1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 09:27:59 +00:00
putty-source/misc.h
Simon Tatham e0a76971cc New array-growing macros: sgrowarray and sgrowarrayn.
The idea of these is that they centralise the common idiom along the
lines of

   if (logical_array_len >= physical_array_size) {
       physical_array_size = logical_array_len * 5 / 4 + 256;
       array = sresize(array, physical_array_size, ElementType);
   }

which happens at a zillion call sites throughout this code base, with
different random choices of the geometric factor and additive
constant, sometimes forgetting them completely, and generally doing a
lot of repeated work.

The new macro sgrowarray(array,size,n) has the semantics: here are the
array pointer and its physical size for you to modify, now please
ensure that the nth element exists, so I can write into it. And
sgrowarrayn(array,size,n,m) is the same except that it ensures that
the array has size at least n+m (so sgrowarray is just the special
case where m=1).

Now that this is a single centralised implementation that will be used
everywhere, I've also gone to more effort in the implementation, with
careful overflow checks that would have been painful to put at all the
previous call sites.

This commit also switches over every use of sresize(), apart from a
few where I really didn't think it would gain anything. A consequence
of that is that a lot of array-size variables have to have their types
changed to size_t, because the macros require that (they address-take
the size to pass to the underlying function).
2019-02-28 20:15:38 +00:00

373 lines
12 KiB
C

/*
* Header for misc.c.
*/
#ifndef PUTTY_MISC_H
#define PUTTY_MISC_H
#include "defs.h"
#include "puttymem.h"
#include "marshal.h"
#include <stdio.h> /* for FILE * */
#include <stdarg.h> /* for va_list */
#include <stdlib.h> /* for abort */
#include <time.h> /* for struct tm */
#include <limits.h> /* for INT_MAX/MIN */
#include <assert.h> /* for assert (obviously) */
unsigned long parse_blocksize(const char *bs);
char ctrlparse(char *s, char **next);
size_t host_strcspn(const char *s, const char *set);
char *host_strchr(const char *s, int c);
char *host_strrchr(const char *s, int c);
char *host_strduptrim(const char *s);
char *dupstr(const char *s);
char *dupcat(const char *s1, ...);
char *dupprintf(const char *fmt, ...)
#ifdef __GNUC__
__attribute__ ((format (printf, 1, 2)))
#endif
;
char *dupvprintf(const char *fmt, va_list ap);
void burnstr(char *string);
struct strbuf {
char *s;
unsigned char *u;
size_t len;
BinarySink_IMPLEMENTATION;
/* (also there's a surrounding implementation struct in misc.c) */
};
strbuf *strbuf_new(void);
void strbuf_free(strbuf *buf);
void *strbuf_append(strbuf *buf, size_t len);
char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */
void strbuf_catf(strbuf *buf, const char *fmt, ...);
void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap);
strbuf *strbuf_new_for_agent_query(void);
void strbuf_finalise_agent_query(strbuf *buf);
/* String-to-Unicode converters that auto-allocate the destination and
* work around the rather deficient interface of mb_to_wc.
*
* These actually live in miscucs.c, not misc.c (the distinction being
* that the former is only linked into tools that also have the main
* Unicode support). */
wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
static inline int toint(unsigned u)
{
/*
* Convert an unsigned to an int, without running into the
* undefined behaviour which happens by the strict C standard if
* the value overflows. You'd hope that sensible compilers would
* do the sensible thing in response to a cast, but actually I
* don't trust modern compilers not to do silly things like
* assuming that _obviously_ you wouldn't have caused an overflow
* and so they can elide an 'if (i < 0)' test immediately after
* the cast.
*
* Sensible compilers ought of course to optimise this entire
* function into 'just return the input value', and since it's
* also declared inline, elide it completely in their output.
*/
if (u <= (unsigned)INT_MAX)
return (int)u;
else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */
return INT_MIN + (int)(u - (unsigned)INT_MIN);
else
return INT_MIN; /* fallback; should never occur on binary machines */
}
char *fgetline(FILE *fp);
char *chomp(char *str);
bool strstartswith(const char *s, const char *t);
bool strendswith(const char *s, const char *t);
void base64_encode_atom(const unsigned char *data, int n, char *out);
int base64_decode_atom(const char *atom, unsigned char *out);
struct bufchain_granule;
struct bufchain_tag {
struct bufchain_granule *head, *tail;
size_t buffersize; /* current amount of buffered data */
void (*queue_idempotent_callback)(IdempotentCallback *ic);
IdempotentCallback *ic;
};
void bufchain_init(bufchain *ch);
void bufchain_clear(bufchain *ch);
size_t bufchain_size(bufchain *ch);
void bufchain_add(bufchain *ch, const void *data, size_t len);
ptrlen bufchain_prefix(bufchain *ch);
void bufchain_consume(bufchain *ch, size_t len);
void bufchain_fetch(bufchain *ch, void *data, size_t len);
void bufchain_fetch_consume(bufchain *ch, void *data, size_t len);
bool bufchain_try_fetch_consume(bufchain *ch, void *data, size_t len);
size_t bufchain_fetch_consume_up_to(bufchain *ch, void *data, size_t len);
void bufchain_set_callback_inner(
bufchain *ch, IdempotentCallback *ic,
void (*queue_idempotent_callback)(IdempotentCallback *ic));
static inline void bufchain_set_callback(bufchain *ch, IdempotentCallback *ic)
{
extern void queue_idempotent_callback(struct IdempotentCallback *ic);
/* Wrapper that puts in the standard queue_idempotent_callback
* function. Lives here rather than in utils.c so that standalone
* programs can use the bufchain facility without this optional
* callback feature and not need to provide a stub of
* queue_idempotent_callback. */
bufchain_set_callback_inner(ch, ic, queue_idempotent_callback);
}
void sanitise_term_data(bufchain *out, const void *vdata, size_t len);
bool validate_manual_hostkey(char *key);
struct tm ltime(void);
/*
* Special form of strcmp which can cope with NULL inputs. NULL is
* defined to sort before even the empty string.
*/
int nullstrcmp(const char *a, const char *b);
static inline ptrlen make_ptrlen(const void *ptr, size_t len)
{
ptrlen pl;
pl.ptr = ptr;
pl.len = len;
return pl;
}
static inline ptrlen ptrlen_from_asciz(const char *str)
{
return make_ptrlen(str, strlen(str));
}
static inline ptrlen ptrlen_from_strbuf(strbuf *sb)
{
return make_ptrlen(sb->u, sb->len);
}
bool ptrlen_eq_string(ptrlen pl, const char *str);
bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2);
int ptrlen_strcmp(ptrlen pl1, ptrlen pl2);
bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail);
char *mkstr(ptrlen pl);
int string_length_for_printf(size_t);
/* Derive two printf arguments from a ptrlen, suitable for "%.*s" */
#define PTRLEN_PRINTF(pl) \
string_length_for_printf((pl).len), (const char *)(pl).ptr
/* Make a ptrlen out of a compile-time string literal. We try to
* enforce that it _is_ a string literal by token-pasting "" on to it,
* which should provoke a compile error if it's any other kind of
* string. */
#define PTRLEN_LITERAL(stringlit) \
TYPECHECK("" stringlit "", make_ptrlen(stringlit, sizeof(stringlit)-1))
/* Make a ptrlen out of a constant byte array. */
#define PTRLEN_FROM_CONST_BYTES(a) make_ptrlen(a, sizeof(a))
/* Wipe sensitive data out of memory that's about to be freed. Simpler
* than memset because we don't need the fill char parameter; also
* attempts (by fiddly use of volatile) to inhibit the compiler from
* over-cleverly trying to optimise the memset away because it knows
* the variable is going out of scope. */
void smemclr(void *b, size_t len);
/* Compare two fixed-length chunks of memory for equality, without
* data-dependent control flow (so an attacker with a very accurate
* stopwatch can't try to guess where the first mismatching byte was).
* Returns false for mismatch or true for equality (unlike memcmp),
* hinted at by the 'eq' in the name. */
bool smemeq(const void *av, const void *bv, size_t len);
char *buildinfo(const char *newline);
/*
* A function you can put at points in the code where execution should
* never reach in the first place. Better than assert(false), or even
* assert(false && "some explanatory message"), because some compilers
* don't interpret assert(false) as a declaration of unreachability,
* so they may still warn about pointless things like some variable
* not being initialised on the unreachable code path.
*
* I follow the assertion with a call to abort() just in case someone
* compiles with -DNDEBUG, and I wrap that abort inside my own
* function labelled NORETURN just in case some unusual kind of system
* header wasn't foresighted enough to label abort() itself that way.
*/
static inline NORETURN void unreachable_internal(void) { abort(); }
#define unreachable(msg) (assert(false && msg), unreachable_internal())
/*
* Debugging functions.
*
* Output goes to debug.log
*
* debug() is like printf().
*
* dmemdump() and dmemdumpl() both do memory dumps. The difference
* is that dmemdumpl() is more suited for when the memory address is
* important (say because you'll be recording pointer values later
* on). dmemdump() is more concise.
*/
#ifdef DEBUG
void debug_printf(const char *fmt, ...);
void debug_memdump(const void *buf, int len, bool L);
#define debug(...) (debug_printf(__VA_ARGS__))
#define dmemdump(buf,len) (debug_memdump(buf, len, false))
#define dmemdumpl(buf,len) (debug_memdump(buf, len, true))
#else
#define debug(...) ((void)0)
#define dmemdump(buf,len) ((void)0)
#define dmemdumpl(buf,len) ((void)0)
#endif
#ifndef lenof
#define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
#endif
#ifndef min
#define min(x,y) ( (x) < (y) ? (x) : (y) )
#endif
#ifndef max
#define max(x,y) ( (x) > (y) ? (x) : (y) )
#endif
static inline uint64_t GET_64BIT_LSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint64_t)p[0] ) | ((uint64_t)p[1] << 8) |
((uint64_t)p[2] << 16) | ((uint64_t)p[3] << 24) |
((uint64_t)p[4] << 32) | ((uint64_t)p[5] << 40) |
((uint64_t)p[6] << 48) | ((uint64_t)p[7] << 56));
}
static inline void PUT_64BIT_LSB_FIRST(void *vp, uint64_t value)
{
uint8_t *p = (uint8_t *)vp;
p[0] = value;
p[1] = (value) >> 8;
p[2] = (value) >> 16;
p[3] = (value) >> 24;
p[4] = (value) >> 32;
p[5] = (value) >> 40;
p[6] = (value) >> 48;
p[7] = (value) >> 56;
}
static inline uint32_t GET_32BIT_LSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint32_t)p[0] ) | ((uint32_t)p[1] << 8) |
((uint32_t)p[2] << 16) | ((uint32_t)p[3] << 24));
}
static inline void PUT_32BIT_LSB_FIRST(void *vp, uint32_t value)
{
uint8_t *p = (uint8_t *)vp;
p[0] = value;
p[1] = (value) >> 8;
p[2] = (value) >> 16;
p[3] = (value) >> 24;
}
static inline uint16_t GET_16BIT_LSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint16_t)p[0] ) | ((uint16_t)p[1] << 8));
}
static inline void PUT_16BIT_LSB_FIRST(void *vp, uint16_t value)
{
uint8_t *p = (uint8_t *)vp;
p[0] = value;
p[1] = (value) >> 8;
}
static inline uint64_t GET_64BIT_MSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint64_t)p[7] ) | ((uint64_t)p[6] << 8) |
((uint64_t)p[5] << 16) | ((uint64_t)p[4] << 24) |
((uint64_t)p[3] << 32) | ((uint64_t)p[2] << 40) |
((uint64_t)p[1] << 48) | ((uint64_t)p[0] << 56));
}
static inline void PUT_64BIT_MSB_FIRST(void *vp, uint64_t value)
{
uint8_t *p = (uint8_t *)vp;
p[7] = value;
p[6] = (value) >> 8;
p[5] = (value) >> 16;
p[4] = (value) >> 24;
p[3] = (value) >> 32;
p[2] = (value) >> 40;
p[1] = (value) >> 48;
p[0] = (value) >> 56;
}
static inline uint32_t GET_32BIT_MSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint32_t)p[3] ) | ((uint32_t)p[2] << 8) |
((uint32_t)p[1] << 16) | ((uint32_t)p[0] << 24));
}
static inline void PUT_32BIT_MSB_FIRST(void *vp, uint32_t value)
{
uint8_t *p = (uint8_t *)vp;
p[3] = value;
p[2] = (value) >> 8;
p[1] = (value) >> 16;
p[0] = (value) >> 24;
}
static inline uint16_t GET_16BIT_MSB_FIRST(const void *vp)
{
const uint8_t *p = (const uint8_t *)vp;
return (((uint16_t)p[1] ) | ((uint16_t)p[0] << 8));
}
static inline void PUT_16BIT_MSB_FIRST(void *vp, uint16_t value)
{
uint8_t *p = (uint8_t *)vp;
p[1] = value;
p[0] = (value) >> 8;
}
/* Replace NULL with the empty string, permitting an idiom in which we
* get a string (pointer,length) pair that might be NULL,0 and can
* then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */
static inline const char *NULLTOEMPTY(const char *s)
{
return s ? s : "";
}
/* StripCtrlChars, defined in stripctrl.c: an adapter you can put on
* the front of one BinarySink and which functions as one in turn.
* Interprets its input as a stream of multibyte characters in the
* system locale, and removes any that are not either printable
* characters or newlines. */
struct StripCtrlChars {
BinarySink_IMPLEMENTATION;
/* and this is contained in a larger structure */
};
StripCtrlChars *stripctrl_new(
BinarySink *bs_out, bool permit_cr, wchar_t substitution);
void stripctrl_free(StripCtrlChars *sanpub);
char *stripctrl_string_ptrlen(ptrlen str);
static inline char *stripctrl_string(const char *str)
{
return stripctrl_string_ptrlen(ptrlen_from_asciz(str));
}
#endif