1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-08 08:58:00 +00:00
putty-source/sshkeygen.h
Simon Tatham 6520574e58 Side-channel-safe rewrite of the Miller-Rabin test.
Thanks to Mark Wooding for explaining the method of doing this. At
first glance it seemed _obviously_ impossible to run an algorithm that
needs an iteration per factor of 2 in p-1, without a timing leak
giving away the number of factors of 2 in p-1. But it's not, because
you can do the M-R checks interleaved with each step of your whole
modular exponentiation, and they're cheap enough that you can do them
in _every_ step, even the ones where the exponent is too small for M-R
to be interested in yet, and then do bitwise masking to exclude the
spurious results from the final output.
2021-08-27 18:04:49 +01:00

301 lines
12 KiB
C

/*
* sshkeygen.h: routines used internally to key generation.
*/
/* ----------------------------------------------------------------------
* A table of all the primes that fit in a 16-bit integer. Call
* init_primes_array to make sure it's been initialised.
*/
#define NSMALLPRIMES 6542 /* number of primes < 65536 */
extern const unsigned short *const smallprimes;
void init_smallprimes(void);
/* ----------------------------------------------------------------------
* A system for making up random candidate integers during prime
* generation. This unconditionally ensures that the numbers have the
* right number of bits and are not divisible by any prime in the
* smallprimes[] array above. It can also impose further constraints,
* as documented below.
*/
typedef struct PrimeCandidateSource PrimeCandidateSource;
/*
* pcs_new: you say how many bits you want the prime to have (with the
* usual semantics that an n-bit number is in the range [2^{n-1},2^n))
* and also optionally specify what you want its topmost 'nfirst' bits
* to be.
*
* (The 'first' system is used for RSA keys, where you need to arrange
* that the product of your two primes is in a more tightly
* constrained range than the factor of 4 you'd get by just generating
* two (n/2)-bit primes and multiplying them.)
*/
PrimeCandidateSource *pcs_new(unsigned bits);
PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
unsigned first, unsigned nfirst);
/* Insist that generated numbers must be congruent to 'res' mod 'mod' */
void pcs_require_residue(PrimeCandidateSource *s, mp_int *mod, mp_int *res);
/* Convenience wrapper for the common case where res = 1 */
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod);
/* Same as pcs_require_residue_1, but also records that the modulus is
* known to be prime */
void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod);
/* Insist that generated numbers must _not_ be congruent to 'res' mod
* 'mod'. This is used to avoid being 1 mod the RSA public exponent,
* which is small, so it only needs ordinary integer parameters. */
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res);
/* Exclude any prime that has no chance of being a Sophie Germain prime. */
void pcs_try_sophie_germain(PrimeCandidateSource *s);
/* Mark a PrimeCandidateSource as one-shot, so that the prime generation
* function will return NULL if an attempt fails, rather than looping. */
void pcs_set_oneshot(PrimeCandidateSource *s);
/* Prepare a PrimeCandidateSource to actually generate numbers. This
* function does last-minute computation that has to be delayed until
* all constraints have been input. */
void pcs_ready(PrimeCandidateSource *s);
/* Actually generate a candidate integer. You must free the result, of
* course. */
mp_int *pcs_generate(PrimeCandidateSource *s);
/* Free a PrimeCandidateSource. */
void pcs_free(PrimeCandidateSource *s);
/* Return some internal fields of the PCS. Used by testcrypt for
* unit-testing this system. */
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out);
/* Query functions for primegen to use */
unsigned pcs_get_bits(PrimeCandidateSource *pcs);
unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs);
mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs);
mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout);
/* ----------------------------------------------------------------------
* A system for doing Miller-Rabin probabilistic primality tests.
* These benefit from having set up some context beforehand, if you're
* going to do more than one of them on the same candidate prime, so
* we declare an object type here to store that context.
*/
typedef struct MillerRabin MillerRabin;
/* Make and free a Miller-Rabin context. */
MillerRabin *miller_rabin_new(mp_int *p);
void miller_rabin_free(MillerRabin *mr);
/* Perform a single Miller-Rabin test, using a specified witness value.
* Used in the test suite. */
struct mr_result {
unsigned passed;
unsigned potential_primitive_root;
};
struct mr_result miller_rabin_test(MillerRabin *mr, mp_int *w);
/* Perform a single Miller-Rabin test, using a random witness value. */
bool miller_rabin_test_random(MillerRabin *mr);
/* Suggest how many tests are needed to make it sufficiently unlikely
* that a composite number will pass them all */
unsigned miller_rabin_checks_needed(unsigned bits);
/* An extension to the M-R test, which iterates until it either finds
* a witness value that is potentially a primitive root, or one
* that proves the number to be composite. */
mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr);
/* ----------------------------------------------------------------------
* A system for proving numbers to be prime, using the Pocklington
* test, which requires knowing a partial factorisation of p-1
* (specifically, factors whose product is at least cbrt(p)) and a
* primitive root.
*
* The API consists of instantiating a 'Pockle' object, which
* internally stores a list of numbers you've already convinced it is
* prime, and can accept further primes if you give a satisfactory
* certificate of their primality based on primes it already knows
* about.
*/
typedef struct Pockle Pockle;
/* In real use, you only really need to know whether the Pockle
* successfully accepted your prime. But for testcrypt, it's useful to
* expose many different failure modes so we can try to provoke them
* all in unit tests and check they're working. */
#define POCKLE_STATUSES(X) \
X(POCKLE_OK) \
X(POCKLE_SMALL_PRIME_NOT_SMALL) \
X(POCKLE_SMALL_PRIME_NOT_PRIME) \
X(POCKLE_PRIME_SMALLER_THAN_2) \
X(POCKLE_FACTOR_NOT_KNOWN_PRIME) \
X(POCKLE_FACTOR_NOT_A_FACTOR) \
X(POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL) \
X(POCKLE_FERMAT_TEST_FAILED) \
X(POCKLE_DISCRIMINANT_IS_SQUARE) \
X(POCKLE_WITNESS_POWER_IS_1) \
X(POCKLE_WITNESS_POWER_NOT_COPRIME) \
/* end of list */
#define DEFINE_ENUM(id) id,
typedef enum PockleStatus { POCKLE_STATUSES(DEFINE_ENUM) } PockleStatus;
#undef DEFINE_ENUM
/* Make a new empty Pockle, containing no primes. */
Pockle *pockle_new(void);
/* Insert a prime below 2^32 into the Pockle. No evidence is required:
* Pockle will check it itself. */
PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p);
/* Insert a general prime into the Pockle. You must provide a list of
* prime factors of p-1, whose product exceeds the cube root of p, and
* also a primitive root mod p. */
PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p,
mp_int **factors, size_t nfactors,
mp_int *primitive_root);
/* If you call pockle_mark, and later pass the returned value to
* pockle_release, it will free all the primes that were added to the
* Pockle between those two calls. Useful in recursive algorithms, to
* stop the Pockle growing unboundedly if the recursion keeps having
* to backtrack. */
size_t pockle_mark(Pockle *pockle);
void pockle_release(Pockle *pockle, size_t mark);
/* Free a Pockle. */
void pockle_free(Pockle *pockle);
/* Generate a certificate of primality for a prime already known to
* the Pockle, in a format acceptable to Math::Prime::Util. */
strbuf *pockle_mpu(Pockle *pockle, mp_int *p);
/* ----------------------------------------------------------------------
* Callback API that allows key generation to report progress to its
* caller.
*/
typedef struct ProgressReceiverVtable ProgressReceiverVtable;
typedef struct ProgressReceiver ProgressReceiver;
typedef union ProgressPhase ProgressPhase;
union ProgressPhase {
int n;
void *p;
};
struct ProgressReceiver {
const ProgressReceiverVtable *vt;
};
struct ProgressReceiverVtable {
ProgressPhase (*add_linear)(ProgressReceiver *prog, double overall_cost);
ProgressPhase (*add_probabilistic)(ProgressReceiver *prog,
double cost_per_attempt,
double attempt_probability);
void (*ready)(ProgressReceiver *prog);
void (*start_phase)(ProgressReceiver *prog, ProgressPhase phase);
void (*report)(ProgressReceiver *prog, double progress);
void (*report_attempt)(ProgressReceiver *prog);
void (*report_phase_complete)(ProgressReceiver *prog);
};
static inline ProgressPhase progress_add_linear(ProgressReceiver *prog,
double c)
{ return prog->vt->add_linear(prog, c); }
static inline ProgressPhase progress_add_probabilistic(ProgressReceiver *prog,
double c, double p)
{ return prog->vt->add_probabilistic(prog, c, p); }
static inline void progress_ready(ProgressReceiver *prog)
{ prog->vt->ready(prog); }
static inline void progress_start_phase(
ProgressReceiver *prog, ProgressPhase phase)
{ prog->vt->start_phase(prog, phase); }
static inline void progress_report(ProgressReceiver *prog, double progress)
{ prog->vt->report(prog, progress); }
static inline void progress_report_attempt(ProgressReceiver *prog)
{ prog->vt->report_attempt(prog); }
static inline void progress_report_phase_complete(ProgressReceiver *prog)
{ prog->vt->report_phase_complete(prog); }
ProgressPhase null_progress_add_linear(
ProgressReceiver *prog, double c);
ProgressPhase null_progress_add_probabilistic(
ProgressReceiver *prog, double c, double p);
void null_progress_ready(ProgressReceiver *prog);
void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase);
void null_progress_report(ProgressReceiver *prog, double progress);
void null_progress_report_attempt(ProgressReceiver *prog);
void null_progress_report_phase_complete(ProgressReceiver *prog);
extern const ProgressReceiverVtable null_progress_vt;
/* A helper function for dreaming up progress cost estimates. */
double estimate_modexp_cost(unsigned bits);
/* ----------------------------------------------------------------------
* The top-level API for generating primes.
*/
typedef struct PrimeGenerationPolicy PrimeGenerationPolicy;
typedef struct PrimeGenerationContext PrimeGenerationContext;
struct PrimeGenerationContext {
const PrimeGenerationPolicy *vt;
};
struct PrimeGenerationPolicy {
ProgressPhase (*add_progress_phase)(const PrimeGenerationPolicy *policy,
ProgressReceiver *prog, unsigned bits);
PrimeGenerationContext *(*new_context)(
const PrimeGenerationPolicy *policy);
void (*free_context)(PrimeGenerationContext *ctx);
mp_int *(*generate)(
PrimeGenerationContext *ctx,
PrimeCandidateSource *pcs, ProgressReceiver *prog);
strbuf *(*mpu_certificate)(PrimeGenerationContext *ctx, mp_int *p);
const void *extra; /* additional data a particular impl might need */
};
static inline ProgressPhase primegen_add_progress_phase(
PrimeGenerationContext *ctx, ProgressReceiver *prog, unsigned bits)
{ return ctx->vt->add_progress_phase(ctx->vt, prog, bits); }
static inline PrimeGenerationContext *primegen_new_context(
const PrimeGenerationPolicy *policy)
{ return policy->new_context(policy); }
static inline void primegen_free_context(PrimeGenerationContext *ctx)
{ ctx->vt->free_context(ctx); }
static inline mp_int *primegen_generate(
PrimeGenerationContext *ctx,
PrimeCandidateSource *pcs, ProgressReceiver *prog)
{ return ctx->vt->generate(ctx, pcs, prog); }
static inline strbuf *primegen_mpu_certificate(
PrimeGenerationContext *ctx, mp_int *p)
{ return ctx->vt->mpu_certificate(ctx, p); }
extern const PrimeGenerationPolicy primegen_probabilistic;
extern const PrimeGenerationPolicy primegen_provable_fast;
extern const PrimeGenerationPolicy primegen_provable_maurer_simple;
extern const PrimeGenerationPolicy primegen_provable_maurer_complex;
/* ----------------------------------------------------------------------
* The overall top-level API for generating entire key pairs.
*/
int rsa_generate(RSAKey *key, int bits, bool strong,
PrimeGenerationContext *pgc, ProgressReceiver *prog);
int dsa_generate(struct dsa_key *key, int bits, PrimeGenerationContext *pgc,
ProgressReceiver *prog);
int ecdsa_generate(struct ecdsa_key *key, int bits);
int eddsa_generate(struct eddsa_key *key, int bits);