mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
d73f692eea
Similar to the versions in ssh_cipheralg and ssh_keyalg, this allows a set of vtables to share function pointers while providing varying constant data that the shared function can use to vary its behaviour. As an initial demonstration, I've used this to recombine the four trivial text_name methods for the HMAC-SHA1 variants. I'm about to use it for something more sensible, though.
715 lines
19 KiB
C
715 lines
19 KiB
C
/*
|
|
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
|
|
* also used as a `stirring' function for the PuTTY random number
|
|
* pool. Implemented directly from the specification by Simon
|
|
* Tatham.
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
|
|
#include <assert.h>
|
|
|
|
typedef struct SHA_State {
|
|
uint32_t h[5];
|
|
unsigned char block[64];
|
|
int blkused;
|
|
uint64_t len;
|
|
void (*sha1)(struct SHA_State * s, const unsigned char *p, int len);
|
|
BinarySink_IMPLEMENTATION;
|
|
} SHA_State;
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Core SHA algorithm: processes 16-word blocks into a message digest.
|
|
*/
|
|
|
|
#define rol(x,y) ( ((x) << (y)) | (((uint32_t)x) >> (32-y)) )
|
|
|
|
static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
|
|
|
|
static void SHA_Core_Init(uint32_t h[5])
|
|
{
|
|
h[0] = 0x67452301;
|
|
h[1] = 0xefcdab89;
|
|
h[2] = 0x98badcfe;
|
|
h[3] = 0x10325476;
|
|
h[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
void SHATransform(uint32_t * digest, uint32_t * block)
|
|
{
|
|
uint32_t w[80];
|
|
uint32_t a, b, c, d, e;
|
|
int t;
|
|
|
|
#ifdef RANDOM_DIAGNOSTICS
|
|
{
|
|
extern int random_diagnostics;
|
|
if (random_diagnostics) {
|
|
int i;
|
|
printf("SHATransform:");
|
|
for (i = 0; i < 5; i++)
|
|
printf(" %08x", digest[i]);
|
|
printf(" +");
|
|
for (i = 0; i < 16; i++)
|
|
printf(" %08x", block[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (t = 0; t < 16; t++)
|
|
w[t] = block[t];
|
|
|
|
for (t = 16; t < 80; t++) {
|
|
uint32_t tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
|
|
w[t] = rol(tmp, 1);
|
|
}
|
|
|
|
a = digest[0];
|
|
b = digest[1];
|
|
c = digest[2];
|
|
d = digest[3];
|
|
e = digest[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
uint32_t tmp =
|
|
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 20; t < 40; t++) {
|
|
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 40; t < 60; t++) {
|
|
uint32_t tmp = rol(a,
|
|
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
|
|
0x8f1bbcdc;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
for (t = 60; t < 80; t++) {
|
|
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
|
|
e = d;
|
|
d = c;
|
|
c = rol(b, 30);
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
digest[0] += a;
|
|
digest[1] += b;
|
|
digest[2] += c;
|
|
digest[3] += d;
|
|
digest[4] += e;
|
|
|
|
#ifdef RANDOM_DIAGNOSTICS
|
|
{
|
|
extern int random_diagnostics;
|
|
if (random_diagnostics) {
|
|
int i;
|
|
printf(" =");
|
|
for (i = 0; i < 5; i++)
|
|
printf(" %08x", digest[i]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Outer SHA algorithm: take an arbitrary length byte string,
|
|
* convert it into 16-word blocks with the prescribed padding at
|
|
* the end, and pass those blocks to the core SHA algorithm.
|
|
*/
|
|
|
|
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
|
|
|
|
void SHA_Init(SHA_State * s)
|
|
{
|
|
SHA_Core_Init(s->h);
|
|
s->blkused = 0;
|
|
s->len = 0;
|
|
if (supports_sha_ni())
|
|
s->sha1 = &sha1_ni;
|
|
else
|
|
s->sha1 = &sha1_sw;
|
|
BinarySink_INIT(s, SHA_BinarySink_write);
|
|
}
|
|
|
|
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
|
|
{
|
|
struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
|
|
const unsigned char *q = (const unsigned char *) p;
|
|
|
|
/*
|
|
* Update the length field.
|
|
*/
|
|
s->len += len;
|
|
|
|
(*(s->sha1))(s, q, len);
|
|
}
|
|
|
|
static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
uint32_t wordblock[16];
|
|
int i;
|
|
|
|
if (s->blkused && s->blkused + len < 64) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= 64) {
|
|
memcpy(s->block + s->blkused, q, 64 - s->blkused);
|
|
q += 64 - s->blkused;
|
|
len -= 64 - s->blkused;
|
|
/* Now process the block. Gather bytes big-endian into words */
|
|
for (i = 0; i < 16; i++) {
|
|
wordblock[i] =
|
|
(((uint32_t) s->block[i * 4 + 0]) << 24) |
|
|
(((uint32_t) s->block[i * 4 + 1]) << 16) |
|
|
(((uint32_t) s->block[i * 4 + 2]) << 8) |
|
|
(((uint32_t) s->block[i * 4 + 3]) << 0);
|
|
}
|
|
SHATransform(s->h, wordblock);
|
|
s->blkused = 0;
|
|
}
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
void SHA_Final(SHA_State * s, unsigned char *output)
|
|
{
|
|
int i;
|
|
int pad;
|
|
unsigned char c[64];
|
|
uint64_t len;
|
|
|
|
if (s->blkused >= 56)
|
|
pad = 56 + 64 - s->blkused;
|
|
else
|
|
pad = 56 - s->blkused;
|
|
|
|
len = (s->len << 3);
|
|
|
|
memset(c, 0, pad);
|
|
c[0] = 0x80;
|
|
put_data(s, &c, pad);
|
|
|
|
put_uint64(s, len);
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
output[i * 4] = (s->h[i] >> 24) & 0xFF;
|
|
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
|
|
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
|
|
output[i * 4 + 3] = (s->h[i]) & 0xFF;
|
|
}
|
|
}
|
|
|
|
void SHA_Simple(const void *p, int len, unsigned char *output)
|
|
{
|
|
SHA_State s;
|
|
|
|
SHA_Init(&s);
|
|
put_data(&s, p, len);
|
|
SHA_Final(&s, output);
|
|
smemclr(&s, sizeof(s));
|
|
}
|
|
|
|
/*
|
|
* Thin abstraction for things where hashes are pluggable.
|
|
*/
|
|
|
|
struct sha1_hash {
|
|
SHA_State state;
|
|
ssh_hash hash;
|
|
};
|
|
|
|
static ssh_hash *sha1_new(const ssh_hashalg *alg)
|
|
{
|
|
struct sha1_hash *h = snew(struct sha1_hash);
|
|
SHA_Init(&h->state);
|
|
h->hash.vt = alg;
|
|
BinarySink_DELEGATE_INIT(&h->hash, &h->state);
|
|
return &h->hash;
|
|
}
|
|
|
|
static ssh_hash *sha1_copy(ssh_hash *hashold)
|
|
{
|
|
struct sha1_hash *hold, *hnew;
|
|
ssh_hash *hashnew = sha1_new(hashold->vt);
|
|
|
|
hold = container_of(hashold, struct sha1_hash, hash);
|
|
hnew = container_of(hashnew, struct sha1_hash, hash);
|
|
|
|
hnew->state = hold->state;
|
|
BinarySink_COPIED(&hnew->state);
|
|
|
|
return hashnew;
|
|
}
|
|
|
|
static void sha1_free(ssh_hash *hash)
|
|
{
|
|
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
|
|
|
|
smemclr(h, sizeof(*h));
|
|
sfree(h);
|
|
}
|
|
|
|
static void sha1_final(ssh_hash *hash, unsigned char *output)
|
|
{
|
|
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
|
|
SHA_Final(&h->state, output);
|
|
sha1_free(hash);
|
|
}
|
|
|
|
const ssh_hashalg ssh_sha1 = {
|
|
sha1_new, sha1_copy, sha1_final, sha1_free, 20, "SHA-1"
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* The above is the SHA-1 algorithm itself. Now we implement the
|
|
* HMAC wrapper on it.
|
|
*/
|
|
|
|
struct hmacsha1 {
|
|
SHA_State sha[3];
|
|
ssh2_mac mac;
|
|
};
|
|
|
|
static ssh2_mac *hmacsha1_new(const ssh2_macalg *alg, ssh_cipher *cipher)
|
|
{
|
|
struct hmacsha1 *ctx = snew(struct hmacsha1);
|
|
ctx->mac.vt = alg;
|
|
BinarySink_DELEGATE_INIT(&ctx->mac, &ctx->sha[2]);
|
|
return &ctx->mac;
|
|
}
|
|
|
|
static void hmacsha1_free(ssh2_mac *mac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
smemclr(ctx, sizeof(*ctx));
|
|
sfree(ctx);
|
|
}
|
|
|
|
static void sha1_key_internal(SHA_State *keys,
|
|
const unsigned char *key, int len)
|
|
{
|
|
unsigned char foo[64];
|
|
int i;
|
|
|
|
memset(foo, 0x36, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(&keys[0]);
|
|
put_data(&keys[0], foo, 64);
|
|
|
|
memset(foo, 0x5C, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA_Init(&keys[1]);
|
|
put_data(&keys[1], foo, 64);
|
|
|
|
smemclr(foo, 64); /* burn the evidence */
|
|
}
|
|
|
|
static void hmacsha1_key(ssh2_mac *mac, ptrlen key)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
sha1_key_internal(ctx->sha, key.ptr, key.len);
|
|
}
|
|
|
|
static void hmacsha1_start(ssh2_mac *mac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
|
|
ctx->sha[2] = ctx->sha[0]; /* structure copy */
|
|
BinarySink_COPIED(&ctx->sha[2]);
|
|
}
|
|
|
|
static void hmacsha1_genresult(ssh2_mac *mac, unsigned char *hmac)
|
|
{
|
|
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
|
|
SHA_State s;
|
|
unsigned char intermediate[20];
|
|
|
|
s = ctx->sha[2]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
SHA_Final(&s, intermediate);
|
|
s = ctx->sha[1]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
put_data(&s, intermediate, 20);
|
|
SHA_Final(&s, intermediate);
|
|
memcpy(hmac, intermediate, ctx->mac.vt->len);
|
|
smemclr(intermediate, sizeof(intermediate));
|
|
}
|
|
|
|
void hmac_sha1_simple(const void *key, int keylen,
|
|
const void *data, int datalen,
|
|
unsigned char *output) {
|
|
SHA_State states[2];
|
|
unsigned char intermediate[20];
|
|
|
|
sha1_key_internal(states, key, keylen);
|
|
put_data(&states[0], data, datalen);
|
|
SHA_Final(&states[0], intermediate);
|
|
|
|
put_data(&states[1], intermediate, 20);
|
|
SHA_Final(&states[1], output);
|
|
}
|
|
|
|
struct hmacsha1_extra {
|
|
const char *textname;
|
|
};
|
|
|
|
static const char *hmacsha1_text_name(ssh2_mac *mac)
|
|
{
|
|
const struct hmacsha1_extra *extra =
|
|
(const struct hmacsha1_extra *)mac->vt->extra;
|
|
return extra->textname;
|
|
}
|
|
|
|
const struct hmacsha1_extra ssh_hmac_sha1_extra = { "HMAC-SHA1" };
|
|
const ssh2_macalg ssh_hmac_sha1 = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult, hmacsha1_text_name,
|
|
"hmac-sha1", "hmac-sha1-etm@openssh.com",
|
|
20, 20, &ssh_hmac_sha1_extra,
|
|
};
|
|
|
|
const struct hmacsha1_extra ssh_hmac_sha1_96_extra = { "HMAC-SHA1-96" };
|
|
const ssh2_macalg ssh_hmac_sha1_96 = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult, hmacsha1_text_name,
|
|
"hmac-sha1-96", "hmac-sha1-96-etm@openssh.com",
|
|
12, 20, &ssh_hmac_sha1_96_extra,
|
|
};
|
|
|
|
const struct hmacsha1_extra ssh_hmac_sha1_buggy_extra = {
|
|
"bug-compatible HMAC-SHA1",
|
|
};
|
|
const ssh2_macalg ssh_hmac_sha1_buggy = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult, hmacsha1_text_name,
|
|
"hmac-sha1", NULL,
|
|
20, 16, &ssh_hmac_sha1_buggy_extra,
|
|
};
|
|
|
|
const struct hmacsha1_extra ssh_hmac_sha1_96_buggy_extra = {
|
|
"bug-compatible HMAC-SHA1-96",
|
|
};
|
|
const ssh2_macalg ssh_hmac_sha1_96_buggy = {
|
|
hmacsha1_new, hmacsha1_free, hmacsha1_key,
|
|
hmacsha1_start, hmacsha1_genresult, hmacsha1_text_name,
|
|
"hmac-sha1-96", NULL,
|
|
12, 16, &ssh_hmac_sha1_96_buggy_extra,
|
|
};
|
|
|
|
#ifdef COMPILER_SUPPORTS_SHA_NI
|
|
|
|
#if defined _MSC_VER && defined _M_AMD64
|
|
# include <intrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Set target architecture for Clang and GCC
|
|
*/
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
# pragma GCC target("sha")
|
|
# pragma GCC target("sse4.1")
|
|
#endif
|
|
|
|
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
|
|
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
|
|
#else
|
|
# define FUNC_ISA
|
|
#endif
|
|
|
|
#include <wmmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <immintrin.h>
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <shaintrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Determinators of CPU type
|
|
*/
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
|
|
#include <cpuid.h>
|
|
bool supports_sha_ni(void)
|
|
{
|
|
unsigned int CPUInfo[4];
|
|
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
|
|
if (CPUInfo[0] < 7)
|
|
return false;
|
|
|
|
__cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
|
|
return CPUInfo[1] & (1 << 29); /* SHA */
|
|
}
|
|
|
|
#else /* defined(__clang__) || defined(__GNUC__) */
|
|
|
|
bool supports_sha_ni(void)
|
|
{
|
|
unsigned int CPUInfo[4];
|
|
__cpuid(CPUInfo, 0);
|
|
if (CPUInfo[0] < 7)
|
|
return false;
|
|
|
|
__cpuidex(CPUInfo, 7, 0);
|
|
return CPUInfo[1] & (1 << 29); /* Check SHA */
|
|
}
|
|
|
|
#endif /* defined(__clang__) || defined(__GNUC__) */
|
|
|
|
/* SHA1 implementation using new instructions
|
|
The code is based on Jeffrey Walton's SHA1 implementation:
|
|
https://github.com/noloader/SHA-Intrinsics
|
|
*/
|
|
FUNC_ISA
|
|
static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
if (s->blkused && s->blkused + len < 64) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
|
|
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
|
|
|
|
ABCD = _mm_loadu_si128((const __m128i*) s->h);
|
|
E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= 64)
|
|
{
|
|
__m128i MSG0, MSG1, MSG2, MSG3;
|
|
memcpy(s->block + s->blkused, q, 64 - s->blkused);
|
|
q += 64 - s->blkused;
|
|
len -= 64 - s->blkused;
|
|
|
|
/* Save current state */
|
|
ABCD_SAVE = ABCD;
|
|
E0_SAVE = E0;
|
|
|
|
/* Rounds 0-3 */
|
|
MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
|
|
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
|
|
E0 = _mm_add_epi32(E0, MSG0);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
|
|
/* Rounds 4-7 */
|
|
MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
|
|
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 8-11 */
|
|
MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
|
|
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 12-15 */
|
|
MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
|
|
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 16-19 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 20-23 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 24-27 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 28-31 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 32-35 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 36-39 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 40-43 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 44-47 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 48-51 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 52-55 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 56-59 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 60-63 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 64-67 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 68-71 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 72-75 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
|
|
/* Rounds 76-79 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
|
|
/* Combine state */
|
|
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
|
|
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
|
|
|
|
s->blkused = 0;
|
|
}
|
|
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
|
|
/* Save state */
|
|
_mm_storeu_si128((__m128i*) s->h, ABCD);
|
|
s->h[4] = _mm_extract_epi32(E0, 3);
|
|
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
|
|
*/
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
sha1_ni_(s, q, len);
|
|
}
|
|
|
|
#else /* COMPILER_SUPPORTS_AES_NI */
|
|
|
|
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
|
|
{
|
|
unreachable("sha1_ni not compiled in");
|
|
}
|
|
|
|
bool supports_sha_ni(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* COMPILER_SUPPORTS_AES_NI */
|