1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/proxy/sshproxy.c
Simon Tatham f00c72cc2a Framework for announcing which Interactor is talking.
All this Interactor business has been gradually working towards being
able to inform the user _which_ network connection is currently
presenting them with a password prompt (or whatever), in situations
where more than one of them might be, such as an SSH connection being
used as a proxy for another SSH connection when neither one has
one-touch login configured.

At some point, we have to arrange that any attempt to do a user
interaction during connection setup - be it a password prompt, a host
key confirmation dialog, or just displaying an SSH login banner -
makes it clear which host it's come from. That's going to mean calling
some kind of announcement function before doing any of those things.

But there are several of those functions in the Seat API, and calls to
them are scattered far and wide across the SSH backend. (And not even
just there - the Rlogin backend also uses seat_get_userpass_input).
How can we possibly make sure we don't forget a vital call site on
some obscure little-tested code path, and leave the user confused in
just that one case which nobody might notice for years?

Today I thought of a trick to solve that problem. We can use the C
type system to enforce it for us!

The plan is: we invent a new struct type which contains nothing but a
'Seat *'. Then, for every Seat method which does a thing that ought to
be clearly identified as relating to a particular Interactor, we
adjust the API for that function to take the new struct type where it
previously took a plain 'Seat *'. Or rather - doing less violence to
the existing code - we only need to adjust the API of the dispatch
functions inline in putty.h.

How does that help? Because the way you _get_ one of these
struct-wrapped Seat pointers is by calling interactor_announce() on
your Interactor, which will in turn call interactor_get_seat(), and
wrap the returned pointer into one of these structs.

The effect is that whenever the SSH (or Rlogin) code wants to call one
of those particular Seat methods, it _has_ to call
interactor_announce() just beforehand, which (once I finish all of
this) will make sure the user is aware of who is presenting the prompt
or banner or whatever. And you can't forget to call it, because if you
don't call it, then you just don't have a struct of the right type to
give to the Seat method you wanted to call!

(Of course, there's nothing stopping code from _deliberately_ taking a
Seat * it already has and wrapping it into the new struct. In fact
SshProxy has to do that, in order to forward these requests up the
chain of Seats. But the point is that you can't do it _by accident_,
just by forgetting to make a vital function call - when you do that,
you _know_ you're doing it on purpose.)

No functional change: the new interactor_announce() function exists,
and the type-system trick ensures it's called in all the right places,
but it doesn't actually _do_ anything yet.
2021-10-30 18:20:33 +01:00

630 lines
20 KiB
C

/*
* sshproxy.c: implement a Socket type that talks to an entire
* subsidiary SSH connection (sometimes called a 'jump host').
*/
#include <stdio.h>
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "network.h"
#include "storage.h"
const bool ssh_proxy_supported = true;
/*
* TODO for future work:
*
* All the interactive prompts we present to the main Seat - the host
* key and weak-crypto dialog boxes, and all prompts presented via the
* userpass_input system - need adjusting so that it's clear to the
* user _which_ SSH connection they come from. At the moment, you just
* get shown a host key fingerprint or a cryptic "login as:" prompt,
* and you have to guess which server you're currently supposed to be
* interpreting it relative to.
*
* If the user manually aborts the attempt to make the proxy SSH
* connection (e.g. by hitting ^C at a userpass prompt, or refusing to
* accept the proxy server's host key), then an assertion failure
* occurs, because the main backend receives an indication of
* connection failure that causes it to want to call
* seat_connection_fatal("Remote side unexpectedly closed network
* connection"), which fails an assertion in tempseat.c because that
* method of TempSeat expects never to be called. To fix this, I think
* we need to distinguish 'connection attempt unexpectedly failed, in
* a way the user needs to be told about' from 'connection attempt was
* aborted by deliberate user action, so the user already knows'.
*/
typedef struct SshProxy {
char *errmsg;
Conf *conf;
LogContext *logctx;
Backend *backend;
LogPolicy *clientlp;
Seat *clientseat;
ProxyStderrBuf psb;
Plug *plug;
bool frozen;
bufchain ssh_to_socket;
bool rcvd_eof_ssh_to_socket, sent_eof_ssh_to_socket;
SockAddr *addr;
int port;
/* Traits implemented: we're a Socket from the point of view of
* the client connection, and a Seat from the POV of the SSH
* backend we instantiate. */
Socket sock;
LogPolicy logpolicy;
Seat seat;
} SshProxy;
static Plug *sshproxy_plug(Socket *s, Plug *p)
{
SshProxy *sp = container_of(s, SshProxy, sock);
Plug *oldplug = sp->plug;
if (p)
sp->plug = p;
return oldplug;
}
static void sshproxy_close(Socket *s)
{
SshProxy *sp = container_of(s, SshProxy, sock);
sk_addr_free(sp->addr);
sfree(sp->errmsg);
conf_free(sp->conf);
if (sp->backend)
backend_free(sp->backend);
if (sp->logctx)
log_free(sp->logctx);
bufchain_clear(&sp->ssh_to_socket);
delete_callbacks_for_context(sp);
sfree(sp);
}
static size_t sshproxy_write(Socket *s, const void *data, size_t len)
{
SshProxy *sp = container_of(s, SshProxy, sock);
if (!sp->backend)
return 0;
backend_send(sp->backend, data, len);
return backend_sendbuffer(sp->backend);
}
static size_t sshproxy_write_oob(Socket *s, const void *data, size_t len)
{
/*
* oob data is treated as inband; nasty, but nothing really
* better we can do
*/
return sshproxy_write(s, data, len);
}
static void sshproxy_write_eof(Socket *s)
{
SshProxy *sp = container_of(s, SshProxy, sock);
if (!sp->backend)
return;
backend_special(sp->backend, SS_EOF, 0);
}
static void try_send_ssh_to_socket(void *ctx);
static void sshproxy_set_frozen(Socket *s, bool is_frozen)
{
SshProxy *sp = container_of(s, SshProxy, sock);
sp->frozen = is_frozen;
if (!sp->frozen)
queue_toplevel_callback(try_send_ssh_to_socket, sp);
}
static const char *sshproxy_socket_error(Socket *s)
{
SshProxy *sp = container_of(s, SshProxy, sock);
return sp->errmsg;
}
static SocketPeerInfo *sshproxy_peer_info(Socket *s)
{
return NULL;
}
static const SocketVtable SshProxy_sock_vt = {
.plug = sshproxy_plug,
.close = sshproxy_close,
.write = sshproxy_write,
.write_oob = sshproxy_write_oob,
.write_eof = sshproxy_write_eof,
.set_frozen = sshproxy_set_frozen,
.socket_error = sshproxy_socket_error,
.peer_info = sshproxy_peer_info,
};
static void sshproxy_eventlog(LogPolicy *lp, const char *event)
{
SshProxy *sp = container_of(lp, SshProxy, logpolicy);
log_proxy_stderr(sp->plug, &sp->psb, event, strlen(event));
log_proxy_stderr(sp->plug, &sp->psb, "\n", 1);
}
static int sshproxy_askappend(LogPolicy *lp, Filename *filename,
void (*callback)(void *ctx, int result),
void *ctx)
{
SshProxy *sp = container_of(lp, SshProxy, logpolicy);
/*
* If we have access to the outer LogPolicy, pass on this request
* to the end user.
*/
if (sp->clientlp)
return lp_askappend(sp->clientlp, filename, callback, ctx);
/*
* Otherwise, fall back to the safe noninteractive assumption.
*/
char *msg = dupprintf("Log file \"%s\" already exists; logging cancelled",
filename_to_str(filename));
sshproxy_eventlog(lp, msg);
sfree(msg);
return 0;
}
static void sshproxy_logging_error(LogPolicy *lp, const char *event)
{
SshProxy *sp = container_of(lp, SshProxy, logpolicy);
/*
* If we have access to the outer LogPolicy, pass on this request
* to it.
*/
if (sp->clientlp) {
lp_logging_error(sp->clientlp, event);
return;
}
/*
* Otherwise, the best we can do is to put it in the outer SSH
* connection's Event Log.
*/
char *msg = dupprintf("Logging error: %s", event);
sshproxy_eventlog(lp, msg);
sfree(msg);
}
static const LogPolicyVtable SshProxy_logpolicy_vt = {
.eventlog = sshproxy_eventlog,
.askappend = sshproxy_askappend,
.logging_error = sshproxy_logging_error,
.verbose = null_lp_verbose_no,
};
/*
* Function called when we encounter an error during connection setup that's
* likely to be the cause of terminating the proxy SSH connection. Putting it
* in the Event Log is useful on general principles; also putting it in
* sp->errmsg meaks that it will be passed back through plug_closing when the
* proxy SSH connection actually terminates, so that the end user will see
* what went wrong in the proxy connection.
*/
static void sshproxy_error(SshProxy *sp, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
char *msg = dupvprintf(fmt, ap);
va_end(ap);
if (!sp->errmsg)
sp->errmsg = dupstr(msg);
sshproxy_eventlog(&sp->logpolicy, msg);
sfree(msg);
}
static void try_send_ssh_to_socket(void *ctx)
{
SshProxy *sp = (SshProxy *)ctx;
if (sp->frozen)
return;
while (bufchain_size(&sp->ssh_to_socket)) {
ptrlen pl = bufchain_prefix(&sp->ssh_to_socket);
plug_receive(sp->plug, 0, pl.ptr, pl.len);
bufchain_consume(&sp->ssh_to_socket, pl.len);
}
if (sp->rcvd_eof_ssh_to_socket &&
!sp->sent_eof_ssh_to_socket) {
sp->sent_eof_ssh_to_socket = true;
plug_closing(sp->plug, sp->errmsg, 0);
}
}
static void sshproxy_notify_session_started(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat)
seat_set_trust_status(sp->clientseat, true);
plug_log(sp->plug, PLUGLOG_CONNECT_SUCCESS, sp->addr, sp->port, NULL, 0);
}
static size_t sshproxy_output(Seat *seat, SeatOutputType type,
const void *data, size_t len)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
bufchain_add(&sp->ssh_to_socket, data, len);
try_send_ssh_to_socket(sp);
return bufchain_size(&sp->ssh_to_socket);
}
static inline InteractionReadySeat wrap(Seat *seat)
{
InteractionReadySeat iseat;
iseat.seat = seat;
return iseat;
}
static size_t sshproxy_banner(Seat *seat, const void *data, size_t len)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat) {
/*
* If we have access to the outer Seat, pass the SSH login
* banner on to it.
*/
return seat_banner(wrap(sp->clientseat), data, len);
} else {
return 0;
}
}
static bool sshproxy_eof(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
sp->rcvd_eof_ssh_to_socket = true;
try_send_ssh_to_socket(sp);
return false;
}
static void sshproxy_sent(Seat *seat, size_t new_bufsize)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
plug_sent(sp->plug, new_bufsize);
}
static void sshproxy_notify_remote_disconnect(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (!sp->rcvd_eof_ssh_to_socket && !backend_connected(sp->backend))
sshproxy_eof(seat);
}
static int sshproxy_get_userpass_input(Seat *seat, prompts_t *p)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat) {
/*
* If we have access to the outer Seat, pass this prompt
* request on to it. FIXME: appropriately adjusted
*/
return seat_get_userpass_input(wrap(sp->clientseat), p);
}
/*
* Otherwise, behave as if noninteractive (like plink -batch):
* reject all attempts to present a prompt to the user, and log in
* the Event Log to say why not.
*/
sshproxy_error(sp, "Unable to provide interactive authentication "
"requested by proxy SSH connection");
return 0;
}
static void sshproxy_connection_fatal_callback(void *vctx)
{
SshProxy *sp = (SshProxy *)vctx;
plug_closing(sp->plug, sp->errmsg, 0);
}
static void sshproxy_connection_fatal(Seat *seat, const char *message)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (!sp->errmsg) {
sp->errmsg = dupprintf(
"fatal error in proxy SSH connection: %s", message);
queue_toplevel_callback(sshproxy_connection_fatal_callback, sp);
}
}
static int sshproxy_confirm_ssh_host_key(
Seat *seat, const char *host, int port, const char *keytype,
char *keystr, const char *keydisp, char **key_fingerprints, bool mismatch,
void (*callback)(void *ctx, int result), void *ctx)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat) {
/*
* If we have access to the outer Seat, pass this prompt
* request on to it. FIXME: appropriately adjusted
*/
return seat_confirm_ssh_host_key(
wrap(sp->clientseat), host, port, keytype, keystr, keydisp,
key_fingerprints, mismatch, callback, ctx);
}
/*
* Otherwise, behave as if we're in batch mode, i.e. take the safe
* option in the absence of interactive confirmation, i.e. abort
* the connection.
*/
return 0;
}
static int sshproxy_confirm_weak_crypto_primitive(
Seat *seat, const char *algtype, const char *algname,
void (*callback)(void *ctx, int result), void *ctx)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat) {
/*
* If we have access to the outer Seat, pass this prompt
* request on to it. FIXME: appropriately adjusted
*/
return seat_confirm_weak_crypto_primitive(
wrap(sp->clientseat), algtype, algname, callback, ctx);
}
/*
* Otherwise, behave as if we're in batch mode: take the safest
* option.
*/
sshproxy_error(sp, "First %s supported by server is %s, below warning "
"threshold. Abandoning proxy SSH connection.",
algtype, algname);
return 0;
}
static int sshproxy_confirm_weak_cached_hostkey(
Seat *seat, const char *algname, const char *betteralgs,
void (*callback)(void *ctx, int result), void *ctx)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat) {
/*
* If we have access to the outer Seat, pass this prompt
* request on to it. FIXME: appropriately adjusted
*/
return seat_confirm_weak_cached_hostkey(
wrap(sp->clientseat), algname, betteralgs, callback, ctx);
}
/*
* Otherwise, behave as if we're in batch mode: take the safest
* option.
*/
sshproxy_error(sp, "First host key type stored for server is %s, below "
"warning threshold. Abandoning proxy SSH connection.",
algname);
return 0;
}
static StripCtrlChars *sshproxy_stripctrl_new(
Seat *seat, BinarySink *bs_out, SeatInteractionContext sic)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat)
return seat_stripctrl_new(sp->clientseat, bs_out, sic);
else
return NULL;
}
static void sshproxy_set_trust_status(Seat *seat, bool trusted)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
if (sp->clientseat)
seat_set_trust_status(sp->clientseat, trusted);
}
static bool sshproxy_can_set_trust_status(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
return sp->clientseat && seat_can_set_trust_status(sp->clientseat);
}
static bool sshproxy_verbose(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
return sp->clientseat && seat_verbose(sp->clientseat);
}
static bool sshproxy_interactive(Seat *seat)
{
SshProxy *sp = container_of(seat, SshProxy, seat);
return sp->clientseat && seat_interactive(sp->clientseat);
}
static const SeatVtable SshProxy_seat_vt = {
.output = sshproxy_output,
.eof = sshproxy_eof,
.sent = sshproxy_sent,
.banner = sshproxy_banner,
.get_userpass_input = sshproxy_get_userpass_input,
.notify_session_started = sshproxy_notify_session_started,
.notify_remote_exit = nullseat_notify_remote_exit,
.notify_remote_disconnect = sshproxy_notify_remote_disconnect,
.connection_fatal = sshproxy_connection_fatal,
.update_specials_menu = nullseat_update_specials_menu,
.get_ttymode = nullseat_get_ttymode,
.set_busy_status = nullseat_set_busy_status,
.confirm_ssh_host_key = sshproxy_confirm_ssh_host_key,
.confirm_weak_crypto_primitive = sshproxy_confirm_weak_crypto_primitive,
.confirm_weak_cached_hostkey = sshproxy_confirm_weak_cached_hostkey,
.is_utf8 = nullseat_is_never_utf8,
.echoedit_update = nullseat_echoedit_update,
.get_x_display = nullseat_get_x_display,
.get_windowid = nullseat_get_windowid,
.get_window_pixel_size = nullseat_get_window_pixel_size,
.stripctrl_new = sshproxy_stripctrl_new,
.set_trust_status = sshproxy_set_trust_status,
.can_set_trust_status = sshproxy_can_set_trust_status,
.verbose = sshproxy_verbose,
.interactive = sshproxy_interactive,
.get_cursor_position = nullseat_get_cursor_position,
};
Socket *sshproxy_new_connection(SockAddr *addr, const char *hostname,
int port, bool privport,
bool oobinline, bool nodelay, bool keepalive,
Plug *plug, Conf *clientconf,
Interactor *clientitr)
{
SshProxy *sp = snew(SshProxy);
memset(sp, 0, sizeof(*sp));
sp->sock.vt = &SshProxy_sock_vt;
sp->logpolicy.vt = &SshProxy_logpolicy_vt;
sp->seat.vt = &SshProxy_seat_vt;
sp->plug = plug;
psb_init(&sp->psb);
bufchain_init(&sp->ssh_to_socket);
sp->addr = addr;
sp->port = port;
sp->conf = conf_new();
/* Try to treat proxy_hostname as the title of a saved session. If
* that fails, set up a default Conf of our own treating it as a
* hostname. */
const char *proxy_hostname = conf_get_str(clientconf, CONF_proxy_host);
if (do_defaults(proxy_hostname, sp->conf)) {
if (!conf_launchable(sp->conf)) {
sp->errmsg = dupprintf("saved session '%s' is not launchable",
proxy_hostname);
return &sp->sock;
}
} else {
do_defaults(NULL, sp->conf);
/* In hostname mode, we default to PROT_SSH. This is more useful than
* the obvious approach of defaulting to the protocol defined in
* Default Settings, because only SSH (ok, and bare ssh-connection)
* can be used for this kind of proxy. */
conf_set_int(sp->conf, CONF_protocol, PROT_SSH);
conf_set_str(sp->conf, CONF_host, proxy_hostname);
conf_set_int(sp->conf, CONF_port,
conf_get_int(clientconf, CONF_proxy_port));
}
const char *proxy_username = conf_get_str(clientconf, CONF_proxy_username);
if (*proxy_username)
conf_set_str(sp->conf, CONF_username, proxy_username);
const struct BackendVtable *backvt = backend_vt_from_proto(
conf_get_int(sp->conf, CONF_protocol));
/*
* We don't actually need an _SSH_ session specifically: it's also
* OK to use PROT_SSHCONN, because really, the criterion is
* whether setting CONF_ssh_nc_host will do anything useful. So
* our check is for whether the backend sets the flag promising
* that it does.
*/
if (!(backvt->flags & BACKEND_SUPPORTS_NC_HOST)) {
sp->errmsg = dupprintf("saved session '%s' is not an SSH session",
proxy_hostname);
return &sp->sock;
}
/*
* We also expect that the backend will announce a willingness to
* notify us that the session has started. Any backend providing
* NC_HOST should also provide this.
*/
assert(backvt->flags & BACKEND_NOTIFIES_SESSION_START &&
"Backend provides NC_HOST without SESSION_START!");
/*
* Turn off SSH features we definitely don't want. It would be
* awkward and counterintuitive to have the proxy SSH connection
* become a connection-sharing upstream (but it's fine to have it
* be a downstream, if that's configured). And we don't want to
* open X forwardings, agent forwardings or (other) port
* forwardings as a side effect of this one operation.
*/
conf_set_bool(sp->conf, CONF_ssh_connection_sharing_upstream, false);
conf_set_bool(sp->conf, CONF_x11_forward, false);
conf_set_bool(sp->conf, CONF_agentfwd, false);
for (const char *subkey;
(subkey = conf_get_str_nthstrkey(sp->conf, CONF_portfwd, 0)) != NULL;)
conf_del_str_str(sp->conf, CONF_portfwd, subkey);
/*
* We'll only be running one channel through this connection
* (since we've just turned off all the other things we might have
* done with it), so we can configure it as simple.
*/
conf_set_bool(sp->conf, CONF_ssh_simple, true);
/*
* Configure the main channel of this SSH session to be a
* direct-tcpip connection to the destination host/port.
*/
conf_set_str(sp->conf, CONF_ssh_nc_host, hostname);
conf_set_int(sp->conf, CONF_ssh_nc_port, port);
sp->logctx = log_init(&sp->logpolicy, sp->conf);
char *error, *realhost;
error = backend_init(backvt, &sp->seat, &sp->backend, sp->logctx, sp->conf,
conf_get_str(sp->conf, CONF_host),
conf_get_int(sp->conf, CONF_port),
&realhost, nodelay,
conf_get_bool(sp->conf, CONF_tcp_keepalives));
if (error) {
sp->errmsg = dupprintf("unable to open SSH proxy connection: %s",
error);
return &sp->sock;
}
sfree(realhost);
/*
* If we've been given an Interactor by the caller, squirrel away
* things it's holding.
*/
if (clientitr) {
sp->clientlp = interactor_logpolicy(clientitr);
if (backvt->flags & BACKEND_NOTIFIES_SESSION_START) {
/*
* We can only keep the client's Seat if our own backend will
* tell us when to give it back. (SSH-based backends _should_
* do that, but we check the flag here anyway.)
*
* Also, check if the client already has a TempSeat, and if
* so, don't wrap it with another one.
*/
Seat *clientseat = interactor_get_seat(clientitr);
if (is_tempseat(clientseat)) {
sp->clientseat = tempseat_get_real(clientseat);
} else {
sp->clientseat = clientseat;
interactor_set_seat(clientitr, tempseat_new(sp->clientseat));
}
}
}
return &sp->sock;
}