1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 18:07:59 +00:00
putty-source/crypto/sha512-neon.c
Simon Tatham fca13a17b1 Break up crypto modules containing HW acceleration.
This applies to all of AES, SHA-1, SHA-256 and SHA-512. All those
source files previously contained multiple implementations of the
algorithm, enabled or disabled by ifdefs detecting whether they would
work on a given compiler. And in order to get advanced machine
instructions like AES-NI or NEON crypto into the output file when the
compile flags hadn't enabled them, we had to do nasty stuff with
compiler-specific pragmas or attributes.

Now we can do the detection at cmake time, and enable advanced
instructions in the more sensible way, by compile-time flags. So I've
broken up each of these modules into lots of sub-pieces: a file called
(e.g.) 'foo-common.c' containing common definitions across all
implementations (such as round constants), one called 'foo-select.c'
containing the top-level vtable(s), and a separate file for each
implementation exporting just the vtable(s) for that implementation.

One advantage of this is that it depends a lot less on compiler-
specific bodgery. My particular least favourite part of the previous
setup was the part where I had to _manually_ define some Arm ACLE
feature macros before including <arm_neon.h>, so that it would define
the intrinsics I wanted. Now I'm enabling interesting architecture
features in the normal way, on the compiler command line, there's no
need for that kind of trick: the right feature macros are already
defined and <arm_neon.h> does the right thing.

Another change in this reorganisation is that I've stopped assuming
there's just one hardware implementation per platform. Previously, the
accelerated vtables were called things like sha256_hw, and varied
between FOO-NI and NEON depending on platform; and the selection code
would simply ask 'is hw available? if so, use hw, else sw'. Now, each
HW acceleration strategy names its vtable its own way, and the
selection vtable has a whole list of possibilities to iterate over
looking for a supported one. So if someone feels like writing a second
accelerated implementation of something for a given platform - for
example, I've heard you can use plain NEON to speed up AES somewhat
even without the crypto extension - then it will now have somewhere to
drop in alongside the existing ones.
2021-04-21 21:55:26 +01:00

330 lines
13 KiB
C

/*
* Hardware-accelerated implementation of SHA-512 using Arm NEON.
*/
#include "ssh.h"
#include "sha512.h"
#if USE_ARM64_NEON_H
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
static bool sha512_neon_available(void)
{
/*
* For Arm, we delegate to a per-platform detection function (see
* explanation in aes-neon.c).
*/
return platform_sha512_neon_available();
}
#if !HAVE_NEON_SHA512_INTRINSICS
/*
* clang 12 and before do not provide the SHA-512 NEON intrinsics, but
* do provide assembler support for the underlying instructions. So I
* define the intrinsic functions myself, using inline assembler.
*/
static inline uint64x2_t vsha512su0q_u64(uint64x2_t x, uint64x2_t y)
{
__asm__("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y));
return x;
}
static inline uint64x2_t vsha512su1q_u64(uint64x2_t x, uint64x2_t y,
uint64x2_t z)
{
__asm__("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline uint64x2_t vsha512hq_u64(uint64x2_t x, uint64x2_t y,
uint64x2_t z)
{
__asm__("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline uint64x2_t vsha512h2q_u64(uint64x2_t x, uint64x2_t y,
uint64x2_t z)
{
__asm__("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
#endif /* HAVE_NEON_SHA512_INTRINSICS */
typedef struct sha512_neon_core sha512_neon_core;
struct sha512_neon_core {
uint64x2_t ab, cd, ef, gh;
};
static inline uint64x2_t sha512_neon_load_input(const uint8_t *p)
{
return vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(p)));
}
static inline uint64x2_t sha512_neon_schedule_update(
uint64x2_t m8, uint64x2_t m7, uint64x2_t m4, uint64x2_t m3, uint64x2_t m1)
{
/*
* vsha512su0q_u64() takes words from a long way back in the
* schedule and performs the sigma_0 half of the computation of
* the next two 64-bit message-schedule words.
*
* vsha512su1q_u64() combines the result of that with the sigma_1
* steps, to output the finished version of those two words. The
* total amount of input data it requires fits nicely into three
* 128-bit vector registers, but one of those registers is
* misaligned compared to the 128-bit chunks that the message
* schedule is stored in. So we use vextq_u64 to make one of its
* input words out of the second half of m4 and the first half of
* m3.
*/
return vsha512su1q_u64(vsha512su0q_u64(m8, m7), m1, vextq_u64(m4, m3, 1));
}
static inline void sha512_neon_round2(
unsigned round_index, uint64x2_t schedule_words,
uint64x2_t *ab, uint64x2_t *cd, uint64x2_t *ef, uint64x2_t *gh)
{
/*
* vsha512hq_u64 performs the Sigma_1 and Ch half of the
* computation of two rounds of SHA-512 (including feeding back
* one of the outputs from the first of those half-rounds into the
* second one).
*
* vsha512h2q_u64 combines the result of that with the Sigma_0 and
* Maj steps, and outputs one 128-bit vector that replaces the gh
* piece of the input hash state, and a second that updates cd by
* addition.
*
* Similarly to vsha512su1q_u64 above, some of the input registers
* expected by these instructions are misaligned by 64 bits
* relative to the chunks we've divided the hash state into, so we
* have to start by making 'de' and 'fg' words out of our input
* cd,ef,gh, using vextq_u64.
*
* Also, one of the inputs to vsha512hq_u64 is expected to contain
* the results of summing gh + two round constants + two words of
* message schedule, but the two words of the message schedule
* have to be the opposite way round in the vector register from
* the way that vsha512su1q_u64 output them. Hence, there's
* another vextq_u64 in here that swaps the two halves of the
* initial_sum vector register.
*
* (This also means that I don't have to prepare a specially
* reordered version of the sha512_round_constants[] array: as
* long as I'm unavoidably doing a swap at run time _anyway_, I
* can load from the normally ordered version of that array, and
* just take care to fold in that data _before_ the swap rather
* than after.)
*/
/* Load two round constants, with the first one in the low half */
uint64x2_t round_constants = vld1q_u64(
sha512_round_constants + round_index);
/* Add schedule words to round constants */
uint64x2_t initial_sum = vaddq_u64(schedule_words, round_constants);
/* Swap that sum around so the word used in the first of the two
* rounds is in the _high_ half of the vector, matching where h
* lives in the gh vector */
uint64x2_t swapped_initial_sum = vextq_u64(initial_sum, initial_sum, 1);
/* Add gh to that, now that they're matching ways round */
uint64x2_t sum = vaddq_u64(swapped_initial_sum, *gh);
/* Make the misaligned de and fg words */
uint64x2_t de = vextq_u64(*cd, *ef, 1);
uint64x2_t fg = vextq_u64(*ef, *gh, 1);
/* Now we're ready to put all the pieces together. The output from
* vsha512h2q_u64 can be used directly as the new gh, and the
* output from vsha512hq_u64 is simultaneously the intermediate
* value passed to h2 and the thing you have to add on to cd. */
uint64x2_t intermed = vsha512hq_u64(sum, fg, de);
*gh = vsha512h2q_u64(intermed, *cd, *ab);
*cd = vaddq_u64(*cd, intermed);
}
static inline void sha512_neon_block(sha512_neon_core *core, const uint8_t *p)
{
uint64x2_t s0, s1, s2, s3, s4, s5, s6, s7;
uint64x2_t ab = core->ab, cd = core->cd, ef = core->ef, gh = core->gh;
s0 = sha512_neon_load_input(p + 16*0);
sha512_neon_round2(0, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_load_input(p + 16*1);
sha512_neon_round2(2, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_load_input(p + 16*2);
sha512_neon_round2(4, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_load_input(p + 16*3);
sha512_neon_round2(6, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_load_input(p + 16*4);
sha512_neon_round2(8, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_load_input(p + 16*5);
sha512_neon_round2(10, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_load_input(p + 16*6);
sha512_neon_round2(12, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_load_input(p + 16*7);
sha512_neon_round2(14, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(16, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(18, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(20, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(22, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(24, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(26, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(28, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(30, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(32, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(34, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(36, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(38, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(40, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(42, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(44, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(46, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(48, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(50, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(52, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(54, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(56, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(58, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(60, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(62, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(64, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(66, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(68, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(70, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(72, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(74, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(76, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(78, s7, &cd, &ef, &gh, &ab);
core->ab = vaddq_u64(core->ab, ab);
core->cd = vaddq_u64(core->cd, cd);
core->ef = vaddq_u64(core->ef, ef);
core->gh = vaddq_u64(core->gh, gh);
}
typedef struct sha512_neon {
sha512_neon_core core;
sha512_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha512_neon;
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha512_neon_new(const ssh_hashalg *alg)
{
const struct sha512_extra *extra = (const struct sha512_extra *)alg->extra;
if (!check_availability(extra))
return NULL;
sha512_neon *s = snew(sha512_neon);
s->hash.vt = alg;
BinarySink_INIT(s, sha512_neon_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static void sha512_neon_reset(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
const struct sha512_extra *extra =
(const struct sha512_extra *)hash->vt->extra;
s->core.ab = vld1q_u64(extra->initial_state);
s->core.cd = vld1q_u64(extra->initial_state+2);
s->core.ef = vld1q_u64(extra->initial_state+4);
s->core.gh = vld1q_u64(extra->initial_state+6);
sha512_block_setup(&s->blk);
}
static void sha512_neon_copyfrom(ssh_hash *hcopy, ssh_hash *horig)
{
sha512_neon *copy = container_of(hcopy, sha512_neon, hash);
sha512_neon *orig = container_of(horig, sha512_neon, hash);
*copy = *orig; /* structure copy */
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
}
static void sha512_neon_free(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len)
{
sha512_neon *s = BinarySink_DOWNCAST(bs, sha512_neon);
while (len > 0)
if (sha512_block_write(&s->blk, &vp, &len))
sha512_neon_block(&s->core, s->blk.block);
}
static void sha512_neon_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab)));
vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd)));
vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef)));
vst1q_u8(digest+48, vrev64q_u8(vreinterpretq_u8_u64(s->core.gh)));
}
static void sha384_neon_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab)));
vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd)));
vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef)));
}
SHA512_VTABLES(neon, "NEON accelerated");