1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/contrib/make1305.py
Simon Tatham 2ec2b796ed Migrate all Python scripts to Python 3.
Most of them are now _mandatory_ P3 scripts, because I'm tired of
maintaining everything to be compatible with both versions.

The current exceptions are gdb.py (which has to live with whatever gdb
gives it), and kh2reg.py (which is actually designed for other people
to use, and some of them might still be stuck on P2 for the moment).
2020-03-04 21:23:49 +00:00

375 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import string
from collections import namedtuple
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
class Multiprecision(object):
def __init__(self, target, minval, maxval, words):
self.target = target
self.minval = minval
self.maxval = maxval
self.words = words
assert 0 <= self.minval
assert self.minval <= self.maxval
assert self.target.nwords(self.maxval) == len(words)
def getword(self, n):
return self.words[n] if n < len(self.words) else "0"
def __add__(self, rhs):
newmin = self.minval + rhs.minval
newmax = self.maxval + rhs.maxval
nwords = self.target.nwords(newmax)
words = []
addfn = self.target.add
for i in range(nwords):
words.append(addfn(self.getword(i), rhs.getword(i)))
addfn = self.target.adc
return Multiprecision(self.target, newmin, newmax, words)
def __mul__(self, rhs):
newmin = self.minval * rhs.minval
newmax = self.maxval * rhs.maxval
nwords = self.target.nwords(newmax)
words = []
# There are basically two strategies we could take for
# multiplying two multiprecision integers. One is to enumerate
# the space of pairs of word indices in lexicographic order,
# essentially computing a*b[i] for each i and adding them
# together; the other is to enumerate in diagonal order,
# computing everything together that belongs at a particular
# output word index.
#
# For the moment, I've gone for the former.
sprev = []
for i, sword in enumerate(self.words):
rprev = None
sthis = sprev[:i]
for j, rword in enumerate(rhs.words):
prevwords = []
if i+j < len(sprev):
prevwords.append(sprev[i+j])
if rprev is not None:
prevwords.append(rprev)
vhi, vlo = self.target.muladd(sword, rword, *prevwords)
sthis.append(vlo)
rprev = vhi
sthis.append(rprev)
sprev = sthis
# Remove unneeded words from the top of the output, if we can
# prove by range analysis that they'll always be zero.
sprev = sprev[:self.target.nwords(newmax)]
return Multiprecision(self.target, newmin, newmax, sprev)
def extract_bits(self, start, bits=None):
if bits is None:
bits = (self.maxval >> start).bit_length()
# Overly thorough range analysis: if min and max have the same
# *quotient* by 2^bits, then the result of reducing anything
# in the range [min,max] mod 2^bits has to fall within the
# obvious range. But if they have different quotients, then
# you can wrap round the modulus and so any value mod 2^bits
# is possible.
newmin = self.minval >> start
newmax = self.maxval >> start
if (newmin >> bits) != (newmax >> bits):
newmin = 0
newmax = (1 << bits) - 1
nwords = self.target.nwords(newmax)
words = []
for i in range(nwords):
srcpos = i * self.target.bits + start
maxbits = min(self.target.bits, start + bits - srcpos)
wordindex = srcpos // self.target.bits
if srcpos % self.target.bits == 0:
word = self.getword(srcpos // self.target.bits)
elif (wordindex+1 >= len(self.words) or
srcpos % self.target.bits + maxbits < self.target.bits):
word = self.target.new_value(
"(%%s) >> %d" % (srcpos % self.target.bits),
self.getword(srcpos // self.target.bits))
else:
word = self.target.new_value(
"((%%s) >> %d) | ((%%s) << %d)" % (
srcpos % self.target.bits,
self.target.bits - (srcpos % self.target.bits)),
self.getword(srcpos // self.target.bits),
self.getword(srcpos // self.target.bits + 1))
if maxbits < self.target.bits and maxbits < bits:
word = self.target.new_value(
"(%%s) & ((((BignumInt)1) << %d)-1)" % maxbits,
word)
words.append(word)
return Multiprecision(self.target, newmin, newmax, words)
# Each Statement has a list of variables it reads, and a list of ones
# it writes. 'forms' is a list of multiple actual C statements it
# could be generated as, depending on which of its output variables is
# actually used (e.g. no point calling BignumADC if the generated
# carry in a particular case is unused, or BignumMUL if nobody needs
# the top half). It is indexed by a bitmap whose bits correspond to
# the entries in wvars, with wvars[0] the MSB and wvars[-1] the LSB.
Statement = namedtuple("Statement", "rvars wvars forms")
class CodegenTarget(object):
def __init__(self, bits):
self.bits = bits
self.valindex = 0
self.stmts = []
self.generators = {}
self.bv_words = (130 + self.bits - 1) // self.bits
self.carry_index = 0
def nwords(self, maxval):
return (maxval.bit_length() + self.bits - 1) // self.bits
def stmt(self, stmt, needed=False):
index = len(self.stmts)
self.stmts.append([needed, stmt])
for val in stmt.wvars:
self.generators[val] = index
def new_value(self, formatstr=None, *deps):
name = "v%d" % self.valindex
self.valindex += 1
if formatstr is not None:
self.stmt(Statement(
rvars=deps, wvars=[name],
forms=[None, name + " = " + formatstr % deps]))
return name
def bigval_input(self, name, bits):
words = (bits + self.bits - 1) // self.bits
# Expect not to require an entire extra word
assert words == self.bv_words
return Multiprecision(self, 0, (1<<bits)-1, [
self.new_value("%s->w[%d]" % (name, i)) for i in range(words)])
def const(self, value):
# We only support constants small enough to both fit in a
# BignumInt (of any size supported) _and_ be expressible in C
# with no weird integer literal syntax like a trailing LL.
#
# Supporting larger constants would be possible - you could
# break 'value' up into word-sized pieces on the Python side,
# and generate a legal C expression for each piece by
# splitting it further into pieces within the
# standards-guaranteed 'unsigned long' limit of 32 bits and
# then casting those to BignumInt before combining them with
# shifts. But it would be a lot of effort, and since the
# application for this code doesn't even need it, there's no
# point in bothering.
assert value < 2**16
return Multiprecision(self, value, value, ["%d" % value])
def current_carry(self):
return "carry%d" % self.carry_index
def add(self, a1, a2):
ret = self.new_value()
adcform = "BignumADC(%s, carry, %s, %s, 0)" % (ret, a1, a2)
plainform = "%s = %s + %s" % (ret, a1, a2)
self.carry_index += 1
carryout = self.current_carry()
self.stmt(Statement(
rvars=[a1,a2], wvars=[ret,carryout],
forms=[None, adcform, plainform, adcform]))
return ret
def adc(self, a1, a2):
ret = self.new_value()
adcform = "BignumADC(%s, carry, %s, %s, carry)" % (ret, a1, a2)
plainform = "%s = %s + %s + carry" % (ret, a1, a2)
carryin = self.current_carry()
self.carry_index += 1
carryout = self.current_carry()
self.stmt(Statement(
rvars=[a1,a2,carryin], wvars=[ret,carryout],
forms=[None, adcform, plainform, adcform]))
return ret
def muladd(self, m1, m2, *addends):
rlo = self.new_value()
rhi = self.new_value()
wideform = "BignumMUL%s(%s)" % (
{ 0:"", 1:"ADD", 2:"ADD2" }[len(addends)],
", ".join([rhi, rlo, m1, m2] + list(addends)))
narrowform = " + ".join(["%s = %s * %s" % (rlo, m1, m2)] +
list(addends))
self.stmt(Statement(
rvars=[m1,m2]+list(addends), wvars=[rhi,rlo],
forms=[None, narrowform, wideform, wideform]))
return rhi, rlo
def write_bigval(self, name, val):
for i in range(self.bv_words):
word = val.getword(i)
self.stmt(Statement(
rvars=[word], wvars=[],
forms=["%s->w[%d] = %s" % (name, i, word)]),
needed=True)
def compute_needed(self):
used_vars = set()
self.queue = [stmt for (needed,stmt) in self.stmts if needed]
while len(self.queue) > 0:
stmt = self.queue.pop(0)
deps = []
for var in stmt.rvars:
if var[0] in string.digits:
continue # constant
deps.append(self.generators[var])
used_vars.add(var)
for index in deps:
if not self.stmts[index][0]:
self.stmts[index][0] = True
self.queue.append(self.stmts[index][1])
forms = []
for i, (needed, stmt) in enumerate(self.stmts):
if needed:
formindex = 0
for (j, var) in enumerate(stmt.wvars):
formindex *= 2
if var in used_vars:
formindex += 1
forms.append(stmt.forms[formindex])
# Now we must check whether this form of the statement
# also writes some variables we _don't_ actually need
# (e.g. if you only wanted the top half from a mul, or
# only the carry from an adc, you'd be forced to
# generate the other output too). Easiest way to do
# this is to look for an identical statement form
# later in the array.
maxindex = max(i for i in range(len(stmt.forms))
if stmt.forms[i] == stmt.forms[formindex])
extra_vars = maxindex & ~formindex
bitpos = 0
while extra_vars != 0:
if extra_vars & (1 << bitpos):
extra_vars &= ~(1 << bitpos)
var = stmt.wvars[-1-bitpos]
used_vars.add(var)
# Also, write out a cast-to-void for each
# subsequently unused value, to prevent gcc
# warnings when the output code is compiled.
forms.append("(void)" + var)
bitpos += 1
used_carry = any(v.startswith("carry") for v in used_vars)
used_vars = [v for v in used_vars if v.startswith("v")]
used_vars.sort(key=lambda v: int(v[1:]))
return used_carry, used_vars, forms
def text(self):
used_carry, values, forms = self.compute_needed()
ret = ""
while len(values) > 0:
prefix, sep, suffix = " BignumInt ", ", ", ";"
currline = values.pop(0)
while (len(values) > 0 and
len(prefix+currline+sep+values[0]+suffix) < 79):
currline += sep + values.pop(0)
ret += prefix + currline + suffix + "\n"
if used_carry:
ret += " BignumCarry carry;\n"
if ret != "":
ret += "\n"
for stmtform in forms:
ret += " %s;\n" % stmtform
return ret
def gen_add(target):
# This is an addition _without_ reduction mod p, so that it can be
# used both during accumulation of the polynomial and for adding
# on the encrypted nonce at the end (which is mod 2^128, not mod
# p).
#
# Because one of the inputs will have come from our
# not-completely-reducing multiplication function, we expect up to
# 3 extra bits of input.
a = target.bigval_input("a", 133)
b = target.bigval_input("b", 133)
ret = a + b
target.write_bigval("r", ret)
return """\
static void bigval_add(bigval *r, const bigval *a, const bigval *b)
{
%s}
\n""" % target.text()
def gen_mul(target):
# The inputs are not 100% reduced mod p. Specifically, we can get
# a full 130-bit number from the pow5==0 pass, and then a 130-bit
# number times 5 from the pow5==1 pass, plus a possible carry. The
# total of that can be easily bounded above by 2^130 * 8, so we
# need to assume we're multiplying two 133-bit numbers.
a = target.bigval_input("a", 133)
b = target.bigval_input("b", 133)
ab = a * b
ab0 = ab.extract_bits(0, 130)
ab1 = ab.extract_bits(130, 130)
ab2 = ab.extract_bits(260)
ab1_5 = target.const(5) * ab1
ab2_25 = target.const(25) * ab2
ret = ab0 + ab1_5 + ab2_25
target.write_bigval("r", ret)
return """\
static void bigval_mul_mod_p(bigval *r, const bigval *a, const bigval *b)
{
%s}
\n""" % target.text()
def gen_final_reduce(target):
# Given our input number n, n >> 130 is usually precisely the
# multiple of p that needs to be subtracted from n to reduce it to
# strictly less than p, but it might be too low by 1 (but not more
# than 1, given the range of our input is nowhere near the square
# of the modulus). So we add another 5, which will push a carry
# into the 130th bit if and only if that has happened, and then
# use that to decide whether to subtract one more copy of p.
a = target.bigval_input("n", 133)
q = a.extract_bits(130)
adjusted = a.extract_bits(0, 130) + target.const(5) * q
final_subtract = (adjusted + target.const(5)).extract_bits(130)
adjusted2 = adjusted + target.const(5) * final_subtract
ret = adjusted2.extract_bits(0, 130)
target.write_bigval("n", ret)
return """\
static void bigval_final_reduce(bigval *n)
{
%s}
\n""" % target.text()
pp_keyword = "#if"
for bits in [16, 32, 64]:
sys.stdout.write("%s BIGNUM_INT_BITS == %d\n\n" % (pp_keyword, bits))
pp_keyword = "#elif"
sys.stdout.write(gen_add(CodegenTarget(bits)))
sys.stdout.write(gen_mul(CodegenTarget(bits)))
sys.stdout.write(gen_final_reduce(CodegenTarget(bits)))
sys.stdout.write("""#else
#error Add another bit count to contrib/make1305.py and rerun it
#endif
""")