1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/test/testsc.c
Simon Tatham e98615f0ba New post-quantum kex: ML-KEM, and three hybrids of it.
As standardised by NIST in FIPS 203, this is a lattice-based
post-quantum KEM.

Very vaguely, the idea of it is that your public key is a matrix A and
vector t, and the private key is the knowledge of how to decompose t
into two vectors with all their coefficients small, one transformed by
A relative to the other. Encryption of a binary secret starts by
turning each bit into one of two maximally separated residues mod a
prime q, and then adding 'noise' based on the public key in the form
of small increments and decrements mod q, again with some of the noise
transformed by A relative to the rest. Decryption uses the knowledge
of t's decomposition to align the two sets of noise so that the
_large_ changes (which masked the secret from an eavesdropper) cancel
out, leaving only a collection of small changes to the original secret
vector. Then the vector of input bits can be recovered by assuming
that those accumulated small pieces of noise haven't concentrated in
any particular residue enough to push it more than half way to the
other of its possible starting values.

A weird feature of it is that decryption is not a true mathematical
inverse of encryption. The assumption that the noise doesn't get large
enough to flip any bit of the secret is only probabilistically valid,
not a hard guarantee. In other words, key agreement can fail, simply
by getting particularly unlucky with the distribution of your random
noise! However, the probability of a failure is very low - less than
2^-138 even for ML-KEM-512, and gets even smaller with the larger
variants.

An awkward feature for our purposes is that the matrix A, containing a
large number of residues mod the prime q=3329, is required to be
constructed by a process of rejection sampling, i.e. generating random
12-bit values and throwing away the out-of-range ones. That would be a
real pain for our side-channel testing system, which generally handles
rejection sampling badly (since it necessarily involves data-dependent
control flow and timing variation). Fortunately, the matrix and the
random seed it was made from are both public: the matrix seed is
transmitted as part of the public key, so it's not necessary to try to
hide it. Accordingly, I was able to get the implementation to pass
testsc by means of not varying the matrix seed between runs, which is
justified by the principle of testsc that you vary the _secrets_ to
ensure timing is independent of them - and the matrix seed isn't a
secret, so you're allowed to keep it the same.

The three hybrid algorithms, defined by the current Internet-Draft
draft-kampanakis-curdle-ssh-pq-ke, include one hybrid of ML-KEM-768
with Curve25519 in exactly the same way we were already hybridising
NTRU Prime with Curve25519, and two more hybrids of ML-KEM with ECDH
over a NIST curve. The former hybrid interoperates with the
implementation in OpenSSH 9.9; all three interoperate with the fork
'openssh-oqs' at github.com/open-quantum-safe/openssh, and also with
the Python library AsyncSSH.
2024-12-08 10:41:08 +00:00

2063 lines
59 KiB
C

/*
* testsc: run PuTTY's crypto primitives under instrumentation that
* checks for cache and timing side channels.
*
* The idea is: cryptographic code should avoid leaking secret data
* through timing information, or through traces of its activity left
* in the caches.
*
* (This property is sometimes called 'constant-time', although really
* that's a misnomer. It would be impossible to avoid the execution
* time varying for any number of reasons outside the code's control,
* such as the prior contents of caches and branch predictors,
* temperature-based CPU throttling, system load, etc. And in any case
* you don't _need_ the execution time to be literally constant: you
* just need it to be independent of your secrets. It can vary as much
* as it likes based on anything else.)
*
* To avoid this, you need to ensure that various aspects of the
* code's behaviour do not depend on the secret data. The control
* flow, for a start - no conditional branches based on secrets - and
* also the memory access pattern (no using secret data as an index
* into a lookup table). A couple of other kinds of CPU instruction
* also can't be trusted to run in constant time: we check for
* register-controlled shifts and hardware divisions. (But, again,
* it's perfectly fine to _use_ those instructions in the course of
* crypto code. You just can't use a secret as any time-affecting
* operand.)
*
* This test program works by running the same crypto primitive
* multiple times, with different secret input data. The relevant
* details of each run is logged to a file via the DynamoRIO-based
* instrumentation system living in the subdirectory test/sclog. Then
* we check over all the files and ensure they're identical.
*
* This program itself (testsc) is built by the ordinary PuTTY
* makefiles. But run by itself, it will do nothing useful: it needs
* to be run under DynamoRIO, with the sclog instrumentation library.
*
* Here's an example of how I built it:
*
* Download the DynamoRIO source. I did this by cloning
* https://github.com/DynamoRIO/dynamorio.git, and at the time of
* writing this, 259c182a75ce80112bcad329c97ada8d56ba854d was the head
* commit.
*
* In the DynamoRIO checkout:
*
* mkdir build
* cd build
* cmake -G Ninja ..
* ninja
*
* Now set the shell variable DRBUILD to be the location of the build
* directory you did that in. (Or not, if you prefer, but the example
* build commands below will assume that that's where the DynamoRIO
* libraries, headers and runtime can be found.)
*
* Then, in test/sclog:
*
* cmake -G Ninja -DCMAKE_PREFIX_PATH=$DRBUILD/cmake .
* ninja
*
* Finally, to run the actual test, set SCTMP to some temp directory
* you don't mind filling with large temp files (several GB at a
* time), and in the main PuTTY source directory (assuming that's
* where testsc has been built):
*
* $DRBUILD/bin64/drrun -c test/sclog/libsclog.so -- ./testsc -O $SCTMP
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "defs.h"
#include "putty.h"
#include "ssh.h"
#include "sshkeygen.h"
#include "misc.h"
#include "mpint.h"
#include "crypto/ecc.h"
#include "crypto/ntru.h"
#include "crypto/mlkem.h"
static NORETURN PRINTF_LIKE(1, 2) void fatal_error(const char *p, ...)
{
va_list ap;
fprintf(stderr, "testsc: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fputc('\n', stderr);
exit(1);
}
void out_of_memory(void) { fatal_error("out of memory"); }
/*
* A simple deterministic PRNG, without any of the Fortuna
* complexities, for generating test inputs in a way that's repeatable
* between runs of the program, even if only a subset of test cases is
* run.
*/
static uint64_t random_counter = 0;
static const char *random_seedstr = NULL;
static uint8_t random_buf[MAX_HASH_LEN];
static size_t random_buf_limit = 0;
static ssh_hash *random_hash;
static void random_seed(const char *seedstr)
{
random_seedstr = seedstr;
random_counter = 0;
random_buf_limit = 0;
}
static void random_advance_counter(void)
{
ssh_hash_reset(random_hash);
put_asciz(random_hash, random_seedstr);
put_uint64(random_hash, random_counter);
random_counter++;
random_buf_limit = ssh_hash_alg(random_hash)->hlen;
ssh_hash_digest(random_hash, random_buf);
}
void random_read(void *vbuf, size_t size)
{
assert(random_seedstr);
uint8_t *buf = (uint8_t *)vbuf;
while (size-- > 0) {
if (random_buf_limit == 0)
random_advance_counter();
*buf++ = random_buf[random_buf_limit--];
}
}
struct random_state {
const char *seedstr;
uint64_t counter;
size_t limit;
uint8_t buf[MAX_HASH_LEN];
};
static struct random_state random_get_state(void)
{
struct random_state st;
st.seedstr = random_seedstr;
st.counter = random_counter;
st.limit = random_buf_limit;
memcpy(st.buf, random_buf, sizeof(st.buf));
return st;
}
static void random_set_state(struct random_state st)
{
random_seedstr = st.seedstr;
random_counter = st.counter;
random_buf_limit = st.limit;
memcpy(random_buf, st.buf, sizeof(random_buf));
}
/*
* Macro that defines a function, and also a volatile function pointer
* pointing to it. Callers indirect through the function pointer
* instead of directly calling the function, to ensure that the
* compiler doesn't try to get clever by eliminating the call
* completely, or inlining it.
*
* This is used to mark functions that DynamoRIO will look for to
* intercept, and also to inhibit inlining and unrolling where they'd
* cause a failure of experimental control in the main test.
*/
#define VOLATILE_WRAPPED_DEFN(qualifier, rettype, fn, params) \
qualifier rettype fn##_real params; \
qualifier rettype (*volatile fn) params = fn##_real; \
qualifier rettype fn##_real params
VOLATILE_WRAPPED_DEFN(, void, log_to_file, (const char *filename))
{
/*
* This function is intercepted by the DynamoRIO side of the
* mechanism. We use it to send instructions to the DR wrapper,
* namely, 'please start logging to this file' or 'please stop
* logging' (if filename == NULL). But we don't have to actually
* do anything in _this_ program - all the functionality is in the
* DR wrapper.
*/
}
static const char *outdir = NULL;
char *log_filename(const char *basename, size_t index)
{
return dupprintf("%s/%s.%04"SIZEu, outdir, basename, index);
}
static char *last_filename;
static const char *test_basename;
static size_t test_index = 0;
void log_start(void)
{
last_filename = log_filename(test_basename, test_index++);
log_to_file(last_filename);
}
void log_end(void)
{
log_to_file(NULL);
sfree(last_filename);
}
static bool test_skipped = false;
VOLATILE_WRAPPED_DEFN(, intptr_t, dry_run, (void))
{
/*
* This is another function intercepted by DynamoRIO. In this
* case, DR overrides this function to return 0 rather than 1, so
* we can use it as a check for whether we're running under
* instrumentation, or whether this is just a dry run which goes
* through the motions but doesn't expect to find any log files
* created.
*/
return 1;
}
static void mp_random_bits_into(mp_int *r, size_t bits)
{
mp_int *x = mp_random_bits(bits);
mp_copy_into(r, x);
mp_free(x);
}
static void mp_random_fill(mp_int *r)
{
mp_random_bits_into(r, mp_max_bits(r));
}
VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
{
/*
* looplimit() is the identity function on size_t, but the
* compiler isn't allowed to rely on it being that. I use it to
* make loops in the test functions look less attractive to
* compilers' unrolling heuristics.
*/
return x;
}
#if HAVE_AES_NI
#define IF_AES_NI(x) x
#else
#define IF_AES_NI(x)
#endif
#if HAVE_SHA_NI
#define IF_SHA_NI(x) x
#else
#define IF_SHA_NI(x)
#endif
#if HAVE_CLMUL
#define IF_CLMUL(x) x
#else
#define IF_CLMUL(x)
#endif
#if HAVE_NEON_CRYPTO
#define IF_NEON_CRYPTO(x) x
#else
#define IF_NEON_CRYPTO(x)
#endif
#if HAVE_NEON_SHA512
#define IF_NEON_SHA512(x) x
#else
#define IF_NEON_SHA512(x)
#endif
#if HAVE_NEON_PMULL
#define IF_NEON_PMULL(x) x
#else
#define IF_NEON_PMULL(x)
#endif
/* Ciphers that we expect to pass this test. Blowfish and Arcfour are
* intentionally omitted, because we already know they don't. */
#define CIPHERS(X, Y) \
X(Y, ssh_3des_ssh1) \
X(Y, ssh_3des_ssh2_ctr) \
X(Y, ssh_3des_ssh2) \
X(Y, ssh_des) \
X(Y, ssh_des_sshcom_ssh2) \
X(Y, ssh_aes256_sdctr) \
X(Y, ssh_aes256_gcm) \
X(Y, ssh_aes256_cbc) \
X(Y, ssh_aes192_sdctr) \
X(Y, ssh_aes192_gcm) \
X(Y, ssh_aes192_cbc) \
X(Y, ssh_aes128_sdctr) \
X(Y, ssh_aes128_gcm) \
X(Y, ssh_aes128_cbc) \
X(Y, ssh_aes256_sdctr_sw) \
X(Y, ssh_aes256_gcm_sw) \
X(Y, ssh_aes256_cbc_sw) \
X(Y, ssh_aes192_sdctr_sw) \
X(Y, ssh_aes192_gcm_sw) \
X(Y, ssh_aes192_cbc_sw) \
X(Y, ssh_aes128_sdctr_sw) \
X(Y, ssh_aes128_gcm_sw) \
X(Y, ssh_aes128_cbc_sw) \
IF_AES_NI(X(Y, ssh_aes256_sdctr_ni)) \
IF_AES_NI(X(Y, ssh_aes256_gcm_ni)) \
IF_AES_NI(X(Y, ssh_aes256_cbc_ni)) \
IF_AES_NI(X(Y, ssh_aes192_sdctr_ni)) \
IF_AES_NI(X(Y, ssh_aes192_gcm_ni)) \
IF_AES_NI(X(Y, ssh_aes192_cbc_ni)) \
IF_AES_NI(X(Y, ssh_aes128_sdctr_ni)) \
IF_AES_NI(X(Y, ssh_aes128_gcm_ni)) \
IF_AES_NI(X(Y, ssh_aes128_cbc_ni)) \
IF_NEON_CRYPTO(X(Y, ssh_aes256_sdctr_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes256_gcm_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes256_cbc_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes192_sdctr_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes192_gcm_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes192_cbc_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes128_sdctr_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes128_gcm_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_aes128_cbc_neon)) \
X(Y, ssh2_chacha20_poly1305) \
/* end of list */
#define CIPHER_TESTLIST(X, name) X(cipher_ ## name)
#define SIMPLE_MACS(X, Y) \
X(Y, ssh_hmac_md5) \
X(Y, ssh_hmac_sha1) \
X(Y, ssh_hmac_sha1_buggy) \
X(Y, ssh_hmac_sha1_96) \
X(Y, ssh_hmac_sha1_96_buggy) \
X(Y, ssh_hmac_sha256) \
X(Y, ssh_hmac_sha512) \
/* end of list */
#define ALL_MACS(X, Y) \
SIMPLE_MACS(X, Y) \
X(Y, poly1305) \
X(Y, aesgcm_sw_sw) \
X(Y, aesgcm_sw_refpoly) \
IF_AES_NI(X(Y, aesgcm_ni_sw)) \
IF_NEON_CRYPTO(X(Y, aesgcm_neon_sw)) \
IF_CLMUL(X(Y, aesgcm_sw_clmul)) \
IF_NEON_PMULL(X(Y, aesgcm_sw_neon)) \
IF_AES_NI(IF_CLMUL(X(Y, aesgcm_ni_clmul))) \
IF_NEON_CRYPTO(IF_NEON_PMULL(X(Y, aesgcm_neon_neon))) \
/* end of list */
#define MAC_TESTLIST(X, name) X(mac_ ## name)
#define HASHES(X, Y) \
X(Y, ssh_md5) \
X(Y, ssh_sha1) \
X(Y, ssh_sha1_sw) \
X(Y, ssh_sha256) \
X(Y, ssh_sha256_sw) \
X(Y, ssh_sha384) \
X(Y, ssh_sha512) \
X(Y, ssh_sha384_sw) \
X(Y, ssh_sha512_sw) \
IF_SHA_NI(X(Y, ssh_sha256_ni)) \
IF_SHA_NI(X(Y, ssh_sha1_ni)) \
IF_NEON_CRYPTO(X(Y, ssh_sha256_neon)) \
IF_NEON_CRYPTO(X(Y, ssh_sha1_neon)) \
IF_NEON_SHA512(X(Y, ssh_sha384_neon)) \
IF_NEON_SHA512(X(Y, ssh_sha512_neon)) \
X(Y, ssh_sha3_224) \
X(Y, ssh_sha3_256) \
X(Y, ssh_sha3_384) \
X(Y, ssh_sha3_512) \
X(Y, ssh_shake256_114bytes) \
X(Y, ssh_blake2b) \
/* end of list */
#define HASH_TESTLIST(X, name) X(hash_ ## name)
#define TESTLIST(X) \
X(mp_get_nbits) \
X(mp_from_decimal) \
X(mp_from_hex) \
X(mp_get_decimal) \
X(mp_get_hex) \
X(mp_cmp_hs) \
X(mp_cmp_eq) \
X(mp_min) \
X(mp_max) \
X(mp_select_into) \
X(mp_cond_swap) \
X(mp_cond_clear) \
X(mp_add) \
X(mp_sub) \
X(mp_mul) \
X(mp_rshift_safe) \
X(mp_divmod) \
X(mp_nthroot) \
X(mp_modadd) \
X(mp_modsub) \
X(mp_modmul) \
X(mp_modpow) \
X(mp_invert_mod_2to) \
X(mp_invert) \
X(mp_modsqrt) \
X(ecc_weierstrass_add) \
X(ecc_weierstrass_double) \
X(ecc_weierstrass_add_general) \
X(ecc_weierstrass_multiply) \
X(ecc_weierstrass_is_identity) \
X(ecc_weierstrass_get_affine) \
X(ecc_weierstrass_decompress) \
X(ecc_montgomery_diff_add) \
X(ecc_montgomery_double) \
X(ecc_montgomery_multiply) \
X(ecc_montgomery_get_affine) \
X(ecc_edwards_add) \
X(ecc_edwards_multiply) \
X(ecc_edwards_eq) \
X(ecc_edwards_get_affine) \
X(ecc_edwards_decompress) \
CIPHERS(CIPHER_TESTLIST, X) \
ALL_MACS(MAC_TESTLIST, X) \
HASHES(HASH_TESTLIST, X) \
X(argon2) \
X(primegen_probabilistic) \
X(ntru) \
X(mlkem512) \
X(mlkem768) \
X(mlkem1024) \
X(rfc6979_setup) \
X(rfc6979_attempt) \
/* end of list */
static void test_mp_get_nbits(void)
{
mp_int *z = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
mp_int *prev = mp_from_integer(0);
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_int *x = mp_power_2(bitposns[i]);
mp_add_into(z, x, prev);
mp_free(prev);
prev = x;
log_start();
mp_get_nbits(z);
log_end();
}
mp_free(prev);
mp_free(z);
}
static void test_mp_from_decimal(void)
{
char dec[64];
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
memset(dec, '0', lenof(dec));
for (size_t j = starts[i]; j < lenof(dec); j++) {
uint8_t r[4];
random_read(r, 4);
dec[j] = '0' + GET_32BIT_MSB_FIRST(r) % 10;
}
log_start();
mp_int *x = mp_from_decimal_pl(make_ptrlen(dec, lenof(dec)));
log_end();
mp_free(x);
}
}
static void test_mp_from_hex(void)
{
char hex[64];
static const size_t starts[] = { 0, 1, 5, 16, 23, 32, 63, 64 };
static const char digits[] = "0123456789abcdefABCDEF";
for (size_t i = 0; i < looplimit(lenof(starts)); i++) {
memset(hex, '0', lenof(hex));
for (size_t j = starts[i]; j < lenof(hex); j++) {
uint8_t r[4];
random_read(r, 4);
hex[j] = digits[GET_32BIT_MSB_FIRST(r) % lenof(digits)];
}
log_start();
mp_int *x = mp_from_hex_pl(make_ptrlen(hex, lenof(hex)));
log_end();
mp_free(x);
}
}
static void test_mp_string_format(char *(*mp_format)(mp_int *x))
{
mp_int *z = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_random_bits_into(z, bitposns[i]);
log_start();
char *formatted = mp_format(z);
log_end();
sfree(formatted);
}
mp_free(z);
}
static void test_mp_get_decimal(void)
{
test_mp_string_format(mp_get_decimal);
}
static void test_mp_get_hex(void)
{
test_mp_string_format(mp_get_hex);
}
static void test_mp_cmp(unsigned (*mp_cmp)(mp_int *a, mp_int *b))
{
mp_int *a = mp_new(512), *b = mp_new(512);
static const size_t bitposns[] = {
0, 1, 5, 16, 23, 32, 67, 123, 234, 511
};
for (size_t i = 0; i < looplimit(lenof(bitposns)); i++) {
mp_random_fill(b);
mp_int *x = mp_random_bits(bitposns[i]);
mp_xor_into(a, b, x);
mp_free(x);
log_start();
mp_cmp(a, b);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_cmp_hs(void)
{
test_mp_cmp(mp_cmp_hs);
}
static void test_mp_cmp_eq(void)
{
test_mp_cmp(mp_cmp_eq);
}
static void test_mp_minmax(
void (*mp_minmax_into)(mp_int *r, mp_int *x, mp_int *y))
{
mp_int *a = mp_new(256), *b = mp_new(256);
for (size_t i = 0; i < looplimit(10); i++) {
uint8_t lens[2];
random_read(lens, 2);
mp_int *x = mp_random_bits(lens[0]);
mp_copy_into(a, x);
mp_free(x);
mp_int *y = mp_random_bits(lens[1]);
mp_copy_into(a, y);
mp_free(y);
log_start();
mp_minmax_into(a, a, b);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_max(void)
{
test_mp_minmax(mp_max_into);
}
static void test_mp_min(void)
{
test_mp_minmax(mp_min_into);
}
static void test_mp_select_into(void)
{
mp_int *a = mp_random_bits(256);
mp_int *b = mp_random_bits(512);
mp_int *r = mp_new(384);
for (size_t i = 0; i < looplimit(16); i++) {
log_start();
mp_select_into(r, a, b, i & 1);
log_end();
}
mp_free(a);
mp_free(b);
mp_free(r);
}
static void test_mp_cond_swap(void)
{
mp_int *a = mp_random_bits(512);
mp_int *b = mp_random_bits(512);
for (size_t i = 0; i < looplimit(16); i++) {
log_start();
mp_cond_swap(a, b, i & 1);
log_end();
}
mp_free(a);
mp_free(b);
}
static void test_mp_cond_clear(void)
{
mp_int *a = mp_random_bits(512);
mp_int *x = mp_copy(a);
for (size_t i = 0; i < looplimit(16); i++) {
mp_copy_into(x, a);
log_start();
mp_cond_clear(a, i & 1);
log_end();
}
mp_free(a);
mp_free(x);
}
static void test_mp_arithmetic(mp_int *(*mp_arith)(mp_int *x, mp_int *y))
{
mp_int *a = mp_new(256), *b = mp_new(512);
for (size_t i = 0; i < looplimit(16); i++) {
mp_random_fill(a);
mp_random_fill(b);
log_start();
mp_int *r = mp_arith(a, b);
log_end();
mp_free(r);
}
mp_free(a);
mp_free(b);
}
static void test_mp_add(void)
{
test_mp_arithmetic(mp_add);
}
static void test_mp_sub(void)
{
test_mp_arithmetic(mp_sub);
}
static void test_mp_mul(void)
{
test_mp_arithmetic(mp_mul);
}
static void test_mp_invert(void)
{
test_mp_arithmetic(mp_invert);
}
static void test_mp_rshift_safe(void)
{
mp_int *x = mp_random_bits(256);
for (size_t i = 0; i < looplimit(mp_max_bits(x)+1); i++) {
log_start();
mp_int *r = mp_rshift_safe(x, i);
log_end();
mp_free(r);
}
mp_free(x);
}
static void test_mp_divmod(void)
{
mp_int *n = mp_new(256), *d = mp_new(256);
mp_int *q = mp_new(256), *r = mp_new(256);
for (size_t i = 0; i < looplimit(32); i++) {
uint8_t sizes[2];
random_read(sizes, 2);
mp_random_bits_into(n, sizes[0]);
mp_random_bits_into(d, sizes[1]);
log_start();
mp_divmod_into(n, d, q, r);
log_end();
}
mp_free(n);
mp_free(d);
mp_free(q);
mp_free(r);
}
static void test_mp_nthroot(void)
{
mp_int *x = mp_new(256), *remainder = mp_new(256);
for (size_t i = 0; i < looplimit(32); i++) {
uint8_t sizes[1];
random_read(sizes, 1);
mp_random_bits_into(x, sizes[0]);
log_start();
mp_free(mp_nthroot(x, 3, remainder));
log_end();
}
mp_free(x);
mp_free(remainder);
}
static void test_mp_modarith(
mp_int *(*mp_modarith)(mp_int *x, mp_int *y, mp_int *modulus))
{
mp_int *base = mp_new(256);
mp_int *exponent = mp_new(256);
mp_int *modulus = mp_new(256);
for (size_t i = 0; i < looplimit(8); i++) {
mp_random_fill(base);
mp_random_fill(exponent);
mp_random_fill(modulus);
mp_set_bit(modulus, 0, 1); /* we only support odd moduli */
log_start();
mp_int *out = mp_modarith(base, exponent, modulus);
log_end();
mp_free(out);
}
mp_free(base);
mp_free(exponent);
mp_free(modulus);
}
static void test_mp_modadd(void)
{
test_mp_modarith(mp_modadd);
}
static void test_mp_modsub(void)
{
test_mp_modarith(mp_modsub);
}
static void test_mp_modmul(void)
{
test_mp_modarith(mp_modmul);
}
static void test_mp_modpow(void)
{
test_mp_modarith(mp_modpow);
}
static void test_mp_invert_mod_2to(void)
{
mp_int *x = mp_new(512);
for (size_t i = 0; i < looplimit(32); i++) {
mp_random_fill(x);
mp_set_bit(x, 0, 1); /* input should be odd */
log_start();
mp_int *out = mp_invert_mod_2to(x, 511);
log_end();
mp_free(out);
}
mp_free(x);
}
static void test_mp_modsqrt(void)
{
/* The prime isn't secret in this function (and in any case
* finding a non-square on the fly would be prohibitively
* annoying), so I hardcode a fixed one, selected to have a lot of
* factors of two in p-1 so as to exercise lots of choices in the
* algorithm. */
mp_int *p =
MP_LITERAL(0xb56a517b206a88c73cfa9ec6f704c7030d18212cace82401);
mp_int *nonsquare = MP_LITERAL(0x5);
size_t bits = mp_max_bits(p);
ModsqrtContext *sc = modsqrt_new(p, nonsquare);
mp_free(p);
mp_free(nonsquare);
mp_int *x = mp_new(bits);
unsigned success;
/* Do one initial call to cause the lazily initialised sub-context
* to be set up. This will take a while, but it can't be helped. */
mp_int *unwanted = mp_modsqrt(sc, x, &success);
mp_free(unwanted);
for (size_t i = 0; i < looplimit(8); i++) {
mp_random_bits_into(x, bits - 1);
log_start();
mp_int *out = mp_modsqrt(sc, x, &success);
log_end();
mp_free(out);
}
mp_free(x);
modsqrt_free(sc);
}
static WeierstrassCurve *wcurve(void)
{
mp_int *p = MP_LITERAL(0xc19337603dc856acf31e01375a696fdf5451);
mp_int *a = MP_LITERAL(0x864946f50eecca4cde7abad4865e34be8f67);
mp_int *b = MP_LITERAL(0x6a5bf56db3a03ba91cfbf3241916c90feeca);
mp_int *nonsquare = mp_from_integer(3);
WeierstrassCurve *wc = ecc_weierstrass_curve(p, a, b, nonsquare);
mp_free(p);
mp_free(a);
mp_free(b);
mp_free(nonsquare);
return wc;
}
static WeierstrassPoint *wpoint(WeierstrassCurve *wc, size_t index)
{
mp_int *x = NULL, *y = NULL;
WeierstrassPoint *wp;
switch (index) {
case 0:
break;
case 1:
x = MP_LITERAL(0x12345);
y = MP_LITERAL(0x3c2c799a365b53d003ef37dab65860bf80ae);
break;
case 2:
x = MP_LITERAL(0x4e1c77e3c00f7c3b15869e6a4e5f86b3ee53);
y = MP_LITERAL(0x5bde01693130591400b5c9d257d8325a44a5);
break;
case 3:
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
y = MP_LITERAL(0x033d636b855c931cfe679f0b18db164a0d64);
break;
case 4:
x = MP_LITERAL(0xb5f0e722b2f0f7e729f55ba9f15511e3b399);
y = MP_LITERAL(0xbe55d3f4b86bc38ff4b6622c418e599546ed);
break;
default:
unreachable("only 5 example Weierstrass points defined");
}
if (x && y) {
wp = ecc_weierstrass_point_new(wc, x, y);
} else {
wp = ecc_weierstrass_point_new_identity(wc);
}
if (x)
mp_free(x);
if (y)
mp_free(y);
return wp;
}
static void test_ecc_weierstrass_add(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
if (i == 0 || j == 0 || i == j ||
(i==3 && j==4) || (i==4 && j==3))
continue; /* difficult cases */
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_copy_into(b, B);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
log_start();
WeierstrassPoint *r = ecc_weierstrass_add(a, b);
log_end();
ecc_weierstrass_point_free(r);
}
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_point_free(b);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_double(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
log_start();
WeierstrassPoint *r = ecc_weierstrass_double(a);
log_end();
ecc_weierstrass_point_free(r);
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_add_general(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
WeierstrassPoint *b = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, j);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_copy_into(b, B);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
log_start();
WeierstrassPoint *r = ecc_weierstrass_add_general(a, b);
log_end();
ecc_weierstrass_point_free(r);
}
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_point_free(b);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_multiply(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
mp_int *exponent = mp_new(56);
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
mp_random_fill(exponent);
log_start();
WeierstrassPoint *r = ecc_weierstrass_multiply(a, exponent);
log_end();
ecc_weierstrass_point_free(r);
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
mp_free(exponent);
}
static void test_ecc_weierstrass_is_identity(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *a = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
ecc_weierstrass_point_copy_into(a, A);
ecc_weierstrass_point_free(A);
log_start();
ecc_weierstrass_is_identity(a);
log_end();
}
ecc_weierstrass_point_free(a);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_get_affine(void)
{
WeierstrassCurve *wc = wcurve();
WeierstrassPoint *r = ecc_weierstrass_point_new_identity(wc);
for (size_t i = 0; i < looplimit(4); i++) {
WeierstrassPoint *A = wpoint(wc, i), *B = wpoint(wc, i+1);
WeierstrassPoint *R = ecc_weierstrass_add_general(A, B);
ecc_weierstrass_point_copy_into(r, R);
ecc_weierstrass_point_free(A);
ecc_weierstrass_point_free(B);
ecc_weierstrass_point_free(R);
log_start();
mp_int *x, *y;
ecc_weierstrass_get_affine(r, &x, &y);
log_end();
mp_free(x);
mp_free(y);
}
ecc_weierstrass_point_free(r);
ecc_weierstrass_curve_free(wc);
}
static void test_ecc_weierstrass_decompress(void)
{
WeierstrassCurve *wc = wcurve();
/* As in the mp_modsqrt test, prime the lazy initialisation of the
* ModsqrtContext */
mp_int *x = mp_new(144);
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, 0);
if (a) /* don't care whether this one succeeded */
ecc_weierstrass_point_free(a);
for (size_t p = 0; p < looplimit(2); p++) {
for (size_t i = 1; i < looplimit(5); i++) {
WeierstrassPoint *A = wpoint(wc, i);
mp_int *X;
ecc_weierstrass_get_affine(A, &X, NULL);
mp_copy_into(x, X);
mp_free(X);
ecc_weierstrass_point_free(A);
log_start();
WeierstrassPoint *a = ecc_weierstrass_point_new_from_x(wc, x, p);
log_end();
ecc_weierstrass_point_free(a);
}
}
mp_free(x);
ecc_weierstrass_curve_free(wc);
}
static MontgomeryCurve *mcurve(void)
{
mp_int *p = MP_LITERAL(0xde978eb1db35236a5792e9f0c04d86000659);
mp_int *a = MP_LITERAL(0x799b62a612b1b30e1c23cea6d67b2e33c51a);
mp_int *b = MP_LITERAL(0x944bf9042b56821a8c9e0b49b636c2502b2b);
MontgomeryCurve *mc = ecc_montgomery_curve(p, a, b);
mp_free(p);
mp_free(a);
mp_free(b);
return mc;
}
static MontgomeryPoint *mpoint(MontgomeryCurve *wc, size_t index)
{
mp_int *x = NULL;
MontgomeryPoint *mp;
switch (index) {
case 0:
x = MP_LITERAL(31415);
break;
case 1:
x = MP_LITERAL(0x4d352c654c06eecfe19104118857b38398e8);
break;
case 2:
x = MP_LITERAL(0x03fca2a73983bc3434caae3134599cd69cce);
break;
case 3:
x = MP_LITERAL(0xa0fd735ce9b3406498b5f035ee655bda4e15);
break;
case 4:
x = MP_LITERAL(0x7c7f46a00cc286dbe47db39b6d8f5efd920e);
break;
case 5:
x = MP_LITERAL(0x07a6dc30d3b320448e6f8999be417e6b7c6b);
break;
case 6:
x = MP_LITERAL(0x7832da5fc16dfbd358170b2b96896cd3cd06);
break;
default:
unreachable("only 7 example Weierstrass points defined");
}
mp = ecc_montgomery_point_new(wc, x);
mp_free(x);
return mp;
}
static void test_ecc_montgomery_diff_add(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL, *b = NULL, *c = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
MontgomeryPoint *A = mpoint(wc, i);
MontgomeryPoint *B = mpoint(wc, i);
MontgomeryPoint *C = mpoint(wc, i);
if (!a) {
a = A;
b = B;
c = C;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_copy_into(b, B);
ecc_montgomery_point_copy_into(c, C);
ecc_montgomery_point_free(A);
ecc_montgomery_point_free(B);
ecc_montgomery_point_free(C);
}
log_start();
MontgomeryPoint *r = ecc_montgomery_diff_add(b, c, a);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_point_free(b);
ecc_montgomery_point_free(c);
ecc_montgomery_curve_free(wc);
}
static void test_ecc_montgomery_double(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL;
for (size_t i = 0; i < looplimit(7); i++) {
MontgomeryPoint *A = mpoint(wc, i);
if (!a) {
a = A;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_free(A);
}
log_start();
MontgomeryPoint *r = ecc_montgomery_double(a);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_curve_free(wc);
}
static void test_ecc_montgomery_multiply(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *a = NULL;
mp_int *exponent = mp_new(56);
for (size_t i = 0; i < looplimit(7); i++) {
MontgomeryPoint *A = mpoint(wc, i);
if (!a) {
a = A;
} else {
ecc_montgomery_point_copy_into(a, A);
ecc_montgomery_point_free(A);
}
mp_random_fill(exponent);
log_start();
MontgomeryPoint *r = ecc_montgomery_multiply(a, exponent);
log_end();
ecc_montgomery_point_free(r);
}
ecc_montgomery_point_free(a);
ecc_montgomery_curve_free(wc);
mp_free(exponent);
}
static void test_ecc_montgomery_get_affine(void)
{
MontgomeryCurve *wc = mcurve();
MontgomeryPoint *r = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
MontgomeryPoint *A = mpoint(wc, i);
MontgomeryPoint *B = mpoint(wc, i);
MontgomeryPoint *C = mpoint(wc, i);
MontgomeryPoint *R = ecc_montgomery_diff_add(B, C, A);
ecc_montgomery_point_free(A);
ecc_montgomery_point_free(B);
ecc_montgomery_point_free(C);
if (!r) {
r = R;
} else {
ecc_montgomery_point_copy_into(r, R);
ecc_montgomery_point_free(R);
}
log_start();
mp_int *x;
ecc_montgomery_get_affine(r, &x);
log_end();
mp_free(x);
}
ecc_montgomery_point_free(r);
ecc_montgomery_curve_free(wc);
}
static EdwardsCurve *ecurve(void)
{
mp_int *p = MP_LITERAL(0xfce2dac1704095de0b5c48876c45063cd475);
mp_int *d = MP_LITERAL(0xbd4f77401c3b14ae1742a7d1d367adac8f3e);
mp_int *a = MP_LITERAL(0x51d0845da3fa871aaac4341adea53b861919);
mp_int *nonsquare = mp_from_integer(2);
EdwardsCurve *ec = ecc_edwards_curve(p, d, a, nonsquare);
mp_free(p);
mp_free(d);
mp_free(a);
mp_free(nonsquare);
return ec;
}
static EdwardsPoint *epoint(EdwardsCurve *wc, size_t index)
{
mp_int *x, *y;
EdwardsPoint *ep;
switch (index) {
case 0:
x = MP_LITERAL(0x0);
y = MP_LITERAL(0x1);
break;
case 1:
x = MP_LITERAL(0x3d8aef0294a67c1c7e8e185d987716250d7c);
y = MP_LITERAL(0x27184);
break;
case 2:
x = MP_LITERAL(0xf44ed5b8a6debfd3ab24b7874cd2589fd672);
y = MP_LITERAL(0xd635d8d15d367881c8a3af472c8fe487bf40);
break;
case 3:
x = MP_LITERAL(0xde114ecc8b944684415ef81126a07269cd30);
y = MP_LITERAL(0xbe0fd45ff67ebba047ed0ec5a85d22e688a1);
break;
case 4:
x = MP_LITERAL(0x76bd2f90898d271b492c9c20dd7bbfe39fe5);
y = MP_LITERAL(0xbf1c82698b4a5a12c1057631c1ebdc216ae2);
break;
default:
unreachable("only 5 example Edwards points defined");
}
ep = ecc_edwards_point_new(wc, x, y);
mp_free(x);
mp_free(y);
return ep;
}
static void test_ecc_edwards_add(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL, *b = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
if (!a) {
a = A;
b = B;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_copy_into(b, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
}
log_start();
EdwardsPoint *r = ecc_edwards_add(a, b);
log_end();
ecc_edwards_point_free(r);
}
}
ecc_edwards_point_free(a);
ecc_edwards_point_free(b);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_multiply(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL;
mp_int *exponent = mp_new(56);
for (size_t i = 1; i < looplimit(5); i++) {
EdwardsPoint *A = epoint(ec, i);
if (!a) {
a = A;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_free(A);
}
mp_random_fill(exponent);
log_start();
EdwardsPoint *r = ecc_edwards_multiply(a, exponent);
log_end();
ecc_edwards_point_free(r);
}
ecc_edwards_point_free(a);
ecc_edwards_curve_free(ec);
mp_free(exponent);
}
static void test_ecc_edwards_eq(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *a = NULL, *b = NULL;
for (size_t i = 0; i < looplimit(5); i++) {
for (size_t j = 0; j < looplimit(5); j++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, j);
if (!a) {
a = A;
b = B;
} else {
ecc_edwards_point_copy_into(a, A);
ecc_edwards_point_copy_into(b, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
}
log_start();
ecc_edwards_eq(a, b);
log_end();
}
}
ecc_edwards_point_free(a);
ecc_edwards_point_free(b);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_get_affine(void)
{
EdwardsCurve *ec = ecurve();
EdwardsPoint *r = NULL;
for (size_t i = 0; i < looplimit(4); i++) {
EdwardsPoint *A = epoint(ec, i), *B = epoint(ec, i+1);
EdwardsPoint *R = ecc_edwards_add(A, B);
ecc_edwards_point_free(A);
ecc_edwards_point_free(B);
if (!r) {
r = R;
} else {
ecc_edwards_point_copy_into(r, R);
ecc_edwards_point_free(R);
}
log_start();
mp_int *x, *y;
ecc_edwards_get_affine(r, &x, &y);
log_end();
mp_free(x);
mp_free(y);
}
ecc_edwards_point_free(r);
ecc_edwards_curve_free(ec);
}
static void test_ecc_edwards_decompress(void)
{
EdwardsCurve *ec = ecurve();
/* As in the mp_modsqrt test, prime the lazy initialisation of the
* ModsqrtContext */
mp_int *y = mp_new(144);
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, 0);
if (a) /* don't care whether this one succeeded */
ecc_edwards_point_free(a);
for (size_t p = 0; p < looplimit(2); p++) {
for (size_t i = 0; i < looplimit(5); i++) {
EdwardsPoint *A = epoint(ec, i);
mp_int *Y;
ecc_edwards_get_affine(A, NULL, &Y);
mp_copy_into(y, Y);
mp_free(Y);
ecc_edwards_point_free(A);
log_start();
EdwardsPoint *a = ecc_edwards_point_new_from_y(ec, y, p);
log_end();
ecc_edwards_point_free(a);
}
}
mp_free(y);
ecc_edwards_curve_free(ec);
}
static void test_cipher(const ssh_cipheralg *calg)
{
ssh_cipher *c = ssh_cipher_new(calg);
if (!c) {
test_skipped = true;
return;
}
const ssh2_macalg *malg = calg->required_mac;
ssh2_mac *m = NULL;
if (malg) {
m = ssh2_mac_new(malg, c);
if (!m) {
ssh_cipher_free(c);
test_skipped = true;
return;
}
}
uint8_t *ckey = snewn(calg->padded_keybytes, uint8_t);
uint8_t *civ = snewn(calg->blksize, uint8_t);
uint8_t *mkey = malg ? snewn(malg->keylen, uint8_t) : NULL;
size_t datalen = calg->blksize * 8;
size_t maclen = malg ? malg->len : 0;
uint8_t *data = snewn(datalen + maclen, uint8_t);
size_t lenlen = 4;
uint8_t *lendata = snewn(lenlen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(ckey, calg->padded_keybytes);
if (malg)
random_read(mkey, malg->keylen);
random_read(data, datalen);
random_read(lendata, lenlen);
if (i == 0) {
/* Ensure one of our test IVs will cause SDCTR wraparound */
memset(civ, 0xFF, calg->blksize);
} else {
random_read(civ, calg->blksize);
}
uint8_t seqbuf[4];
random_read(seqbuf, 4);
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
log_start();
ssh_cipher_setkey(c, ckey);
ssh_cipher_setiv(c, civ);
if (m)
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
ssh_cipher_encrypt_length(c, data, datalen, seq);
ssh_cipher_encrypt(c, data, datalen);
if (m) {
ssh2_mac_generate(m, data, datalen, seq);
ssh2_mac_verify(m, data, datalen, seq);
}
if (calg->flags & SSH_CIPHER_SEPARATE_LENGTH)
ssh_cipher_decrypt_length(c, data, datalen, seq);
ssh_cipher_decrypt(c, data, datalen);
log_end();
}
sfree(ckey);
sfree(civ);
sfree(mkey);
sfree(data);
sfree(lendata);
if (m)
ssh2_mac_free(m);
ssh_cipher_free(c);
}
#define CIPHER_TESTFN(Y_unused, cipher) \
static void test_cipher_##cipher(void) { test_cipher(&cipher); }
CIPHERS(CIPHER_TESTFN, Y_unused)
static void test_mac(const ssh2_macalg *malg, const ssh_cipheralg *calg)
{
ssh_cipher *c = NULL;
if (calg) {
c = ssh_cipher_new(calg);
if (!c) {
test_skipped = true;
return;
}
}
ssh2_mac *m = ssh2_mac_new(malg, c);
if (!m) {
test_skipped = true;
if (c)
ssh_cipher_free(c);
return;
}
size_t ckeylen = calg ? calg->padded_keybytes : 0;
size_t civlen = calg ? calg->blksize : 0;
uint8_t *ckey = snewn(ckeylen, uint8_t);
uint8_t *civ = snewn(civlen, uint8_t);
uint8_t *mkey = snewn(malg->keylen, uint8_t);
size_t datalen = 256;
size_t maclen = malg->len;
uint8_t *data = snewn(datalen + maclen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(ckey, ckeylen);
random_read(civ, civlen);
random_read(mkey, malg->keylen);
random_read(data, datalen);
uint8_t seqbuf[4];
random_read(seqbuf, 4);
uint32_t seq = GET_32BIT_MSB_FIRST(seqbuf);
log_start();
if (c) {
ssh_cipher_setkey(c, ckey);
ssh_cipher_setiv(c, civ);
}
ssh2_mac_setkey(m, make_ptrlen(mkey, malg->keylen));
ssh2_mac_generate(m, data, datalen, seq);
ssh2_mac_verify(m, data, datalen, seq);
log_end();
}
sfree(ckey);
sfree(civ);
sfree(mkey);
sfree(data);
ssh2_mac_free(m);
if (c)
ssh_cipher_free(c);
}
#define MAC_TESTFN(Y_unused, mac) \
static void test_mac_##mac(void) { test_mac(&mac, NULL); }
SIMPLE_MACS(MAC_TESTFN, Y_unused)
static void test_mac_poly1305(void)
{
test_mac(&ssh2_poly1305, &ssh2_chacha20_poly1305);
}
static void test_mac_aesgcm_sw_sw(void)
{
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_sw);
}
static void test_mac_aesgcm_sw_refpoly(void)
{
test_mac(&ssh2_aesgcm_mac_ref_poly, &ssh_aes128_gcm_sw);
}
#if HAVE_AES_NI
static void test_mac_aesgcm_ni_sw(void)
{
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_ni);
}
#endif
#if HAVE_NEON_CRYPTO
static void test_mac_aesgcm_neon_sw(void)
{
test_mac(&ssh2_aesgcm_mac_sw, &ssh_aes128_gcm_neon);
}
#endif
#if HAVE_CLMUL
static void test_mac_aesgcm_sw_clmul(void)
{
test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_sw);
}
#endif
#if HAVE_NEON_PMULL
static void test_mac_aesgcm_sw_neon(void)
{
test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_sw);
}
#endif
#if HAVE_AES_NI && HAVE_CLMUL
static void test_mac_aesgcm_ni_clmul(void)
{
test_mac(&ssh2_aesgcm_mac_clmul, &ssh_aes128_gcm_ni);
}
#endif
#if HAVE_NEON_CRYPTO && HAVE_NEON_PMULL
static void test_mac_aesgcm_neon_neon(void)
{
test_mac(&ssh2_aesgcm_mac_neon, &ssh_aes128_gcm_neon);
}
#endif
static void test_hash(const ssh_hashalg *halg)
{
ssh_hash *h = ssh_hash_new(halg);
if (!h) {
test_skipped = true;
return;
}
ssh_hash_free(h);
size_t datalen = 256;
uint8_t *data = snewn(datalen, uint8_t);
uint8_t *hash = snewn(halg->hlen, uint8_t);
for (size_t i = 0; i < looplimit(16); i++) {
random_read(data, datalen);
log_start();
h = ssh_hash_new(halg);
put_data(h, data, datalen);
ssh_hash_final(h, hash);
log_end();
}
sfree(data);
sfree(hash);
}
#define HASH_TESTFN(Y_unused, hash) \
static void test_hash_##hash(void) { test_hash(&hash); }
HASHES(HASH_TESTFN, Y_unused)
struct test {
const char *testname;
void (*testfn)(void);
};
static void test_argon2(void)
{
/*
* We can only expect the Argon2i variant to pass this stringent
* test for no data-dependency, because the other two variants of
* Argon2 have _deliberate_ data-dependency.
*/
size_t inlen = 48+16+24+8;
uint8_t *indata = snewn(inlen, uint8_t);
ptrlen password = make_ptrlen(indata, 48);
ptrlen salt = make_ptrlen(indata+48, 16);
ptrlen secret = make_ptrlen(indata+48+16, 24);
ptrlen assoc = make_ptrlen(indata+48+16+24, 8);
strbuf *outdata = strbuf_new();
strbuf_append(outdata, 256);
for (size_t i = 0; i < looplimit(16); i++) {
strbuf_clear(outdata);
random_read(indata, inlen);
log_start();
argon2(Argon2i, 32, 2, 2, 144, password, salt, secret, assoc, outdata);
log_end();
}
sfree(indata);
strbuf_free(outdata);
}
static void test_primegen(const PrimeGenerationPolicy *policy)
{
static ProgressReceiver null_progress = { .vt = &null_progress_vt };
PrimeGenerationContext *pgc = primegen_new_context(policy);
init_smallprimes();
mp_int *pcopy = mp_new(128);
for (size_t i = 0; i < looplimit(2); i++) {
while (true) {
random_advance_counter();
struct random_state st = random_get_state();
PrimeCandidateSource *pcs = pcs_new(128);
pcs_set_oneshot(pcs);
pcs_ready(pcs);
mp_int *p = primegen_generate(pgc, pcs, &null_progress);
if (p) {
mp_copy_into(pcopy, p);
sfree(p);
random_set_state(st);
log_start();
PrimeCandidateSource *pcs = pcs_new(128);
pcs_set_oneshot(pcs);
pcs_ready(pcs);
mp_int *q = primegen_generate(pgc, pcs, &null_progress);
log_end();
assert(q);
assert(mp_cmp_eq(pcopy, q));
mp_free(q);
break;
}
}
}
mp_free(pcopy);
primegen_free_context(pgc);
}
static void test_primegen_probabilistic(void)
{
test_primegen(&primegen_probabilistic);
}
static void test_ntru(void)
{
unsigned p = 11, q = 59, w = 3;
uint16_t *pubkey_orig = snewn(p, uint16_t);
uint16_t *pubkey_check = snewn(p, uint16_t);
uint16_t *pubkey = snewn(p, uint16_t);
uint16_t *plaintext = snewn(p, uint16_t);
uint16_t *ciphertext = snewn(p, uint16_t);
strbuf *buffer = strbuf_new();
strbuf_append(buffer, 16384);
BinarySource src[1];
for (size_t i = 0; i < looplimit(32); i++) {
while (true) {
random_advance_counter();
struct random_state st = random_get_state();
NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
if (keypair) {
memcpy(pubkey_orig, ntru_pubkey(keypair),
p*sizeof(*pubkey_orig));
ntru_keypair_free(keypair);
random_set_state(st);
log_start();
NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
memcpy(pubkey_check, ntru_pubkey(keypair),
p*sizeof(*pubkey_check));
ntru_gen_short(plaintext, p, w);
ntru_encrypt(ciphertext, plaintext, pubkey, p, w);
ntru_decrypt(plaintext, ciphertext, keypair);
strbuf_clear(buffer);
ntru_encode_pubkey(ntru_pubkey(keypair), p, q,
BinarySink_UPCAST(buffer));
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
ntru_decode_pubkey(pubkey, p, q, src);
strbuf_clear(buffer);
ntru_encode_ciphertext(ciphertext, p, q,
BinarySink_UPCAST(buffer));
BinarySource_BARE_INIT_PL(src, ptrlen_from_strbuf(buffer));
ntru_decode_ciphertext(ciphertext, keypair, src);
strbuf_clear(buffer);
ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(buffer));
log_end();
ntru_keypair_free(keypair);
break;
}
assert(!memcmp(pubkey_orig, pubkey_check,
p*sizeof(*pubkey_check)));
}
}
sfree(pubkey_orig);
sfree(pubkey_check);
sfree(pubkey);
sfree(plaintext);
sfree(ciphertext);
strbuf_free(buffer);
}
static void test_mlkem(const mlkem_params *params)
{
char rho[32], sigma[32], z[32], m[32], ek[1568], dk[3168], c[1568];
char k[32], k2[32];
/* rho is a random but public value, so side channels are allowed
* to reveal it (and undoubtedly will). So we don't vary it
* between runs. */
random_read(rho, 32);
for (size_t i = 0; i < looplimit(32); i++) {
random_advance_counter();
random_read(sigma, 32);
random_read(z, 32);
random_read(m, 32);
log_start();
/* Every other iteration, tamper with the ciphertext so that
* implicit rejection occurs, because we need to test that
* that too is done in constant time. */
unsigned tampering = i & 1;
buffer_sink ek_sink[1]; buffer_sink_init(ek_sink, ek, sizeof(ek));
buffer_sink dk_sink[1]; buffer_sink_init(dk_sink, dk, sizeof(dk));
buffer_sink c_sink[1]; buffer_sink_init(c_sink, c, sizeof(c));
buffer_sink k_sink[1]; buffer_sink_init(k_sink, k, sizeof(k));
mlkem_keygen_rho_sigma(
BinarySink_UPCAST(ek_sink), BinarySink_UPCAST(dk_sink),
params, rho, sigma, z);
ptrlen ek_pl = make_ptrlen(ek, ek_sink->out - ek);
ptrlen dk_pl = make_ptrlen(dk, dk_sink->out - dk);
mlkem_encaps_internal(
BinarySink_UPCAST(c_sink), BinarySink_UPCAST(k_sink),
params, ek_pl, m);
dk[0] ^= tampering;
ptrlen c_pl = make_ptrlen(c, c_sink->out - c);
buffer_sink_init(k_sink, k2, sizeof(k2));
bool success = mlkem_decaps(
BinarySink_UPCAST(k_sink), params, dk_pl, c_pl);
log_end();
assert(success);
unsigned eq_expected = tampering ^ 1;
unsigned eq = smemeq(k, k2, 32);
assert(eq == eq_expected);
}
}
static void test_mlkem512(void) { test_mlkem(&mlkem_params_512); }
static void test_mlkem768(void) { test_mlkem(&mlkem_params_768); }
static void test_mlkem1024(void) { test_mlkem(&mlkem_params_1024); }
static void test_rfc6979_setup(void)
{
mp_int *q = mp_new(512);
mp_int *x = mp_new(512);
strbuf *message = strbuf_new();
strbuf_append(message, 123);
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
for (size_t i = 0; i < looplimit(20); i++) {
random_read(message->u, message->len);
mp_random_fill(q);
mp_random_fill(x);
log_start();
rfc6979_setup(s, ptrlen_from_strbuf(message));
log_end();
}
rfc6979_free(s);
mp_free(q);
mp_free(x);
strbuf_free(message);
}
static void test_rfc6979_attempt(void)
{
mp_int *q = mp_new(512);
mp_int *x = mp_new(512);
strbuf *message = strbuf_new();
strbuf_append(message, 123);
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
for (size_t i = 0; i < looplimit(5); i++) {
random_read(message->u, message->len);
mp_random_fill(q);
mp_random_fill(x);
rfc6979_setup(s, ptrlen_from_strbuf(message));
for (size_t j = 0; j < looplimit(10); j++) {
log_start();
RFC6979Result result = rfc6979_attempt(s);
mp_free(result.k);
log_end();
}
}
rfc6979_free(s);
mp_free(q);
mp_free(x);
strbuf_free(message);
}
static const struct test tests[] = {
#define STRUCT_TEST(X) { #X, test_##X },
TESTLIST(STRUCT_TEST)
#undef STRUCT_TEST
};
void dputs(const char *buf)
{
fputs(buf, stderr);
}
int main(int argc, char **argv)
{
bool doing_opts = true;
const char *pname = argv[0];
uint8_t tests_to_run[lenof(tests)];
bool keep_outfiles = false;
bool test_names_given = false;
memset(tests_to_run, 1, sizeof(tests_to_run));
random_hash = ssh_hash_new(&ssh_sha256);
while (--argc > 0) {
char *p = *++argv;
if (p[0] == '-' && doing_opts) {
if (!strcmp(p, "-O")) {
if (--argc <= 0) {
fprintf(stderr, "'-O' expects a directory name\n");
return 1;
}
outdir = *++argv;
} else if (!strcmp(p, "-k") || !strcmp(p, "--keep")) {
keep_outfiles = true;
} else if (!strcmp(p, "--")) {
doing_opts = false;
} else if (!strcmp(p, "--help")) {
printf(" usage: drrun -c test/sclog/libsclog.so -- "
"%s -O <outdir>\n", pname);
printf("options: -O <outdir> "
"put log files in the specified directory\n");
printf(" -k, --keep "
"do not delete log files for tests that passed\n");
printf(" also: --help "
"display this text\n");
return 0;
} else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else {
if (!test_names_given) {
test_names_given = true;
memset(tests_to_run, 0, sizeof(tests_to_run));
}
bool found_one = false;
for (size_t i = 0; i < lenof(tests); i++) {
if (wc_match(p, tests[i].testname)) {
tests_to_run[i] = 1;
found_one = true;
}
}
if (!found_one) {
fprintf(stderr, "no test name matched '%s'\n", p);
return 1;
}
}
}
bool is_dry_run = dry_run();
if (is_dry_run) {
printf("Dry run (DynamoRIO instrumentation not detected)\n");
} else {
/* Print the address of main() in this run. The idea is that
* if this image is compiled to be position-independent, then
* PC values in the logs won't match the ones you get if you
* disassemble the binary, so it'll be harder to match up the
* log messages to the code. But if you know the address of a
* fixed (and not inlined) function in both worlds, you can
* find out the offset between them. */
printf("Live run, main = %p\n", (void *)main);
if (!outdir) {
fprintf(stderr, "expected -O <outdir> option\n");
return 1;
}
printf("Will write log files to %s\n", outdir);
}
size_t nrun = 0, npass = 0;
for (size_t i = 0; i < lenof(tests); i++) {
bool keep_these_outfiles = true;
if (!tests_to_run[i])
continue;
const struct test *test = &tests[i];
printf("Running test %s ... ", test->testname);
fflush(stdout);
test_skipped = false;
random_seed(test->testname);
test_basename = test->testname;
test_index = 0;
test->testfn();
if (test_skipped) {
/* Used for e.g. tests of hardware-accelerated crypto when
* the hardware acceleration isn't available */
printf("skipped\n");
continue;
}
nrun++;
if (is_dry_run) {
printf("dry run done\n");
continue; /* test files won't exist anyway */
}
if (test_index < 2) {
printf("FAIL: test did not generate multiple output files\n");
goto test_done;
}
char *firstfile = log_filename(test_basename, 0);
FILE *firstfp = fopen(firstfile, "rb");
if (!firstfp) {
printf("ERR: %s: open: %s\n", firstfile, strerror(errno));
goto test_done;
}
for (size_t i = 1; i < test_index; i++) {
char *nextfile = log_filename(test_basename, i);
FILE *nextfp = fopen(nextfile, "rb");
if (!nextfp) {
printf("ERR: %s: open: %s\n", nextfile, strerror(errno));
goto test_done;
}
rewind(firstfp);
char buf1[4096], bufn[4096];
bool compare_ok = false;
while (true) {
size_t r1 = fread(buf1, 1, sizeof(buf1), firstfp);
size_t rn = fread(bufn, 1, sizeof(bufn), nextfp);
if (r1 != rn) {
printf("FAIL: %s %s: different lengths\n",
firstfile, nextfile);
break;
}
if (r1 == 0) {
if (feof(firstfp) && feof(nextfp)) {
compare_ok = true;
} else {
printf("FAIL: %s %s: error at end of file\n",
firstfile, nextfile);
}
break;
}
if (memcmp(buf1, bufn, r1) != 0) {
printf("FAIL: %s %s: different content\n",
firstfile, nextfile);
break;
}
}
fclose(nextfp);
sfree(nextfile);
if (!compare_ok) {
goto test_done;
}
}
fclose(firstfp);
sfree(firstfile);
printf("pass\n");
npass++;
keep_these_outfiles = keep_outfiles;
test_done:
if (!keep_these_outfiles) {
for (size_t i = 0; i < test_index; i++) {
char *file = log_filename(test_basename, i);
remove(file);
sfree(file);
}
}
}
ssh_hash_free(random_hash);
if (npass == nrun) {
printf("All tests passed\n");
return 0;
} else {
printf("%"SIZEu" tests failed\n", nrun - npass);
return 1;
}
}