mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
3214563d8e
My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
229 lines
7.1 KiB
C
229 lines
7.1 KiB
C
/*
|
|
* Header connecting the pieces of the SSH-2 transport layer.
|
|
*/
|
|
|
|
#ifndef PUTTY_SSH2TRANSPORT_H
|
|
#define PUTTY_SSH2TRANSPORT_H
|
|
|
|
#ifndef NO_GSSAPI
|
|
#include "sshgssc.h"
|
|
#include "sshgss.h"
|
|
#define MIN_CTXT_LIFETIME 5 /* Avoid rekey with short lifetime (seconds) */
|
|
#define GSS_KEX_CAPABLE (1<<0) /* Can do GSS KEX */
|
|
#define GSS_CRED_UPDATED (1<<1) /* Cred updated since previous delegation */
|
|
#define GSS_CTXT_EXPIRES (1<<2) /* Context expires before next timer */
|
|
#define GSS_CTXT_MAYFAIL (1<<3) /* Context may expire during handshake */
|
|
#endif
|
|
|
|
#define DH_MIN_SIZE 1024
|
|
#define DH_MAX_SIZE 8192
|
|
|
|
enum kexlist {
|
|
KEXLIST_KEX, KEXLIST_HOSTKEY, KEXLIST_CSCIPHER, KEXLIST_SCCIPHER,
|
|
KEXLIST_CSMAC, KEXLIST_SCMAC, KEXLIST_CSCOMP, KEXLIST_SCCOMP,
|
|
NKEXLIST
|
|
};
|
|
#define MAXKEXLIST 16
|
|
struct kexinit_algorithm {
|
|
const char *name;
|
|
union {
|
|
struct {
|
|
const struct ssh_kex *kex;
|
|
bool warn;
|
|
} kex;
|
|
struct {
|
|
const ssh_keyalg *hostkey;
|
|
bool warn;
|
|
} hk;
|
|
struct {
|
|
const struct ssh2_cipheralg *cipher;
|
|
bool warn;
|
|
} cipher;
|
|
struct {
|
|
const struct ssh2_macalg *mac;
|
|
bool etm;
|
|
} mac;
|
|
struct {
|
|
const struct ssh_compression_alg *comp;
|
|
bool delayed;
|
|
} comp;
|
|
} u;
|
|
};
|
|
|
|
#define HOSTKEY_ALGORITHMS(X) \
|
|
X(HK_ED25519, ssh_ecdsa_ed25519) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp256) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp384) \
|
|
X(HK_ECDSA, ssh_ecdsa_nistp521) \
|
|
X(HK_DSA, ssh_dss) \
|
|
X(HK_RSA, ssh_rsa) \
|
|
/* end of list */
|
|
#define COUNT_HOSTKEY_ALGORITHM(type, alg) +1
|
|
#define N_HOSTKEY_ALGORITHMS (0 HOSTKEY_ALGORITHMS(COUNT_HOSTKEY_ALGORITHM))
|
|
|
|
struct ssh_signkey_with_user_pref_id {
|
|
const ssh_keyalg *alg;
|
|
int id;
|
|
};
|
|
extern const struct ssh_signkey_with_user_pref_id
|
|
ssh2_hostkey_algs[N_HOSTKEY_ALGORITHMS];
|
|
|
|
/*
|
|
* Enumeration of high-level classes of reason why we might need to do
|
|
* a repeat key exchange. A full detailed reason in human-readable
|
|
* string form for the Event Log is also provided, but this enum type
|
|
* is used to discriminate between classes of reason that the code
|
|
* needs to treat differently.
|
|
*
|
|
* RK_NONE == 0 is the value indicating that no rekey is currently
|
|
* needed at all. RK_INITIAL indicates that we haven't even done the
|
|
* _first_ key exchange yet. RK_SERVER indicates that we're rekeying
|
|
* because the server asked for it, not because we decided it
|
|
* ourselves. RK_NORMAL is the usual case. RK_GSS_UPDATE indicates
|
|
* that we're rekeying because we've just got new GSSAPI credentials
|
|
* (hence there's no point in doing a preliminary check for new GSS
|
|
* creds, because we already know the answer); RK_POST_USERAUTH
|
|
* indicates that _if_ we're going to need a post-userauth immediate
|
|
* rekey for any reason, this is the moment to do it.
|
|
*
|
|
* So RK_POST_USERAUTH only tells the transport layer to _consider_
|
|
* rekeying, not to definitely do it. Also, that one enum value is
|
|
* special in that the user-readable reason text is passed in to the
|
|
* transport layer as NULL, whereas fills in the reason text after it
|
|
* decides whether it needs a rekey at all. In the other cases,
|
|
* rekey_reason is passed in to the at the same time as rekey_class.
|
|
*/
|
|
typedef enum RekeyClass {
|
|
RK_NONE = 0,
|
|
RK_INITIAL,
|
|
RK_SERVER,
|
|
RK_NORMAL,
|
|
RK_POST_USERAUTH,
|
|
RK_GSS_UPDATE
|
|
} RekeyClass;
|
|
|
|
typedef struct transport_direction {
|
|
const struct ssh2_cipheralg *cipher;
|
|
const struct ssh2_macalg *mac;
|
|
bool etm_mode;
|
|
const struct ssh_compression_alg *comp;
|
|
bool comp_delayed;
|
|
int mkkey_adjust;
|
|
} transport_direction;
|
|
|
|
struct ssh2_transport_state {
|
|
int crState, crStateKex;
|
|
|
|
PacketProtocolLayer *higher_layer;
|
|
PktInQueue pq_in_higher;
|
|
PktOutQueue pq_out_higher;
|
|
IdempotentCallback ic_pq_out_higher;
|
|
|
|
Conf *conf;
|
|
char *savedhost;
|
|
int savedport;
|
|
const char *rekey_reason;
|
|
enum RekeyClass rekey_class;
|
|
|
|
unsigned long max_data_size;
|
|
|
|
const struct ssh_kex *kex_alg;
|
|
const ssh_keyalg *hostkey_alg;
|
|
char *hostkey_str; /* string representation, for easy checking in rekeys */
|
|
unsigned char session_id[SSH2_KEX_MAX_HASH_LEN];
|
|
int session_id_len;
|
|
int dh_min_size, dh_max_size;
|
|
bool dh_got_size_bounds;
|
|
struct dh_ctx *dh_ctx;
|
|
ssh_hash *exhash;
|
|
|
|
struct DataTransferStats *stats;
|
|
|
|
char *client_greeting, *server_greeting;
|
|
|
|
bool kex_in_progress;
|
|
unsigned long next_rekey, last_rekey;
|
|
const char *deferred_rekey_reason;
|
|
bool higher_layer_ok;
|
|
|
|
/*
|
|
* Fully qualified host name, which we need if doing GSSAPI.
|
|
*/
|
|
char *fullhostname;
|
|
|
|
/* shgss is outside the ifdef on purpose to keep APIs simple. If
|
|
* NO_GSSAPI is not defined, then it's just an opaque structure
|
|
* tag and the pointer will be NULL. */
|
|
struct ssh_connection_shared_gss_state *shgss;
|
|
#ifndef NO_GSSAPI
|
|
int gss_status;
|
|
time_t gss_cred_expiry; /* Re-delegate if newer */
|
|
unsigned long gss_ctxt_lifetime; /* Re-delegate when short */
|
|
#endif
|
|
ssh_transient_hostkey_cache *thc;
|
|
|
|
bool gss_kex_used;
|
|
|
|
int nbits, pbits;
|
|
bool warn_kex, warn_hk, warn_cscipher, warn_sccipher;
|
|
Bignum p, g, e, f, K;
|
|
strbuf *outgoing_kexinit, *incoming_kexinit;
|
|
strbuf *client_kexinit, *server_kexinit; /* aliases to the above */
|
|
int kex_init_value, kex_reply_value;
|
|
transport_direction in, out;
|
|
ptrlen hostkeydata, sigdata;
|
|
strbuf *hostkeyblob;
|
|
char *keystr, *fingerprint;
|
|
ssh_key *hkey; /* actual host key */
|
|
struct RSAKey *rsa_kex_key; /* for RSA kex */
|
|
struct ec_key *ecdh_key; /* for ECDH kex */
|
|
unsigned char exchange_hash[SSH2_KEX_MAX_HASH_LEN];
|
|
bool can_gssapi_keyex;
|
|
bool need_gss_transient_hostkey;
|
|
bool warned_about_no_gss_transient_hostkey;
|
|
bool got_session_id;
|
|
int dlgret;
|
|
bool guessok;
|
|
bool ignorepkt;
|
|
struct kexinit_algorithm kexlists[NKEXLIST][MAXKEXLIST];
|
|
#ifndef NO_GSSAPI
|
|
Ssh_gss_buf gss_buf;
|
|
Ssh_gss_buf gss_rcvtok, gss_sndtok;
|
|
Ssh_gss_stat gss_stat;
|
|
Ssh_gss_buf mic;
|
|
bool init_token_sent;
|
|
bool complete_rcvd;
|
|
bool gss_delegate;
|
|
#endif
|
|
|
|
/*
|
|
* List of host key algorithms for which we _don't_ have a stored
|
|
* host key. These are indices into the main hostkey_algs[] array
|
|
*/
|
|
int uncert_hostkeys[N_HOSTKEY_ALGORITHMS];
|
|
int n_uncert_hostkeys;
|
|
|
|
/*
|
|
* Flag indicating that the current rekey is intended to finish
|
|
* with a newly cross-certified host key.
|
|
*/
|
|
bool cross_certifying;
|
|
|
|
ssh_key *const *hostkeys;
|
|
int nhostkeys;
|
|
|
|
PacketProtocolLayer ppl;
|
|
};
|
|
|
|
/* Helpers shared between transport and kex */
|
|
PktIn *ssh2_transport_pop(struct ssh2_transport_state *s);
|
|
void ssh2_transport_dialog_callback(void *, int);
|
|
|
|
/* Provided by transport for use in kex */
|
|
void ssh2transport_finalise_exhash(struct ssh2_transport_state *s);
|
|
|
|
/* Provided by kex for use in transport */
|
|
void ssh2kex_coroutine(struct ssh2_transport_state *s);
|
|
|
|
#endif /* PUTTY_SSH2TRANSPORT_H */
|