206492b140e00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('258cdd4ada32ed9c9ff54e63756ae582fb8fab2ac721f2c8e676a72768513d939f63dddb55609133f29adf86ec9929dccb52c1c5fd2ff7e21b')
|
|
pubkey = unhex('3ba16da0c6f2cc1f30187740756f5e798d6bc5fc015d7c63cc9510ee3fd44adc24d8e968b6e46e6f94d19b945361726bd75e149ef09817f580')
|
|
message = unhex('64a65f3cdedcdd66811e2915')
|
|
signature = unhex('7eeeab7c4e50fb799b418ee5e3197ff6bf15d43a14c34389b59dd1a7b1b85b4ae90438aca634bea45e3a2695f1270f07fdcdf7c62b8efeaf00b45c2c96ba457eb1a8bf075a3db28e5c24f6b923ed4ad747c3c9e03c7079efb87cb110d3a99861e72003cbae6d6b8b827e4e6c143064ff3c00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('d65df341ad13e008567688baedda8e9dcdc17dc024974ea5b4227b6530e339bff21f99e68ca6968f3cca6dfe0fb9f4fab4fa135d5542ea3f01')
|
|
pubkey = unhex('df9705f58edbab802c7f8363cfe5560ab1c6132c20a9f1dd163483a26f8ac53a39d6808bf4a1dfbd261b099bb03b3fb50906cb28bd8a081f00')
|
|
message = unhex('bd0f6a3747cd561bdddf4640a332461a4a30a12a434cd0bf40d766d9c6d458e5512204a30c17d1f50b5079631f64eb3112182da3005835461113718d1a5ef944')
|
|
signature = unhex('554bc2480860b49eab8532d2a533b7d578ef473eeb58c98bb2d0e1ce488a98b18dfde9b9b90775e67f47d4a1c3482058efc9f40d2ca033a0801b63d45b3b722ef552bad3b4ccb667da350192b61c508cf7b6b5adadc2c8d9a446ef003fb05cba5f30e88e36ec2703b349ca229c2670833900')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('2ec5fe3c17045abdb136a5e6a913e32ab75ae68b53d2fc149b77e504132d37569b7e766ba74a19bd6162343a21c8590aa9cebca9014c636df5')
|
|
pubkey = unhex('79756f014dcfe2079f5dd9e718be4171e2ef2486a08f25186f6bff43a9936b9bfe12402b08ae65798a3d81e22e9ec80e7690862ef3d4ed3a00')
|
|
message = unhex('15777532b0bdd0d1389f636c5f6b9ba734c90af572877e2d272dd078aa1e567cfa80e12928bb542330e8409f3174504107ecd5efac61ae7504dabe2a602ede89e5cca6257a7c77e27a702b3ae39fc769fc54f2395ae6a1178cab4738e543072fc1c177fe71e92e25bf03e4ecb72f47b64d0465aaea4c7fad372536c8ba516a6039c3c2a39f0e4d832be432dfa9a706a6e5c7e19f397964ca4258002f7c0541b590316dbc5622b6b2a6fe7a4abffd96105eca76ea7b98816af0748c10df048ce012d901015a51f189f3888145c03650aa23ce894c3bd889e030d565071c59f409a9981b51878fd6fc110624dcbcde0bf7a69ccce38fabdf86f3bef6044819de11')
|
|
signature = unhex('c650ddbb0601c19ca11439e1640dd931f43c518ea5bea70d3dcde5f4191fe53f00cf966546b72bcc7d58be2b9badef28743954e3a44a23f880e8d4f1cfce2d7a61452d26da05896f0a50da66a239a8a188b6d825b3305ad77b73fbac0836ecc60987fd08527c1a8e80d5823e65cafe2a3d00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('872d093780f5d3730df7c212664b37b8a0f24f56810daa8382cd4fa3f77634ec44dc54f1c2ed9bea86fafb7632d8be199ea165f5ad55dd9ce8')
|
|
pubkey = unhex('a81b2e8a70a5ac94ffdbcc9badfc3feb0801f258578bb114ad44ece1ec0e799da08effb81c5d685c0c56f64eecaef8cdf11cc38737838cf400')
|
|
message = unhex('6ddf802e1aae4986935f7f981ba3f0351d6273c0a0c22c9c0e8339168e675412a3debfaf435ed651558007db4384b650fcc07e3b586a27a4f7a00ac8a6fec2cd86ae4bf1570c41e6a40c931db27b2faa15a8cedd52cff7362c4e6e23daec0fbc3a79b6806e316efcc7b68119bf46bc76a26067a53f296dafdbdc11c77f7777e972660cf4b6a9b369a6665f02e0cc9b6edfad136b4fabe723d2813db3136cfde9b6d044322fee2947952e031b73ab5c603349b307bdc27bc6cb8b8bbd7bd323219b8033a581b59eadebb09b3c4f3d2277d4f0343624acc817804728b25ab797172b4c5c21a22f9c7839d64300232eb66e53f31c723fa37fe387c7d3e50bdf9813a30e5bb12cf4cd930c40cfb4e1fc622592a49588794494d56d24ea4b40c89fc0596cc9ebb961c8cb10adde976a5d602b1c3f85b9b9a001ed3c6a4d3b1437f52096cd1956d042a597d561a596ecd3d1735a8d570ea0ec27225a2c4aaff26306d1526c1af3ca6d9cf5a2c98f47e1c46db9a33234cfd4d81f2c98538a09ebe76998d0d8fd25997c7d255c6d66ece6fa56f11144950f027795e653008f4bd7ca2dee85d8e90f3dc315130ce2a00375a318c7c3d97be2c8ce5b6db41a6254ff264fa6155baee3b0773c0f497c573f19bb4f4240281f0b1f4f7be857a4e59d416c06b4c50fa09e1810ddc6b1467baeac5a3668d11b6ecaa901440016f389f80acc4db977025e7f5924388c7e340a732e554440e76570f8dd71b7d640b3450d1fd5f0410a18f9a3494f707c717b79b4bf75c98400b096b21653b5d217cf3565c9597456f70703497a078763829bc01bb1cbc8fa04eadc9a6e3f6699587a9e75c94e5bab0036e0b2e711392cff0047d0d6b05bd2a588bc109718954259f1d86678a579a3120f19cfb2963f177aeb70f2d4844826262e51b80271272068ef5b3856fa8535aa2a88b2d41f2a0e2fda7624c2850272ac4a2f561f8f2f7a318bfd5caf9696149e4ac824ad3460538fdc25421beec2cc6818162d06bbed0c40a387192349db67a118bada6cd5ab0140ee273204f628aad1c135f770279a651e24d8c14d75a6059d76b96a6fd857def5e0b354b27ab937a5815d16b5fae407ff18222c6d1ed263be68c95f32d908bd895cd76207ae726487567f9a67dad79abec316f683b17f2d02bf07e0ac8b5bc6162cf94697b3c27cd1fea49b27f23ba2901871962506520c392da8b6ad0d99f7013fbc06c2c17a569500c8a7696481c1cd33e9b14e40b82e79a5f5db82571ba97bae3ad3e0479515bb0e2b0f3bfcd1fd33034efc6245eddd7ee2086ddae2600d8ca73e214e8c2b0bdb2b047c6a464a562ed77b73d2d841c4b34973551257713b753632efba348169abc90a68f42611a40126d7cb21b58695568186f7e569d2ff0f9e745d0487dd2eb997cafc5abf9dd102e62ff66cba87')
|
|
signature = unhex('e301345a41a39a4d72fff8df69c98075a0cc082b802fc9b2b6bc503f926b65bddf7f4c8f1cb49f6396afc8a70abe6d8aef0db478d4c6b2970076c6a0484fe76d76b3a97625d79f1ce240e7c576750d295528286f719b413de9ada3e8eb78ed573603ce30d8bb761785dc30dbc320869e1a00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
def testMontgomeryKex(self):
|
|
# Unidirectional tests, consisting of an input random number
|
|
# string and peer public value, giving the expected output
|
|
# shared key. Source: RFC 7748 section 5.2.
|
|
rfc7748s5_2 = [
|
|
('curve25519',
|
|
'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4',
|
|
'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c',
|
|
0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552),
|
|
('curve25519',
|
|
'4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d',
|
|
'e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493',
|
|
0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957),
|
|
('curve448',
|
|
'3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3',
|
|
'06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086',
|
|
0xce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239fe14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f),
|
|
('curve448',
|
|
'203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c538345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f',
|
|
'0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db',
|
|
0x884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d),
|
|
]
|
|
|
|
for method, priv, pub, expected in rfc7748s5_2:
|
|
with queued_specific_random_data(unhex(priv)):
|
|
ecdh = ssh_ecdhkex_newkey(method)
|
|
key = ssh_ecdhkex_getkey(ecdh, unhex(pub))
|
|
self.assertEqual(int(key), expected)
|
|
|
|
# Bidirectional tests, consisting of the input random number
|
|
# strings for both parties, and the expected public values and
|
|
# shared key. Source: RFC 7748 section 6.
|
|
rfc7748s6 = [
|
|
('curve25519', # section 6.1
|
|
'77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a',
|
|
'8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a',
|
|
'5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb',
|
|
'de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f',
|
|
0x4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742),
|
|
('curve448', # section 6.2
|
|
'9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28dd9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b',
|
|
'9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0',
|
|
'1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d',
|
|
'3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b43027d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609',
|
|
0x07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282bb60c0b56fd2464c335543936521c24403085d59a449a5037514a879d),
|
|
]
|
|
|
|
for method, apriv, apub, bpriv, bpub, expected in rfc7748s6:
|
|
with queued_specific_random_data(unhex(apriv)):
|
|
alice = ssh_ecdhkex_newkey(method)
|
|
with queued_specific_random_data(unhex(bpriv)):
|
|
bob = ssh_ecdhkex_newkey(method)
|
|
self.assertEqualBin(ssh_ecdhkex_getpublic(alice), unhex(apub))
|
|
self.assertEqualBin(ssh_ecdhkex_getpublic(bob), unhex(bpub))
|
|
akey = ssh_ecdhkex_getkey(alice, unhex(bpub))
|
|
bkey = ssh_ecdhkex_getkey(bob, unhex(apub))
|
|
self.assertEqual(int(akey), expected)
|
|
self.assertEqual(int(bkey), expected)
|
|
|
|
def testCRC32(self):
|
|
self.assertEqual(crc32_rfc1662("123456789"), 0xCBF43926)
|
|
self.assertEqual(crc32_ssh1("123456789"), 0x2DFD2D88)
|
|
|
|
# Source:
|
|
# http://reveng.sourceforge.net/crc-catalogue/17plus.htm#crc.cat.crc-32-iso-hdlc
|
|
# which collected these from various sources.
|
|
reveng_tests = [
|
|
'000000001CDF4421',
|
|
'F20183779DAB24',
|
|
'0FAA005587B2C9B6',
|
|
'00FF55111262A032',
|
|
'332255AABBCCDDEEFF3D86AEB0',
|
|
'926B559BA2DE9C',
|
|
'FFFFFFFFFFFFFFFF',
|
|
'C008300028CFE9521D3B08EA449900E808EA449900E8300102007E649416',
|
|
'6173640ACEDE2D15',
|
|
]
|
|
for vec in map(unhex, reveng_tests):
|
|
# Each of these test vectors can be read two ways. One
|
|
# interpretation is that the last four bytes are the
|
|
# little-endian encoding of the CRC of the rest. (Because
|
|
# that's how the CRC is attached to a string at the
|
|
# sending end.)
|
|
#
|
|
# The other interpretation is that if you CRC the whole
|
|
# string, _including_ the final four bytes, you expect to
|
|
# get the same value for any correct string (because the
|
|
# little-endian encoding matches the way the rest of the
|
|
# string was interpreted as a polynomial in the first
|
|
# place). That's how a receiver is intended to check
|
|
# things.
|
|
#
|
|
# The expected output value is listed in RFC 1662, and in
|
|
# the reveng.sourceforge.net catalogue, as 0xDEBB20E3. But
|
|
# that's because their checking procedure omits the final
|
|
# complement step that the construction procedure
|
|
# includes. Our crc32_rfc1662 function does do the final
|
|
# complement, so we expect the bitwise NOT of that value,
|
|
# namely 0x2144DF1C.
|
|
expected = struct.unpack("<L", vec[-4:])[0]
|
|
self.assertEqual(crc32_rfc1662(vec[:-4]), expected)
|
|
self.assertEqual(crc32_rfc1662(vec), 0x2144DF1C)
|
|
|
|
if __name__ == "__main__":
|
|
# Run the tests, suppressing automatic sys.exit and collecting the
|
|
# unittest.TestProgram instance returned by unittest.main instead.
|
|
testprogram = unittest.main(exit=False)
|
|
|
|
# If any test failed, just exit with failure status.
|
|
if not testprogram.result.wasSuccessful():
|
|
childprocess.wait_for_exit()
|
|
sys.exit(1)
|
|
|
|
# But if no tests failed, we have one last check to do: look at
|
|
# the subprocess's return status, so that if Leak Sanitiser
|
|
# detected any memory leaks, the success return status will turn
|
|
# into a failure at the last minute.
|
|
childprocess.check_return_status()
|