1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/ssh.c
Simon Tatham d20d3b20fd Remove FLAG_VERBOSE.
The global 'int flags' has always been an ugly feature of this code
base, and I suddenly thought that perhaps it's time to start throwing
it out, one flag at a time, until it's totally unused.

My first target is FLAG_VERBOSE. This was usually set by cmdline.c
when it saw a -v option on the program's command line, except that GUI
PuTTY itself sets it unconditionally on startup. And then various bits
of the code would check it in order to decide whether to print a given
message.

In the current system of front-end abstraction traits, there's no
_one_ place that I can move it to. But there are two: every place that
checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So
now each of those traits has a query method for 'do I want verbose
messages?'.

A good effect of this is that subsidiary Seats, like the ones used in
Uppity for the main SSH server module itself and the server end of
shell channels, now get to have their own verbosity setting instead of
inheriting the one global one. In fact I don't expect any code using
those Seats to be generating any messages at all, but if that changes
later, we'll have a way to control it. (Who knows, perhaps logging in
Uppity might become a thing.)

As part of this cleanup, I've added a new flag to cmdline_tooltype,
called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools
now set that, and it has the effect of making cmdline.c disallow -v
completely. So where 'putty -v' would previously have been silently
ignored ("I was already verbose"), it's now an error, reminding you
that that option doesn't actually do anything.

Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c
(with identical definitions) has had to move into a new file of its
own, because now it has to ask cmdline.c for the verbosity setting as
well as asking console.c for the rest of its methods. So there's a new
file clicons.c which can only be included by programs that link
against both cmdline.c _and_ one of the *cons.c, and I've renamed the
logpolicy to reflect that.
2020-01-30 06:40:21 +00:00

1196 lines
34 KiB
C

/*
* SSH backend.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <assert.h>
#include <limits.h>
#include <signal.h>
#include "putty.h"
#include "pageant.h" /* for AGENT_MAX_MSGLEN */
#include "tree234.h"
#include "storage.h"
#include "marshal.h"
#include "ssh.h"
#include "sshcr.h"
#include "sshbpp.h"
#include "sshppl.h"
#include "sshchan.h"
#ifndef NO_GSSAPI
#include "sshgssc.h"
#include "sshgss.h"
#define MIN_CTXT_LIFETIME 5 /* Avoid rekey with short lifetime (seconds) */
#define GSS_KEX_CAPABLE (1<<0) /* Can do GSS KEX */
#define GSS_CRED_UPDATED (1<<1) /* Cred updated since previous delegation */
#define GSS_CTXT_EXPIRES (1<<2) /* Context expires before next timer */
#define GSS_CTXT_MAYFAIL (1<<3) /* Context may expire during handshake */
#endif
struct Ssh {
Socket *s;
Seat *seat;
Conf *conf;
struct ssh_version_receiver version_receiver;
int remote_bugs;
Plug plug;
Backend backend;
Ldisc *ldisc;
LogContext *logctx;
/* The last list returned from get_specials. */
SessionSpecial *specials;
bool bare_connection;
ssh_sharing_state *connshare;
bool attempting_connshare;
#ifndef NO_GSSAPI
struct ssh_connection_shared_gss_state gss_state;
#endif
char *savedhost;
int savedport;
char *fullhostname;
bool fallback_cmd;
int exitcode;
int version;
int conn_throttle_count;
size_t overall_bufsize;
bool throttled_all;
/*
* logically_frozen is true if we're not currently _processing_
* data from the SSH socket (e.g. because a higher layer has asked
* us not to due to ssh_throttle_conn). socket_frozen is true if
* we're not even _reading_ data from the socket (i.e. it should
* always match the value we last passed to sk_set_frozen).
*
* The two differ in that socket_frozen can also become
* temporarily true because of a large backlog in the in_raw
* bufchain, to force no further plug_receive events until the BPP
* input function has had a chance to run. (Some front ends, like
* GTK, can persistently call the network and never get round to
* the toplevel callbacks.) If we've stopped reading from the
* socket for that reason, we absolutely _do_ want to carry on
* processing our input bufchain, because that's the only way
* it'll ever get cleared!
*
* ssh_check_frozen() resets socket_frozen, and should be called
* whenever either of logically_frozen and the bufchain size
* changes.
*/
bool logically_frozen, socket_frozen;
/* in case we find these out before we have a ConnectionLayer to tell */
int term_width, term_height;
bufchain in_raw, out_raw, user_input;
bool pending_close;
IdempotentCallback ic_out_raw;
PacketLogSettings pls;
struct DataTransferStats stats;
BinaryPacketProtocol *bpp;
/*
* base_layer identifies the bottommost packet protocol layer, the
* one connected directly to the BPP's packet queues. Any
* operation that needs to talk to all layers (e.g. free, or
* get_specials) will do it by talking to this, which will
* recursively propagate it if necessary.
*/
PacketProtocolLayer *base_layer;
/*
* The ConnectionLayer vtable from our connection layer.
*/
ConnectionLayer *cl;
/*
* A dummy ConnectionLayer that can be used for logging sharing
* downstreams that connect before the real one is ready.
*/
ConnectionLayer cl_dummy;
/*
* session_started is false until we initialise the main protocol
* layers. So it distinguishes between base_layer==NULL meaning
* that the SSH protocol hasn't been set up _yet_, and
* base_layer==NULL meaning the SSH protocol has run and finished.
* It's also used to mark the point where we stop counting proxy
* command diagnostics as pre-session-startup.
*/
bool session_started;
Pinger *pinger;
char *deferred_abort_message;
bool need_random_unref;
};
#define ssh_logevent(params) ( \
logevent_and_free((ssh)->logctx, dupprintf params))
static void ssh_shutdown(Ssh *ssh);
static void ssh_throttle_all(Ssh *ssh, bool enable, size_t bufsize);
static void ssh_bpp_output_raw_data_callback(void *vctx);
LogContext *ssh_get_logctx(Ssh *ssh)
{
return ssh->logctx;
}
static void ssh_connect_bpp(Ssh *ssh)
{
ssh->bpp->ssh = ssh;
ssh->bpp->in_raw = &ssh->in_raw;
ssh->bpp->out_raw = &ssh->out_raw;
bufchain_set_callback(ssh->bpp->out_raw, &ssh->ic_out_raw);
ssh->bpp->pls = &ssh->pls;
ssh->bpp->logctx = ssh->logctx;
ssh->bpp->remote_bugs = ssh->remote_bugs;
}
static void ssh_connect_ppl(Ssh *ssh, PacketProtocolLayer *ppl)
{
ppl->bpp = ssh->bpp;
ppl->user_input = &ssh->user_input;
ppl->seat = ssh->seat;
ppl->ssh = ssh;
ppl->logctx = ssh->logctx;
ppl->remote_bugs = ssh->remote_bugs;
}
static void ssh_got_ssh_version(struct ssh_version_receiver *rcv,
int major_version)
{
Ssh *ssh = container_of(rcv, Ssh, version_receiver);
BinaryPacketProtocol *old_bpp;
PacketProtocolLayer *connection_layer;
ssh->session_started = true;
/*
* We don't support choosing a major protocol version dynamically,
* so this should always be the same value we set up in
* connect_to_host().
*/
assert(ssh->version == major_version);
old_bpp = ssh->bpp;
ssh->remote_bugs = ssh_verstring_get_bugs(old_bpp);
if (!ssh->bare_connection) {
if (ssh->version == 2) {
PacketProtocolLayer *userauth_layer, *transport_child_layer;
/*
* We use the 'simple' variant of the SSH protocol if
* we're asked to, except not if we're also doing
* connection-sharing (either tunnelling our packets over
* an upstream or expecting to be tunnelled over
* ourselves), since then the assumption that we have only
* one channel to worry about is not true after all.
*/
bool is_simple =
(conf_get_bool(ssh->conf, CONF_ssh_simple) && !ssh->connshare);
ssh->bpp = ssh2_bpp_new(ssh->logctx, &ssh->stats, false);
ssh_connect_bpp(ssh);
#ifndef NO_GSSAPI
/* Load and pick the highest GSS library on the preference
* list. */
if (!ssh->gss_state.libs)
ssh->gss_state.libs = ssh_gss_setup(ssh->conf);
ssh->gss_state.lib = NULL;
if (ssh->gss_state.libs->nlibraries > 0) {
int i, j;
for (i = 0; i < ngsslibs; i++) {
int want_id = conf_get_int_int(ssh->conf,
CONF_ssh_gsslist, i);
for (j = 0; j < ssh->gss_state.libs->nlibraries; j++)
if (ssh->gss_state.libs->libraries[j].id == want_id) {
ssh->gss_state.lib =
&ssh->gss_state.libs->libraries[j];
goto got_gsslib; /* double break */
}
}
got_gsslib:
/*
* We always expect to have found something in
* the above loop: we only came here if there
* was at least one viable GSS library, and the
* preference list should always mention
* everything and only change the order.
*/
assert(ssh->gss_state.lib);
}
#endif
connection_layer = ssh2_connection_new(
ssh, ssh->connshare, is_simple, ssh->conf,
ssh_verstring_get_remote(old_bpp), &ssh->cl);
ssh_connect_ppl(ssh, connection_layer);
if (conf_get_bool(ssh->conf, CONF_ssh_no_userauth)) {
userauth_layer = NULL;
transport_child_layer = connection_layer;
} else {
char *username = get_remote_username(ssh->conf);
userauth_layer = ssh2_userauth_new(
connection_layer, ssh->savedhost, ssh->fullhostname,
conf_get_filename(ssh->conf, CONF_keyfile),
conf_get_bool(ssh->conf, CONF_ssh_show_banner),
conf_get_bool(ssh->conf, CONF_tryagent), username,
conf_get_bool(ssh->conf, CONF_change_username),
conf_get_bool(ssh->conf, CONF_try_ki_auth),
#ifndef NO_GSSAPI
conf_get_bool(ssh->conf, CONF_try_gssapi_auth),
conf_get_bool(ssh->conf, CONF_try_gssapi_kex),
conf_get_bool(ssh->conf, CONF_gssapifwd),
&ssh->gss_state
#else
false,
false,
false,
NULL
#endif
);
ssh_connect_ppl(ssh, userauth_layer);
transport_child_layer = userauth_layer;
sfree(username);
}
ssh->base_layer = ssh2_transport_new(
ssh->conf, ssh->savedhost, ssh->savedport,
ssh->fullhostname,
ssh_verstring_get_local(old_bpp),
ssh_verstring_get_remote(old_bpp),
#ifndef NO_GSSAPI
&ssh->gss_state,
#else
NULL,
#endif
&ssh->stats, transport_child_layer, NULL);
ssh_connect_ppl(ssh, ssh->base_layer);
if (userauth_layer)
ssh2_userauth_set_transport_layer(userauth_layer,
ssh->base_layer);
} else {
ssh->bpp = ssh1_bpp_new(ssh->logctx);
ssh_connect_bpp(ssh);
connection_layer = ssh1_connection_new(ssh, ssh->conf, &ssh->cl);
ssh_connect_ppl(ssh, connection_layer);
ssh->base_layer = ssh1_login_new(
ssh->conf, ssh->savedhost, ssh->savedport, connection_layer);
ssh_connect_ppl(ssh, ssh->base_layer);
}
} else {
ssh->bpp = ssh2_bare_bpp_new(ssh->logctx);
ssh_connect_bpp(ssh);
connection_layer = ssh2_connection_new(
ssh, NULL, false, ssh->conf, ssh_verstring_get_remote(old_bpp),
&ssh->cl);
ssh_connect_ppl(ssh, connection_layer);
ssh->base_layer = connection_layer;
}
/* Connect the base layer - whichever it is - to the BPP, and set
* up its selfptr. */
ssh->base_layer->selfptr = &ssh->base_layer;
ssh_ppl_setup_queues(ssh->base_layer, &ssh->bpp->in_pq, &ssh->bpp->out_pq);
seat_update_specials_menu(ssh->seat);
ssh->pinger = pinger_new(ssh->conf, &ssh->backend);
queue_idempotent_callback(&ssh->bpp->ic_in_raw);
ssh_ppl_process_queue(ssh->base_layer);
/* Pass in the initial terminal size, if we knew it already. */
ssh_terminal_size(ssh->cl, ssh->term_width, ssh->term_height);
ssh_bpp_free(old_bpp);
}
void ssh_check_frozen(Ssh *ssh)
{
if (!ssh->s)
return;
bool prev_frozen = ssh->socket_frozen;
ssh->socket_frozen = (ssh->logically_frozen ||
bufchain_size(&ssh->in_raw) > SSH_MAX_BACKLOG);
sk_set_frozen(ssh->s, ssh->socket_frozen);
if (prev_frozen && !ssh->socket_frozen && ssh->bpp) {
/*
* If we've just unfrozen, process any SSH connection data
* that was stashed in our queue while we were frozen.
*/
queue_idempotent_callback(&ssh->bpp->ic_in_raw);
}
}
void ssh_conn_processed_data(Ssh *ssh)
{
ssh_check_frozen(ssh);
}
static void ssh_bpp_output_raw_data_callback(void *vctx)
{
Ssh *ssh = (Ssh *)vctx;
if (!ssh->s)
return;
while (bufchain_size(&ssh->out_raw) > 0) {
size_t backlog;
ptrlen data = bufchain_prefix(&ssh->out_raw);
if (ssh->logctx)
log_packet(ssh->logctx, PKT_OUTGOING, -1, NULL, data.ptr, data.len,
0, NULL, NULL, 0, NULL);
backlog = sk_write(ssh->s, data.ptr, data.len);
bufchain_consume(&ssh->out_raw, data.len);
if (backlog > SSH_MAX_BACKLOG) {
ssh_throttle_all(ssh, true, backlog);
return;
}
}
ssh_check_frozen(ssh);
if (ssh->pending_close) {
sk_close(ssh->s);
ssh->s = NULL;
}
}
static void ssh_shutdown_internal(Ssh *ssh)
{
expire_timer_context(ssh);
if (ssh->connshare) {
sharestate_free(ssh->connshare);
ssh->connshare = NULL;
}
if (ssh->pinger) {
pinger_free(ssh->pinger);
ssh->pinger = NULL;
}
/*
* We only need to free the base PPL, which will free the others
* (if any) transitively.
*/
if (ssh->base_layer) {
ssh_ppl_free(ssh->base_layer);
ssh->base_layer = NULL;
}
ssh->cl = NULL;
}
static void ssh_shutdown(Ssh *ssh)
{
ssh_shutdown_internal(ssh);
if (ssh->bpp) {
ssh_bpp_free(ssh->bpp);
ssh->bpp = NULL;
}
if (ssh->s) {
sk_close(ssh->s);
ssh->s = NULL;
}
bufchain_clear(&ssh->in_raw);
bufchain_clear(&ssh->out_raw);
bufchain_clear(&ssh->user_input);
}
static void ssh_initiate_connection_close(Ssh *ssh)
{
/* Wind up everything above the BPP. */
ssh_shutdown_internal(ssh);
/* Force any remaining queued SSH packets through the BPP, and
* schedule closing the network socket after they go out. */
ssh_bpp_handle_output(ssh->bpp);
ssh->pending_close = true;
queue_idempotent_callback(&ssh->ic_out_raw);
/* Now we expect the other end to close the connection too in
* response, so arrange that we'll receive notification of that
* via ssh_remote_eof. */
ssh->bpp->expect_close = true;
}
#define GET_FORMATTED_MSG \
char *msg; \
va_list ap; \
va_start(ap, fmt); \
msg = dupvprintf(fmt, ap); \
va_end(ap); \
((void)0) /* eat trailing semicolon */
void ssh_remote_error(Ssh *ssh, const char *fmt, ...)
{
if (ssh->base_layer || !ssh->session_started) {
GET_FORMATTED_MSG;
/* Error messages sent by the remote don't count as clean exits */
ssh->exitcode = 128;
/* Close the socket immediately, since the server has already
* closed its end (or is about to). */
ssh_shutdown(ssh);
logevent(ssh->logctx, msg);
seat_connection_fatal(ssh->seat, "%s", msg);
sfree(msg);
}
}
void ssh_remote_eof(Ssh *ssh, const char *fmt, ...)
{
if (ssh->base_layer || !ssh->session_started) {
GET_FORMATTED_MSG;
/* EOF from the remote, if we were expecting it, does count as
* a clean exit */
ssh->exitcode = 0;
/* Close the socket immediately, since the server has already
* closed its end. */
ssh_shutdown(ssh);
logevent(ssh->logctx, msg);
sfree(msg);
seat_notify_remote_exit(ssh->seat);
} else {
/* This is responding to EOF after we've already seen some
* other reason for terminating the session. */
ssh_shutdown(ssh);
}
}
void ssh_proto_error(Ssh *ssh, const char *fmt, ...)
{
if (ssh->base_layer || !ssh->session_started) {
GET_FORMATTED_MSG;
ssh->exitcode = 128;
ssh_bpp_queue_disconnect(ssh->bpp, msg,
SSH2_DISCONNECT_PROTOCOL_ERROR);
ssh_initiate_connection_close(ssh);
logevent(ssh->logctx, msg);
seat_connection_fatal(ssh->seat, "%s", msg);
sfree(msg);
}
}
void ssh_sw_abort(Ssh *ssh, const char *fmt, ...)
{
if (ssh->base_layer || !ssh->session_started) {
GET_FORMATTED_MSG;
ssh->exitcode = 128;
ssh_initiate_connection_close(ssh);
logevent(ssh->logctx, msg);
seat_connection_fatal(ssh->seat, "%s", msg);
sfree(msg);
seat_notify_remote_exit(ssh->seat);
}
}
void ssh_user_close(Ssh *ssh, const char *fmt, ...)
{
if (ssh->base_layer || !ssh->session_started) {
GET_FORMATTED_MSG;
/* Closing the connection due to user action, even if the
* action is the user aborting during authentication prompts,
* does count as a clean exit - except that this is also how
* we signal ordinary session termination, in which case we
* should use the exit status already sent from the main
* session (if any). */
if (ssh->exitcode < 0)
ssh->exitcode = 0;
ssh_initiate_connection_close(ssh);
logevent(ssh->logctx, msg);
sfree(msg);
seat_notify_remote_exit(ssh->seat);
}
}
static void ssh_deferred_abort_callback(void *vctx)
{
Ssh *ssh = (Ssh *)vctx;
char *msg = ssh->deferred_abort_message;
ssh->deferred_abort_message = NULL;
ssh_sw_abort(ssh, "%s", msg);
sfree(msg);
}
void ssh_sw_abort_deferred(Ssh *ssh, const char *fmt, ...)
{
if (!ssh->deferred_abort_message) {
GET_FORMATTED_MSG;
ssh->deferred_abort_message = msg;
queue_toplevel_callback(ssh_deferred_abort_callback, ssh);
}
}
static void ssh_socket_log(Plug *plug, int type, SockAddr *addr, int port,
const char *error_msg, int error_code)
{
Ssh *ssh = container_of(plug, Ssh, plug);
/*
* While we're attempting connection sharing, don't loudly log
* everything that happens. Real TCP connections need to be logged
* when we _start_ trying to connect, because it might be ages
* before they respond if something goes wrong; but connection
* sharing is local and quick to respond, and it's sufficient to
* simply wait and see whether it worked afterwards.
*/
if (!ssh->attempting_connshare)
backend_socket_log(ssh->seat, ssh->logctx, type, addr, port,
error_msg, error_code, ssh->conf,
ssh->session_started);
}
static void ssh_closing(Plug *plug, const char *error_msg, int error_code,
bool calling_back)
{
Ssh *ssh = container_of(plug, Ssh, plug);
if (error_msg) {
ssh_remote_error(ssh, "%s", error_msg);
} else if (ssh->bpp) {
ssh->bpp->input_eof = true;
queue_idempotent_callback(&ssh->bpp->ic_in_raw);
}
}
static void ssh_receive(Plug *plug, int urgent, const char *data, size_t len)
{
Ssh *ssh = container_of(plug, Ssh, plug);
/* Log raw data, if we're in that mode. */
if (ssh->logctx)
log_packet(ssh->logctx, PKT_INCOMING, -1, NULL, data, len,
0, NULL, NULL, 0, NULL);
bufchain_add(&ssh->in_raw, data, len);
if (!ssh->logically_frozen && ssh->bpp)
queue_idempotent_callback(&ssh->bpp->ic_in_raw);
ssh_check_frozen(ssh);
}
static void ssh_sent(Plug *plug, size_t bufsize)
{
Ssh *ssh = container_of(plug, Ssh, plug);
/*
* If the send backlog on the SSH socket itself clears, we should
* unthrottle the whole world if it was throttled. Also trigger an
* extra call to the consumer of the BPP's output, to try to send
* some more data off its bufchain.
*/
if (bufsize < SSH_MAX_BACKLOG) {
ssh_throttle_all(ssh, false, bufsize);
queue_idempotent_callback(&ssh->ic_out_raw);
}
}
static void ssh_hostport_setup(const char *host, int port, Conf *conf,
char **savedhost, int *savedport,
char **loghost_ret)
{
char *loghost = conf_get_str(conf, CONF_loghost);
if (loghost_ret)
*loghost_ret = loghost;
if (*loghost) {
char *tmphost;
char *colon;
tmphost = dupstr(loghost);
*savedport = 22; /* default ssh port */
/*
* A colon suffix on the hostname string also lets us affect
* savedport. (Unless there are multiple colons, in which case
* we assume this is an unbracketed IPv6 literal.)
*/
colon = host_strrchr(tmphost, ':');
if (colon && colon == host_strchr(tmphost, ':')) {
*colon++ = '\0';
if (*colon)
*savedport = atoi(colon);
}
*savedhost = host_strduptrim(tmphost);
sfree(tmphost);
} else {
*savedhost = host_strduptrim(host);
if (port < 0)
port = 22; /* default ssh port */
*savedport = port;
}
}
static bool ssh_test_for_upstream(const char *host, int port, Conf *conf)
{
char *savedhost;
int savedport;
bool ret;
random_ref(); /* platform may need this to determine share socket name */
ssh_hostport_setup(host, port, conf, &savedhost, &savedport, NULL);
ret = ssh_share_test_for_upstream(savedhost, savedport, conf);
sfree(savedhost);
random_unref();
return ret;
}
static const PlugVtable Ssh_plugvt = {
ssh_socket_log,
ssh_closing,
ssh_receive,
ssh_sent,
NULL
};
/*
* Connect to specified host and port.
* Returns an error message, or NULL on success.
* Also places the canonical host name into `realhost'. It must be
* freed by the caller.
*/
static const char *connect_to_host(
Ssh *ssh, const char *host, int port, char **realhost,
bool nodelay, bool keepalive)
{
SockAddr *addr;
const char *err;
char *loghost;
int addressfamily, sshprot;
ssh_hostport_setup(host, port, ssh->conf,
&ssh->savedhost, &ssh->savedport, &loghost);
ssh->plug.vt = &Ssh_plugvt;
/*
* Try connection-sharing, in case that means we don't open a
* socket after all. ssh_connection_sharing_init will connect to a
* previously established upstream if it can, and failing that,
* establish a listening socket for _us_ to be the upstream. In
* the latter case it will return NULL just as if it had done
* nothing, because here we only need to care if we're a
* downstream and need to do our connection setup differently.
*/
ssh->connshare = NULL;
ssh->attempting_connshare = true; /* affects socket logging behaviour */
ssh->s = ssh_connection_sharing_init(
ssh->savedhost, ssh->savedport, ssh->conf, ssh->logctx,
&ssh->plug, &ssh->connshare);
if (ssh->connshare)
ssh_connshare_provide_connlayer(ssh->connshare, &ssh->cl_dummy);
ssh->attempting_connshare = false;
if (ssh->s != NULL) {
/*
* We are a downstream.
*/
ssh->bare_connection = true;
ssh->fullhostname = NULL;
*realhost = dupstr(host); /* best we can do */
if (seat_verbose(ssh->seat) || (flags & FLAG_INTERACTIVE)) {
/* In an interactive session, or in verbose mode, announce
* in the console window that we're a sharing downstream,
* to avoid confusing users as to why this session doesn't
* behave in quite the usual way. */
const char *msg =
"Reusing a shared connection to this server.\r\n";
seat_stderr_pl(ssh->seat, ptrlen_from_asciz(msg));
}
} else {
/*
* We're not a downstream, so open a normal socket.
*/
/*
* Try to find host.
*/
addressfamily = conf_get_int(ssh->conf, CONF_addressfamily);
addr = name_lookup(host, port, realhost, ssh->conf, addressfamily,
ssh->logctx, "SSH connection");
if ((err = sk_addr_error(addr)) != NULL) {
sk_addr_free(addr);
return err;
}
ssh->fullhostname = dupstr(*realhost); /* save in case of GSSAPI */
ssh->s = new_connection(addr, *realhost, port,
false, true, nodelay, keepalive,
&ssh->plug, ssh->conf);
if ((err = sk_socket_error(ssh->s)) != NULL) {
ssh->s = NULL;
seat_notify_remote_exit(ssh->seat);
return err;
}
}
/*
* The SSH version number is always fixed (since we no longer support
* fallback between versions), so set it now.
*/
sshprot = conf_get_int(ssh->conf, CONF_sshprot);
assert(sshprot == 0 || sshprot == 3);
if (sshprot == 0)
/* SSH-1 only */
ssh->version = 1;
if (sshprot == 3 || ssh->bare_connection) {
/* SSH-2 only */
ssh->version = 2;
}
/*
* Set up the initial BPP that will do the version string
* exchange, and get it started so that it can send the outgoing
* version string early if it wants to.
*/
ssh->version_receiver.got_ssh_version = ssh_got_ssh_version;
ssh->bpp = ssh_verstring_new(
ssh->conf, ssh->logctx, ssh->bare_connection,
ssh->version == 1 ? "1.5" : "2.0", &ssh->version_receiver,
false, "PuTTY");
ssh_connect_bpp(ssh);
queue_idempotent_callback(&ssh->bpp->ic_in_raw);
/*
* loghost, if configured, overrides realhost.
*/
if (*loghost) {
sfree(*realhost);
*realhost = dupstr(loghost);
}
return NULL;
}
/*
* Throttle or unthrottle the SSH connection.
*/
void ssh_throttle_conn(Ssh *ssh, int adjust)
{
int old_count = ssh->conn_throttle_count;
bool frozen;
ssh->conn_throttle_count += adjust;
assert(ssh->conn_throttle_count >= 0);
if (ssh->conn_throttle_count && !old_count) {
frozen = true;
} else if (!ssh->conn_throttle_count && old_count) {
frozen = false;
} else {
return; /* don't change current frozen state */
}
ssh->logically_frozen = frozen;
ssh_check_frozen(ssh);
}
/*
* Throttle or unthrottle _all_ local data streams (for when sends
* on the SSH connection itself back up).
*/
static void ssh_throttle_all(Ssh *ssh, bool enable, size_t bufsize)
{
if (enable == ssh->throttled_all)
return;
ssh->throttled_all = enable;
ssh->overall_bufsize = bufsize;
ssh_throttle_all_channels(ssh->cl, enable);
}
static void ssh_cache_conf_values(Ssh *ssh)
{
ssh->pls.omit_passwords = conf_get_bool(ssh->conf, CONF_logomitpass);
ssh->pls.omit_data = conf_get_bool(ssh->conf, CONF_logomitdata);
}
/*
* Called to set up the connection.
*
* Returns an error message, or NULL on success.
*/
static const char *ssh_init(Seat *seat, Backend **backend_handle,
LogContext *logctx, Conf *conf,
const char *host, int port, char **realhost,
bool nodelay, bool keepalive)
{
const char *p;
Ssh *ssh;
ssh = snew(Ssh);
memset(ssh, 0, sizeof(Ssh));
ssh->conf = conf_copy(conf);
ssh_cache_conf_values(ssh);
ssh->exitcode = -1;
ssh->pls.kctx = SSH2_PKTCTX_NOKEX;
ssh->pls.actx = SSH2_PKTCTX_NOAUTH;
bufchain_init(&ssh->in_raw);
bufchain_init(&ssh->out_raw);
bufchain_init(&ssh->user_input);
ssh->ic_out_raw.fn = ssh_bpp_output_raw_data_callback;
ssh->ic_out_raw.ctx = ssh;
ssh->term_width = conf_get_int(ssh->conf, CONF_width);
ssh->term_height = conf_get_int(ssh->conf, CONF_height);
ssh->backend.vt = &ssh_backend;
*backend_handle = &ssh->backend;
ssh->seat = seat;
ssh->cl_dummy.logctx = ssh->logctx = logctx;
random_ref(); /* do this now - may be needed by sharing setup code */
ssh->need_random_unref = true;
p = connect_to_host(ssh, host, port, realhost, nodelay, keepalive);
if (p != NULL) {
/* Call random_unref now instead of waiting until the caller
* frees this useless Ssh object, in case the caller is
* impatient and just exits without bothering, in which case
* the random seed won't be re-saved. */
ssh->need_random_unref = false;
random_unref();
return p;
}
return NULL;
}
static void ssh_free(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
bool need_random_unref;
ssh_shutdown(ssh);
conf_free(ssh->conf);
if (ssh->connshare)
sharestate_free(ssh->connshare);
sfree(ssh->savedhost);
sfree(ssh->fullhostname);
sfree(ssh->specials);
#ifndef NO_GSSAPI
if (ssh->gss_state.srv_name)
ssh->gss_state.lib->release_name(
ssh->gss_state.lib, &ssh->gss_state.srv_name);
if (ssh->gss_state.ctx != NULL)
ssh->gss_state.lib->release_cred(
ssh->gss_state.lib, &ssh->gss_state.ctx);
if (ssh->gss_state.libs)
ssh_gss_cleanup(ssh->gss_state.libs);
#endif
sfree(ssh->deferred_abort_message);
delete_callbacks_for_context(ssh); /* likely to catch ic_out_raw */
need_random_unref = ssh->need_random_unref;
sfree(ssh);
if (need_random_unref)
random_unref();
}
/*
* Reconfigure the SSH backend.
*/
static void ssh_reconfig(Backend *be, Conf *conf)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh->pinger)
pinger_reconfig(ssh->pinger, ssh->conf, conf);
ssh_ppl_reconfigure(ssh->base_layer, conf);
conf_free(ssh->conf);
ssh->conf = conf_copy(conf);
ssh_cache_conf_values(ssh);
}
/*
* Called to send data down the SSH connection.
*/
static size_t ssh_send(Backend *be, const char *buf, size_t len)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh == NULL || ssh->s == NULL)
return 0;
bufchain_add(&ssh->user_input, buf, len);
if (ssh->base_layer)
ssh_ppl_got_user_input(ssh->base_layer);
return backend_sendbuffer(&ssh->backend);
}
/*
* Called to query the current amount of buffered stdin data.
*/
static size_t ssh_sendbuffer(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
size_t backlog;
if (!ssh || !ssh->s || !ssh->cl)
return 0;
backlog = ssh_stdin_backlog(ssh->cl);
/* FIXME: also include sizes of pqs */
/*
* If the SSH socket itself has backed up, add the total backup
* size on that to any individual buffer on the stdin channel.
*/
if (ssh->throttled_all)
backlog += ssh->overall_bufsize;
return backlog;
}
/*
* Called to set the size of the window from SSH's POV.
*/
static void ssh_size(Backend *be, int width, int height)
{
Ssh *ssh = container_of(be, Ssh, backend);
ssh->term_width = width;
ssh->term_height = height;
if (ssh->cl)
ssh_terminal_size(ssh->cl, ssh->term_width, ssh->term_height);
}
struct ssh_add_special_ctx {
SessionSpecial *specials;
size_t nspecials, specials_size;
};
static void ssh_add_special(void *vctx, const char *text,
SessionSpecialCode code, int arg)
{
struct ssh_add_special_ctx *ctx = (struct ssh_add_special_ctx *)vctx;
SessionSpecial *spec;
sgrowarray(ctx->specials, ctx->specials_size, ctx->nspecials);
spec = &ctx->specials[ctx->nspecials++];
spec->name = text;
spec->code = code;
spec->arg = arg;
}
/*
* Return a list of the special codes that make sense in this
* protocol.
*/
static const SessionSpecial *ssh_get_specials(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
/*
* Ask all our active protocol layers what specials they've got,
* and amalgamate the list into one combined one.
*/
struct ssh_add_special_ctx ctx[1];
ctx->specials = NULL;
ctx->nspecials = ctx->specials_size = 0;
if (ssh->base_layer)
ssh_ppl_get_specials(ssh->base_layer, ssh_add_special, ctx);
if (ctx->specials) {
/* If the list is non-empty, terminate it with a SS_EXITMENU. */
ssh_add_special(ctx, NULL, SS_EXITMENU, 0);
}
sfree(ssh->specials);
ssh->specials = ctx->specials;
return ssh->specials;
}
/*
* Send special codes.
*/
static void ssh_special(Backend *be, SessionSpecialCode code, int arg)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh->base_layer)
ssh_ppl_special_cmd(ssh->base_layer, code, arg);
}
/*
* This is called when the seat's output channel manages to clear some
* backlog.
*/
static void ssh_unthrottle(Backend *be, size_t bufsize)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh->cl)
ssh_stdout_unthrottle(ssh->cl, bufsize);
}
static bool ssh_connected(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
return ssh->s != NULL;
}
static bool ssh_sendok(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
return ssh->base_layer && ssh_ppl_want_user_input(ssh->base_layer);
}
void ssh_ldisc_update(Ssh *ssh)
{
/* Called when the connection layer wants to propagate an update
* to the line discipline options */
if (ssh->ldisc)
ldisc_echoedit_update(ssh->ldisc);
}
static bool ssh_ldisc(Backend *be, int option)
{
Ssh *ssh = container_of(be, Ssh, backend);
return ssh->cl ? ssh_ldisc_option(ssh->cl, option) : false;
}
static void ssh_provide_ldisc(Backend *be, Ldisc *ldisc)
{
Ssh *ssh = container_of(be, Ssh, backend);
ssh->ldisc = ldisc;
}
void ssh_got_exitcode(Ssh *ssh, int exitcode)
{
ssh->exitcode = exitcode;
}
static int ssh_return_exitcode(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh->s && (!ssh->session_started || ssh->base_layer))
return -1;
else
return (ssh->exitcode >= 0 ? ssh->exitcode : INT_MAX);
}
/*
* cfg_info for SSH is the protocol running in this session.
* (1 or 2 for the full SSH-1 or SSH-2 protocol; -1 for the bare
* SSH-2 connection protocol, i.e. a downstream; 0 for not-decided-yet.)
*/
static int ssh_cfg_info(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
if (ssh->version == 0)
return 0; /* don't know yet */
else if (ssh->bare_connection)
return -1;
else
return ssh->version;
}
/*
* Gross hack: pscp will try to start SFTP but fall back to scp1 if
* that fails. This variable is the means by which scp.c can reach
* into the SSH code and find out which one it got.
*/
extern bool ssh_fallback_cmd(Backend *be)
{
Ssh *ssh = container_of(be, Ssh, backend);
return ssh->fallback_cmd;
}
void ssh_got_fallback_cmd(Ssh *ssh)
{
ssh->fallback_cmd = true;
}
const struct BackendVtable ssh_backend = {
ssh_init,
ssh_free,
ssh_reconfig,
ssh_send,
ssh_sendbuffer,
ssh_size,
ssh_special,
ssh_get_specials,
ssh_connected,
ssh_return_exitcode,
ssh_sendok,
ssh_ldisc,
ssh_provide_ldisc,
ssh_unthrottle,
ssh_cfg_info,
ssh_test_for_upstream,
"ssh",
PROT_SSH,
22
};