mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-09 17:38:00 +00:00
dc2fdb8acf
Similarly to my recent addition of NEON-accelerated AES, these new implementations drop in alongside the SHA-NI ones, under a different set of ifdefs. All the details of selection and detection are essentially the same as they were for the AES code.
905 lines
26 KiB
C
905 lines
26 KiB
C
/*
|
|
* SHA-1 algorithm as described at
|
|
*
|
|
* http://csrc.nist.gov/cryptval/shs.html
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
#include <assert.h>
|
|
|
|
/*
|
|
* Start by deciding whether we can support hardware SHA at all.
|
|
*/
|
|
#define HW_SHA1_NONE 0
|
|
#define HW_SHA1_NI 1
|
|
#define HW_SHA1_NEON 2
|
|
|
|
#ifdef _FORCE_SHA_NI
|
|
# define HW_SHA1 HW_SHA1_NI
|
|
#elif defined(__clang__)
|
|
# if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
|
|
(defined(__x86_64__) || defined(__i386))
|
|
# define HW_SHA1 HW_SHA1_NI
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
|
|
(defined(__x86_64__) || defined(__i386))
|
|
# define HW_SHA1 HW_SHA1_NI
|
|
# endif
|
|
#elif defined (_MSC_VER)
|
|
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
|
|
# define HW_SHA1 HW_SHA1_NI
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef _FORCE_SHA_NEON
|
|
# define HW_SHA1 HW_SHA1_NEON
|
|
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
/* Arm can potentially support both endiannesses, but this code
|
|
* hasn't been tested on anything but little. If anyone wants to
|
|
* run big-endian, they'll need to fix it first. */
|
|
#elif defined __ARM_FEATURE_CRYPTO
|
|
/* If the Arm crypto extension is available already, we can
|
|
* support NEON SHA without having to enable anything by hand */
|
|
# define HW_SHA1 HW_SHA1_NEON
|
|
#elif defined(__clang__)
|
|
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
|
|
(defined(__aarch64__))
|
|
/* clang can enable the crypto extension in AArch64 using
|
|
* __attribute__((target)) */
|
|
# define HW_SHA1 HW_SHA1_NEON
|
|
# define USE_CLANG_ATTR_TARGET_AARCH64
|
|
# endif
|
|
#elif defined _MSC_VER
|
|
/* Visual Studio supports the crypto extension when targeting
|
|
* AArch64, but as of VS2017, the AArch32 header doesn't quite
|
|
* manage it (declaring the shae/shad intrinsics without a round
|
|
* key operand). */
|
|
# if defined _M_ARM64
|
|
# define HW_SHA1 HW_SHA1_NEON
|
|
# if defined _M_ARM64
|
|
# define USE_ARM64_NEON_H /* unusual header name in this case */
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA1
|
|
# undef HW_SHA1
|
|
# define HW_SHA1 HW_SHA1_NONE
|
|
#endif
|
|
|
|
/*
|
|
* The actual query function that asks if hardware acceleration is
|
|
* available.
|
|
*/
|
|
static bool sha1_hw_available(void);
|
|
|
|
/*
|
|
* The top-level selection function, caching the results of
|
|
* sha1_hw_available() so it only has to run once.
|
|
*/
|
|
static bool sha1_hw_available_cached(void)
|
|
{
|
|
static bool initialised = false;
|
|
static bool hw_available;
|
|
if (!initialised) {
|
|
hw_available = sha1_hw_available();
|
|
initialised = true;
|
|
}
|
|
return hw_available;
|
|
}
|
|
|
|
static ssh_hash *sha1_select(const ssh_hashalg *alg)
|
|
{
|
|
const ssh_hashalg *real_alg =
|
|
sha1_hw_available_cached() ? &ssh_sha1_hw : &ssh_sha1_sw;
|
|
|
|
return ssh_hash_new(real_alg);
|
|
}
|
|
|
|
const ssh_hashalg ssh_sha1 = {
|
|
sha1_select, NULL, NULL, NULL,
|
|
20, 64, "SHA-1",
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Definitions likely to be helpful to multiple implementations.
|
|
*/
|
|
|
|
static const uint32_t sha1_initial_state[] = {
|
|
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
|
|
};
|
|
|
|
#define SHA1_ROUNDS_PER_STAGE 20
|
|
#define SHA1_STAGE0_CONSTANT 0x5a827999
|
|
#define SHA1_STAGE1_CONSTANT 0x6ed9eba1
|
|
#define SHA1_STAGE2_CONSTANT 0x8f1bbcdc
|
|
#define SHA1_STAGE3_CONSTANT 0xca62c1d6
|
|
#define SHA1_ROUNDS (4 * SHA1_ROUNDS_PER_STAGE)
|
|
|
|
typedef struct sha1_block sha1_block;
|
|
struct sha1_block {
|
|
uint8_t block[64];
|
|
size_t used;
|
|
uint64_t len;
|
|
};
|
|
|
|
static inline void sha1_block_setup(sha1_block *blk)
|
|
{
|
|
blk->used = 0;
|
|
blk->len = 0;
|
|
}
|
|
|
|
static inline bool sha1_block_write(
|
|
sha1_block *blk, const void **vdata, size_t *len)
|
|
{
|
|
size_t blkleft = sizeof(blk->block) - blk->used;
|
|
size_t chunk = *len < blkleft ? *len : blkleft;
|
|
|
|
const uint8_t *p = *vdata;
|
|
memcpy(blk->block + blk->used, p, chunk);
|
|
*vdata = p + chunk;
|
|
*len -= chunk;
|
|
blk->used += chunk;
|
|
blk->len += chunk;
|
|
|
|
if (blk->used == sizeof(blk->block)) {
|
|
blk->used = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void sha1_block_pad(sha1_block *blk, BinarySink *bs)
|
|
{
|
|
uint64_t final_len = blk->len << 3;
|
|
size_t pad = 1 + (63 & (55 - blk->used));
|
|
|
|
put_byte(bs, 0x80);
|
|
for (size_t i = 1; i < pad; i++)
|
|
put_byte(bs, 0);
|
|
put_uint64(bs, final_len);
|
|
|
|
assert(blk->used == 0 && "Should have exactly hit a block boundary");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Software implementation of SHA-1.
|
|
*/
|
|
|
|
static inline uint32_t rol(uint32_t x, unsigned y)
|
|
{
|
|
return (x << (31 & y)) | (x >> (31 & -y));
|
|
}
|
|
|
|
static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
|
|
{
|
|
return if0 ^ (ctrl & (if1 ^ if0));
|
|
}
|
|
|
|
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
|
|
{
|
|
return (x & y) | (z & (x | y));
|
|
}
|
|
|
|
static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z)
|
|
{
|
|
return (x ^ y ^ z);
|
|
}
|
|
|
|
static inline void sha1_sw_round(
|
|
unsigned round_index, const uint32_t *schedule,
|
|
uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e,
|
|
uint32_t f, uint32_t constant)
|
|
{
|
|
*e = rol(*a, 5) + f + *e + schedule[round_index] + constant;
|
|
*b = rol(*b, 30);
|
|
}
|
|
|
|
static void sha1_sw_block(uint32_t *core, const uint8_t *block)
|
|
{
|
|
uint32_t w[SHA1_ROUNDS];
|
|
uint32_t a,b,c,d,e;
|
|
|
|
for (size_t t = 0; t < 16; t++)
|
|
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
|
|
|
|
for (size_t t = 16; t < SHA1_ROUNDS; t++)
|
|
w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1);
|
|
|
|
a = core[0]; b = core[1]; c = core[2]; d = core[3];
|
|
e = core[4];
|
|
|
|
size_t t = 0;
|
|
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
|
|
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT);
|
|
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT);
|
|
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT);
|
|
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT);
|
|
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT);
|
|
}
|
|
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
|
|
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT);
|
|
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT);
|
|
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT);
|
|
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT);
|
|
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT);
|
|
}
|
|
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
|
|
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT);
|
|
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT);
|
|
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT);
|
|
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT);
|
|
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT);
|
|
}
|
|
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
|
|
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT);
|
|
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT);
|
|
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT);
|
|
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT);
|
|
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT);
|
|
}
|
|
|
|
core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e;
|
|
|
|
smemclr(w, sizeof(w));
|
|
}
|
|
|
|
typedef struct sha1_sw {
|
|
uint32_t core[5];
|
|
sha1_block blk;
|
|
BinarySink_IMPLEMENTATION;
|
|
ssh_hash hash;
|
|
} sha1_sw;
|
|
|
|
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len);
|
|
|
|
static ssh_hash *sha1_sw_new(const ssh_hashalg *alg)
|
|
{
|
|
sha1_sw *s = snew(sha1_sw);
|
|
|
|
memcpy(s->core, sha1_initial_state, sizeof(s->core));
|
|
|
|
sha1_block_setup(&s->blk);
|
|
|
|
s->hash.vt = alg;
|
|
BinarySink_INIT(s, sha1_sw_write);
|
|
BinarySink_DELEGATE_INIT(&s->hash, s);
|
|
return &s->hash;
|
|
}
|
|
|
|
static ssh_hash *sha1_sw_copy(ssh_hash *hash)
|
|
{
|
|
sha1_sw *s = container_of(hash, sha1_sw, hash);
|
|
sha1_sw *copy = snew(sha1_sw);
|
|
|
|
memcpy(copy, s, sizeof(*copy));
|
|
BinarySink_COPIED(copy);
|
|
BinarySink_DELEGATE_INIT(©->hash, copy);
|
|
|
|
return ©->hash;
|
|
}
|
|
|
|
static void sha1_sw_free(ssh_hash *hash)
|
|
{
|
|
sha1_sw *s = container_of(hash, sha1_sw, hash);
|
|
|
|
smemclr(s, sizeof(*s));
|
|
sfree(s);
|
|
}
|
|
|
|
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len)
|
|
{
|
|
sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw);
|
|
|
|
while (len > 0)
|
|
if (sha1_block_write(&s->blk, &vp, &len))
|
|
sha1_sw_block(s->core, s->blk.block);
|
|
}
|
|
|
|
static void sha1_sw_final(ssh_hash *hash, uint8_t *digest)
|
|
{
|
|
sha1_sw *s = container_of(hash, sha1_sw, hash);
|
|
|
|
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
|
|
for (size_t i = 0; i < 5; i++)
|
|
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
|
|
sha1_sw_free(hash);
|
|
}
|
|
|
|
const ssh_hashalg ssh_sha1_sw = {
|
|
sha1_sw_new, sha1_sw_copy, sha1_sw_final, sha1_sw_free,
|
|
20, 64, "SHA-1",
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Hardware-accelerated implementation of SHA-1 using x86 SHA-NI.
|
|
*/
|
|
|
|
#if HW_SHA1 == HW_SHA1_NI
|
|
|
|
/*
|
|
* Set target architecture for Clang and GCC
|
|
*/
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
# pragma GCC target("sha")
|
|
# pragma GCC target("sse4.1")
|
|
#endif
|
|
|
|
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
|
|
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
|
|
#else
|
|
# define FUNC_ISA
|
|
#endif
|
|
|
|
#include <wmmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <immintrin.h>
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <shaintrin.h>
|
|
#endif
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <cpuid.h>
|
|
#define GET_CPU_ID_0(out) \
|
|
__cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
|
|
#define GET_CPU_ID_7(out) \
|
|
__cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
|
|
#else
|
|
#define GET_CPU_ID_0(out) __cpuid(out, 0)
|
|
#define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
|
|
#endif
|
|
|
|
static bool sha1_hw_available(void)
|
|
{
|
|
unsigned int CPUInfo[4];
|
|
GET_CPU_ID_0(CPUInfo);
|
|
if (CPUInfo[0] < 7)
|
|
return false;
|
|
|
|
GET_CPU_ID_7(CPUInfo);
|
|
return CPUInfo[1] & (1 << 29); /* Check SHA */
|
|
}
|
|
|
|
/* SHA1 implementation using new instructions
|
|
The code is based on Jeffrey Walton's SHA1 implementation:
|
|
https://github.com/noloader/SHA-Intrinsics
|
|
*/
|
|
FUNC_ISA
|
|
static inline void sha1_ni_block(__m128i *core, const uint8_t *p)
|
|
{
|
|
__m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3;
|
|
const __m128i MASK = _mm_set_epi64x(
|
|
0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
|
|
|
|
const __m128i *block = (const __m128i *)p;
|
|
|
|
/* Load initial values */
|
|
ABCD = core[0];
|
|
E0 = core[1];
|
|
|
|
/* Rounds 0-3 */
|
|
MSG0 = _mm_loadu_si128(block);
|
|
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
|
|
E0 = _mm_add_epi32(E0, MSG0);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
|
|
/* Rounds 4-7 */
|
|
MSG1 = _mm_loadu_si128(block + 1);
|
|
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 8-11 */
|
|
MSG2 = _mm_loadu_si128(block + 2);
|
|
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 12-15 */
|
|
MSG3 = _mm_loadu_si128(block + 3);
|
|
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 16-19 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 20-23 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 24-27 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 28-31 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 32-35 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 36-39 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 40-43 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 44-47 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 48-51 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 52-55 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 56-59 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 60-63 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 64-67 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 68-71 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 72-75 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
|
|
/* Rounds 76-79 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
|
|
/* Combine state */
|
|
core[0] = _mm_add_epi32(ABCD, core[0]);
|
|
core[1] = _mm_sha1nexte_epu32(E0, core[1]);
|
|
}
|
|
|
|
typedef struct sha1_ni {
|
|
/*
|
|
* core[0] stores the first four words of the SHA-1 state. core[1]
|
|
* stores just the fifth word, in the vector lane at the highest
|
|
* address.
|
|
*/
|
|
__m128i core[2];
|
|
sha1_block blk;
|
|
void *pointer_to_free;
|
|
BinarySink_IMPLEMENTATION;
|
|
ssh_hash hash;
|
|
} sha1_ni;
|
|
|
|
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len);
|
|
|
|
static sha1_ni *sha1_ni_alloc(void)
|
|
{
|
|
/*
|
|
* The __m128i variables in the context structure need to be
|
|
* 16-byte aligned, but not all malloc implementations that this
|
|
* code has to work with will guarantee to return a 16-byte
|
|
* aligned pointer. So we over-allocate, manually realign the
|
|
* pointer ourselves, and store the original one inside the
|
|
* context so we know how to free it later.
|
|
*/
|
|
void *allocation = smalloc(sizeof(sha1_ni) + 15);
|
|
uintptr_t alloc_address = (uintptr_t)allocation;
|
|
uintptr_t aligned_address = (alloc_address + 15) & ~15;
|
|
sha1_ni *s = (sha1_ni *)aligned_address;
|
|
s->pointer_to_free = allocation;
|
|
return s;
|
|
}
|
|
|
|
FUNC_ISA static ssh_hash *sha1_ni_new(const ssh_hashalg *alg)
|
|
{
|
|
if (!sha1_hw_available_cached())
|
|
return NULL;
|
|
|
|
sha1_ni *s = sha1_ni_alloc();
|
|
|
|
/* Initialise the core vectors in their storage order */
|
|
s->core[0] = _mm_set_epi64x(
|
|
0x67452301efcdab89ULL, 0x98badcfe10325476ULL);
|
|
s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0);
|
|
|
|
sha1_block_setup(&s->blk);
|
|
|
|
s->hash.vt = alg;
|
|
BinarySink_INIT(s, sha1_ni_write);
|
|
BinarySink_DELEGATE_INIT(&s->hash, s);
|
|
return &s->hash;
|
|
}
|
|
|
|
static ssh_hash *sha1_ni_copy(ssh_hash *hash)
|
|
{
|
|
sha1_ni *s = container_of(hash, sha1_ni, hash);
|
|
sha1_ni *copy = sha1_ni_alloc();
|
|
|
|
void *ptf_save = copy->pointer_to_free;
|
|
*copy = *s; /* structure copy */
|
|
copy->pointer_to_free = ptf_save;
|
|
|
|
BinarySink_COPIED(copy);
|
|
BinarySink_DELEGATE_INIT(©->hash, copy);
|
|
|
|
return ©->hash;
|
|
}
|
|
|
|
static void sha1_ni_free(ssh_hash *hash)
|
|
{
|
|
sha1_ni *s = container_of(hash, sha1_ni, hash);
|
|
|
|
void *ptf = s->pointer_to_free;
|
|
smemclr(s, sizeof(*s));
|
|
sfree(ptf);
|
|
}
|
|
|
|
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len)
|
|
{
|
|
sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni);
|
|
|
|
while (len > 0)
|
|
if (sha1_block_write(&s->blk, &vp, &len))
|
|
sha1_ni_block(s->core, s->blk.block);
|
|
}
|
|
|
|
FUNC_ISA static void sha1_ni_final(ssh_hash *hash, uint8_t *digest)
|
|
{
|
|
sha1_ni *s = container_of(hash, sha1_ni, hash);
|
|
|
|
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
|
|
|
|
/* Rearrange the first vector into its output order */
|
|
__m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B);
|
|
|
|
/* Byte-swap it into the output endianness */
|
|
const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
|
|
abcd = _mm_shuffle_epi8(abcd, mask);
|
|
|
|
/* And store it */
|
|
_mm_storeu_si128((__m128i *)digest, abcd);
|
|
|
|
/* Finally, store the leftover word */
|
|
uint32_t e = _mm_extract_epi32(s->core[1], 3);
|
|
PUT_32BIT_MSB_FIRST(digest + 16, e);
|
|
|
|
sha1_ni_free(hash);
|
|
}
|
|
|
|
const ssh_hashalg ssh_sha1_hw = {
|
|
sha1_ni_new, sha1_ni_copy, sha1_ni_final, sha1_ni_free,
|
|
20, 64, "SHA-1",
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Hardware-accelerated implementation of SHA-1 using Arm NEON.
|
|
*/
|
|
|
|
#elif HW_SHA1 == HW_SHA1_NEON
|
|
|
|
/*
|
|
* Manually set the target architecture, if we decided above that we
|
|
* need to.
|
|
*/
|
|
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
|
|
/*
|
|
* A spot of cheating: redefine some ACLE feature macros before
|
|
* including arm_neon.h. Otherwise we won't get the SHA intrinsics
|
|
* defined by that header, because it will be looking at the settings
|
|
* for the whole translation unit rather than the ones we're going to
|
|
* put on some particular functions using __attribute__((target)).
|
|
*/
|
|
#define __ARM_NEON 1
|
|
#define __ARM_FEATURE_CRYPTO 1
|
|
#define FUNC_ISA __attribute__ ((target("neon,crypto")))
|
|
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
|
|
|
|
#ifndef FUNC_ISA
|
|
#define FUNC_ISA
|
|
#endif
|
|
|
|
#ifdef USE_ARM64_NEON_H
|
|
#include <arm64_neon.h>
|
|
#else
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
static bool sha1_hw_available(void)
|
|
{
|
|
/*
|
|
* For Arm, we delegate to a per-platform detection function (see
|
|
* explanation in sshaes.c).
|
|
*/
|
|
return platform_sha1_hw_available();
|
|
}
|
|
|
|
typedef struct sha1_neon_core sha1_neon_core;
|
|
struct sha1_neon_core {
|
|
uint32x4_t abcd;
|
|
uint32_t e;
|
|
};
|
|
|
|
/* ------------- got up to here ----------------------------------------- */
|
|
|
|
FUNC_ISA
|
|
static inline uint32x4_t sha1_neon_load_input(const uint8_t *p)
|
|
{
|
|
return vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(p)));
|
|
}
|
|
|
|
FUNC_ISA
|
|
static inline uint32x4_t sha1_neon_schedule_update(
|
|
uint32x4_t m4, uint32x4_t m3, uint32x4_t m2, uint32x4_t m1)
|
|
{
|
|
return vsha1su1q_u32(vsha1su0q_u32(m4, m3, m2), m1);
|
|
}
|
|
|
|
/*
|
|
* SHA-1 has three different kinds of round, differing in whether they
|
|
* use the Ch, Maj or Par functions defined above. Each one uses a
|
|
* separate NEON instruction, so we define three inline functions for
|
|
* the different round types using this macro.
|
|
*
|
|
* The two batches of Par-type rounds also use a different constant,
|
|
* but that's passed in as an operand, so we don't need a fourth
|
|
* inline function just for that.
|
|
*/
|
|
#define SHA1_NEON_ROUND_FN(type) \
|
|
FUNC_ISA static inline sha1_neon_core sha1_neon_round4_##type( \
|
|
sha1_neon_core old, uint32x4_t sched, uint32x4_t constant) \
|
|
{ \
|
|
sha1_neon_core new; \
|
|
uint32x4_t round_input = vaddq_u32(sched, constant); \
|
|
new.abcd = vsha1##type##q_u32(old.abcd, old.e, round_input); \
|
|
new.e = vsha1h_u32(vget_lane_u32(vget_low_u32(old.abcd), 0)); \
|
|
return new; \
|
|
}
|
|
SHA1_NEON_ROUND_FN(c)
|
|
SHA1_NEON_ROUND_FN(p)
|
|
SHA1_NEON_ROUND_FN(m)
|
|
|
|
FUNC_ISA
|
|
static inline void sha1_neon_block(sha1_neon_core *core, const uint8_t *p)
|
|
{
|
|
uint32x4_t constant, s0, s1, s2, s3;
|
|
sha1_neon_core cr = *core;
|
|
|
|
constant = vdupq_n_u32(SHA1_STAGE0_CONSTANT);
|
|
s0 = sha1_neon_load_input(p);
|
|
cr = sha1_neon_round4_c(cr, s0, constant);
|
|
s1 = sha1_neon_load_input(p + 16);
|
|
cr = sha1_neon_round4_c(cr, s1, constant);
|
|
s2 = sha1_neon_load_input(p + 32);
|
|
cr = sha1_neon_round4_c(cr, s2, constant);
|
|
s3 = sha1_neon_load_input(p + 48);
|
|
cr = sha1_neon_round4_c(cr, s3, constant);
|
|
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
|
|
cr = sha1_neon_round4_c(cr, s0, constant);
|
|
|
|
constant = vdupq_n_u32(SHA1_STAGE1_CONSTANT);
|
|
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
|
|
cr = sha1_neon_round4_p(cr, s1, constant);
|
|
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
|
|
cr = sha1_neon_round4_p(cr, s2, constant);
|
|
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
|
|
cr = sha1_neon_round4_p(cr, s3, constant);
|
|
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
|
|
cr = sha1_neon_round4_p(cr, s0, constant);
|
|
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
|
|
cr = sha1_neon_round4_p(cr, s1, constant);
|
|
|
|
constant = vdupq_n_u32(SHA1_STAGE2_CONSTANT);
|
|
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
|
|
cr = sha1_neon_round4_m(cr, s2, constant);
|
|
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
|
|
cr = sha1_neon_round4_m(cr, s3, constant);
|
|
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
|
|
cr = sha1_neon_round4_m(cr, s0, constant);
|
|
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
|
|
cr = sha1_neon_round4_m(cr, s1, constant);
|
|
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
|
|
cr = sha1_neon_round4_m(cr, s2, constant);
|
|
|
|
constant = vdupq_n_u32(SHA1_STAGE3_CONSTANT);
|
|
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
|
|
cr = sha1_neon_round4_p(cr, s3, constant);
|
|
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
|
|
cr = sha1_neon_round4_p(cr, s0, constant);
|
|
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
|
|
cr = sha1_neon_round4_p(cr, s1, constant);
|
|
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
|
|
cr = sha1_neon_round4_p(cr, s2, constant);
|
|
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
|
|
cr = sha1_neon_round4_p(cr, s3, constant);
|
|
|
|
core->abcd = vaddq_u32(core->abcd, cr.abcd);
|
|
core->e += cr.e;
|
|
}
|
|
|
|
typedef struct sha1_neon {
|
|
sha1_neon_core core;
|
|
sha1_block blk;
|
|
BinarySink_IMPLEMENTATION;
|
|
ssh_hash hash;
|
|
} sha1_neon;
|
|
|
|
static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len);
|
|
|
|
static ssh_hash *sha1_neon_new(const ssh_hashalg *alg)
|
|
{
|
|
if (!sha1_hw_available_cached())
|
|
return NULL;
|
|
|
|
sha1_neon *s = snew(sha1_neon);
|
|
|
|
s->core.abcd = vld1q_u32(sha1_initial_state);
|
|
s->core.e = sha1_initial_state[4];
|
|
|
|
sha1_block_setup(&s->blk);
|
|
|
|
s->hash.vt = alg;
|
|
BinarySink_INIT(s, sha1_neon_write);
|
|
BinarySink_DELEGATE_INIT(&s->hash, s);
|
|
return &s->hash;
|
|
}
|
|
|
|
static ssh_hash *sha1_neon_copy(ssh_hash *hash)
|
|
{
|
|
sha1_neon *s = container_of(hash, sha1_neon, hash);
|
|
sha1_neon *copy = snew(sha1_neon);
|
|
|
|
*copy = *s; /* structure copy */
|
|
|
|
BinarySink_COPIED(copy);
|
|
BinarySink_DELEGATE_INIT(©->hash, copy);
|
|
|
|
return ©->hash;
|
|
}
|
|
|
|
static void sha1_neon_free(ssh_hash *hash)
|
|
{
|
|
sha1_neon *s = container_of(hash, sha1_neon, hash);
|
|
smemclr(s, sizeof(*s));
|
|
sfree(s);
|
|
}
|
|
|
|
static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len)
|
|
{
|
|
sha1_neon *s = BinarySink_DOWNCAST(bs, sha1_neon);
|
|
|
|
while (len > 0)
|
|
if (sha1_block_write(&s->blk, &vp, &len))
|
|
sha1_neon_block(&s->core, s->blk.block);
|
|
}
|
|
|
|
static void sha1_neon_final(ssh_hash *hash, uint8_t *digest)
|
|
{
|
|
sha1_neon *s = container_of(hash, sha1_neon, hash);
|
|
|
|
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
|
|
vst1q_u8(digest, vrev32q_u8(vreinterpretq_u8_u32(s->core.abcd)));
|
|
PUT_32BIT_MSB_FIRST(digest + 16, s->core.e);
|
|
sha1_neon_free(hash);
|
|
}
|
|
|
|
const ssh_hashalg ssh_sha1_hw = {
|
|
sha1_neon_new, sha1_neon_copy, sha1_neon_final, sha1_neon_free,
|
|
20, 64, "SHA-1",
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Stub functions if we have no hardware-accelerated SHA-1. In this
|
|
* case, sha1_hw_new returns NULL (though it should also never be
|
|
* selected by sha1_select, so the only thing that should even be
|
|
* _able_ to call it is testcrypt). As a result, the remaining vtable
|
|
* functions should never be called at all.
|
|
*/
|
|
|
|
#elif HW_SHA1 == HW_SHA1_NONE
|
|
|
|
static bool sha1_hw_available(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static ssh_hash *sha1_stub_new(const ssh_hashalg *alg)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#define STUB_BODY { unreachable("Should never be called"); }
|
|
|
|
static ssh_hash *sha1_stub_copy(ssh_hash *hash) STUB_BODY
|
|
static void sha1_stub_free(ssh_hash *hash) STUB_BODY
|
|
static void sha1_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
|
|
|
|
const ssh_hashalg ssh_sha1_hw = {
|
|
sha1_stub_new, sha1_stub_copy, sha1_stub_final, sha1_stub_free,
|
|
20, 64, "SHA-1",
|
|
};
|
|
|
|
#endif /* HW_SHA1 */
|