mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
3198995ef3
Not a very profound test, but it's at least enough to answer the question 'is it still returning the same results?' after I change things.
3744 lines
195 KiB
Python
Executable File
3744 lines
195 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import unittest
|
|
import struct
|
|
import itertools
|
|
import functools
|
|
import contextlib
|
|
import hashlib
|
|
import binascii
|
|
from base64 import b64decode as b64
|
|
import json
|
|
try:
|
|
from math import gcd
|
|
except ImportError:
|
|
from fractions import gcd
|
|
|
|
from eccref import *
|
|
from testcrypt import *
|
|
from ssh import *
|
|
from ca import CertType, make_signature_preimage, sign_cert_via_testcrypt
|
|
|
|
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
|
|
|
|
def unhex(s):
|
|
return binascii.unhexlify(s.replace(" ", "").replace("\n", ""))
|
|
|
|
def rsa_bare(e, n):
|
|
rsa = rsa_new()
|
|
get_rsa_ssh1_pub(ssh_uint32(nbits(n)) + ssh1_mpint(e) + ssh1_mpint(n),
|
|
rsa, 'exponent_first')
|
|
return rsa
|
|
|
|
def find_non_square_mod(p):
|
|
# Find a non-square mod p, using the Jacobi symbol
|
|
# calculation function from eccref.py.
|
|
return next(z for z in itertools.count(2) if jacobi(z, p) == -1)
|
|
|
|
def fibonacci_scattered(n=10):
|
|
# Generate a list of Fibonacci numbers with power-of-2 indices
|
|
# (F_1, F_2, F_4, ...), to be used as test inputs of varying
|
|
# sizes. Also put F_0 = 0 into the list as a bonus.
|
|
yield 0
|
|
a, b, c = 0, 1, 1
|
|
while True:
|
|
yield b
|
|
n -= 1
|
|
if n <= 0:
|
|
break
|
|
a, b, c = (a**2+b**2, b*(a+c), b**2+c**2)
|
|
|
|
def fibonacci(n=10):
|
|
# Generate the full Fibonacci sequence starting from F_0 = 0.
|
|
a, b = 0, 1
|
|
while True:
|
|
yield a
|
|
n -= 1
|
|
if n <= 0:
|
|
break
|
|
a, b = b, a+b
|
|
|
|
def mp_mask(mp):
|
|
# Return the value that mp would represent if all its bits
|
|
# were set. Useful for masking a true mathematical output
|
|
# value (e.g. from an operation that can over/underflow, like
|
|
# mp_sub or mp_anything_into) to check it's right within the
|
|
# ability of that particular mp_int to represent.
|
|
return ((1 << mp_max_bits(mp))-1)
|
|
|
|
def adjtuples(iterable, n):
|
|
# Return all the contiguous n-tuples of an iterable, including
|
|
# overlapping ones. E.g. if called on [0,1,2,3,4] with n=3 it
|
|
# would return (0,1,2), (1,2,3), (2,3,4) and then stop.
|
|
it = iter(iterable)
|
|
toret = [next(it) for _ in range(n-1)]
|
|
for element in it:
|
|
toret.append(element)
|
|
yield tuple(toret)
|
|
toret[:1] = []
|
|
|
|
def last(iterable):
|
|
# Return the last element of an iterable, or None if it is empty.
|
|
it = iter(iterable)
|
|
toret = None
|
|
for toret in it:
|
|
pass
|
|
return toret
|
|
|
|
def le_integer(x, nbits):
|
|
assert nbits % 8 == 0
|
|
return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])
|
|
|
|
@contextlib.contextmanager
|
|
def queued_random_data(nbytes, seed):
|
|
hashsize = 512 // 8
|
|
data = b''.join(
|
|
hashlib.sha512("preimage:{:d}:{}".format(i, seed).encode('ascii'))
|
|
.digest() for i in range((nbytes + hashsize - 1) // hashsize))
|
|
data = data[:nbytes]
|
|
random_queue(data)
|
|
yield None
|
|
random_clear()
|
|
|
|
@contextlib.contextmanager
|
|
def queued_specific_random_data(data):
|
|
random_queue(data)
|
|
yield None
|
|
random_clear()
|
|
|
|
@contextlib.contextmanager
|
|
def random_prng(seed):
|
|
random_make_prng('sha256', seed)
|
|
yield None
|
|
random_clear()
|
|
|
|
def hash_str(alg, message):
|
|
h = ssh_hash_new(alg)
|
|
ssh_hash_update(h, message)
|
|
return ssh_hash_final(h)
|
|
|
|
def hash_str_iter(alg, message_iter):
|
|
h = ssh_hash_new(alg)
|
|
for string in message_iter:
|
|
ssh_hash_update(h, string)
|
|
return ssh_hash_final(h)
|
|
|
|
def mac_str(alg, key, message, cipher=None):
|
|
m = ssh2_mac_new(alg, cipher)
|
|
ssh2_mac_setkey(m, key)
|
|
ssh2_mac_start(m)
|
|
ssh2_mac_update(m, "dummy")
|
|
# Make sure ssh_mac_start erases previous state
|
|
ssh2_mac_start(m)
|
|
ssh2_mac_update(m, message)
|
|
return ssh2_mac_genresult(m)
|
|
|
|
def lcm(a, b):
|
|
return a * b // gcd(a, b)
|
|
|
|
def get_implementations(alg):
|
|
return get_implementations_commasep(alg).decode("ASCII").split(",")
|
|
|
|
def get_aes_impls():
|
|
return [impl.rsplit("_", 1)[-1]
|
|
for impl in get_implementations("aes128_cbc")
|
|
if impl.startswith("aes128_cbc_")]
|
|
|
|
class MyTestBase(unittest.TestCase):
|
|
"Intermediate class that adds useful helper methods."
|
|
def assertEqualBin(self, x, y):
|
|
# Like assertEqual, but produces more legible error reports
|
|
# for random-looking binary data.
|
|
self.assertEqual(binascii.hexlify(x), binascii.hexlify(y))
|
|
|
|
class mpint(MyTestBase):
|
|
def testCreation(self):
|
|
self.assertEqual(int(mp_new(128)), 0)
|
|
self.assertEqual(int(mp_from_bytes_be(b'ABCDEFGHIJKLMNOP')),
|
|
0x4142434445464748494a4b4c4d4e4f50)
|
|
self.assertEqual(int(mp_from_bytes_le(b'ABCDEFGHIJKLMNOP')),
|
|
0x504f4e4d4c4b4a494847464544434241)
|
|
self.assertEqual(int(mp_from_integer(12345)), 12345)
|
|
decstr = '91596559417721901505460351493238411077414937428167'
|
|
self.assertEqual(int(mp_from_decimal_pl(decstr)), int(decstr, 10))
|
|
self.assertEqual(int(mp_from_decimal(decstr)), int(decstr, 10))
|
|
self.assertEqual(int(mp_from_decimal("")), 0)
|
|
# For hex, test both upper and lower case digits
|
|
hexstr = 'ea7cb89f409ae845215822e37D32D0C63EC43E1381C2FF8094'
|
|
self.assertEqual(int(mp_from_hex_pl(hexstr)), int(hexstr, 16))
|
|
self.assertEqual(int(mp_from_hex(hexstr)), int(hexstr, 16))
|
|
self.assertEqual(int(mp_from_hex("")), 0)
|
|
p2 = mp_power_2(123)
|
|
self.assertEqual(int(p2), 1 << 123)
|
|
p2c = mp_copy(p2)
|
|
self.assertEqual(int(p2c), 1 << 123)
|
|
# Check mp_copy really makes a copy, not an alias (ok, that's
|
|
# testing the testcrypt system more than it's testing the
|
|
# underlying C functions)
|
|
mp_set_bit(p2c, 120, 1)
|
|
self.assertEqual(int(p2c), (1 << 123) + (1 << 120))
|
|
self.assertEqual(int(p2), 1 << 123)
|
|
|
|
def testBytesAndBits(self):
|
|
x = mp_new(128)
|
|
self.assertEqual(mp_get_byte(x, 2), 0)
|
|
mp_set_bit(x, 2*8+3, 1)
|
|
self.assertEqual(mp_get_byte(x, 2), 1<<3)
|
|
self.assertEqual(mp_get_bit(x, 2*8+3), 1)
|
|
mp_set_bit(x, 2*8+3, 0)
|
|
self.assertEqual(mp_get_byte(x, 2), 0)
|
|
self.assertEqual(mp_get_bit(x, 2*8+3), 0)
|
|
# Currently I expect 128 to be a multiple of any
|
|
# BIGNUM_INT_BITS value we might be running with, so these
|
|
# should be exact equality
|
|
self.assertEqual(mp_max_bytes(x), 128/8)
|
|
self.assertEqual(mp_max_bits(x), 128)
|
|
|
|
nb = lambda hexstr: mp_get_nbits(mp_from_hex(hexstr))
|
|
self.assertEqual(nb('00000000000000000000000000000000'), 0)
|
|
self.assertEqual(nb('00000000000000000000000000000001'), 1)
|
|
self.assertEqual(nb('00000000000000000000000000000002'), 2)
|
|
self.assertEqual(nb('00000000000000000000000000000003'), 2)
|
|
self.assertEqual(nb('00000000000000000000000000000004'), 3)
|
|
self.assertEqual(nb('000003ffffffffffffffffffffffffff'), 106)
|
|
self.assertEqual(nb('000003ffffffffff0000000000000000'), 106)
|
|
self.assertEqual(nb('80000000000000000000000000000000'), 128)
|
|
self.assertEqual(nb('ffffffffffffffffffffffffffffffff'), 128)
|
|
|
|
def testDecAndHex(self):
|
|
def checkHex(hexstr):
|
|
n = mp_from_hex(hexstr)
|
|
i = int(hexstr, 16)
|
|
self.assertEqual(mp_get_hex(n),
|
|
"{:x}".format(i).encode('ascii'))
|
|
self.assertEqual(mp_get_hex_uppercase(n),
|
|
"{:X}".format(i).encode('ascii'))
|
|
checkHex("0")
|
|
checkHex("f")
|
|
checkHex("00000000000000000000000000000000000000000000000000")
|
|
checkHex("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
|
|
checkHex("ffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
|
|
def checkDec(hexstr):
|
|
n = mp_from_hex(hexstr)
|
|
i = int(hexstr, 16)
|
|
self.assertEqual(mp_get_decimal(n),
|
|
"{:d}".format(i).encode('ascii'))
|
|
checkDec("0")
|
|
checkDec("f")
|
|
checkDec("00000000000000000000000000000000000000000000000000")
|
|
checkDec("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
|
|
checkDec("ffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
checkDec("f" * 512)
|
|
|
|
def testComparison(self):
|
|
inputs = [
|
|
"0", "1", "2", "10", "314159265358979", "FFFFFFFFFFFFFFFF",
|
|
|
|
# Test over-long versions of some of the same numbers we
|
|
# had short forms of above
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000001",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000002",
|
|
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFF",
|
|
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
|
|
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
|
|
]
|
|
values = [(mp_from_hex(s), int(s, 16)) for s in inputs]
|
|
for am, ai in values:
|
|
for bm, bi in values:
|
|
self.assertEqual(mp_cmp_eq(am, bm) == 1, ai == bi)
|
|
self.assertEqual(mp_cmp_hs(am, bm) == 1, ai >= bi)
|
|
if (bi >> 64) == 0:
|
|
self.assertEqual(mp_eq_integer(am, bi) == 1, ai == bi)
|
|
self.assertEqual(mp_hs_integer(am, bi) == 1, ai >= bi)
|
|
|
|
# mp_{min,max}{,_into} is a reasonable thing to test
|
|
# here as well
|
|
self.assertEqual(int(mp_min(am, bm)), min(ai, bi))
|
|
self.assertEqual(int(mp_max(am, bm)), max(ai, bi))
|
|
am_small = mp_copy(am if ai<bi else bm)
|
|
mp_min_into(am_small, am, bm)
|
|
self.assertEqual(int(am_small), min(ai, bi))
|
|
am_big = mp_copy(am if ai>bi else bm)
|
|
mp_max_into(am_big, am, bm)
|
|
self.assertEqual(int(am_big), max(ai, bi))
|
|
|
|
# Test mp_{eq,hs}_integer in the case where the integer is as
|
|
# large as possible and the bignum contains very few words. In
|
|
# modes where BIGNUM_INT_BITS < 64, this used to go wrong.
|
|
mp10 = mp_new(4)
|
|
mp_copy_integer_into(mp10, 10)
|
|
highbit = 1 << 63
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 9), 0)
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 10), 0)
|
|
self.assertEqual(mp_hs_integer(mp10, highbit | 11), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 9), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 10), 0)
|
|
self.assertEqual(mp_eq_integer(mp10, highbit | 11), 0)
|
|
|
|
def testConditionals(self):
|
|
testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()]
|
|
for am, ai in testnumbers:
|
|
for bm, bi in testnumbers:
|
|
cm = mp_copy(am)
|
|
mp_select_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_select_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), bi & mp_mask(am))
|
|
|
|
mp_cond_add_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_cond_add_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), (ai+bi) & mp_mask(am))
|
|
|
|
mp_cond_sub_into(cm, am, bm, 0)
|
|
self.assertEqual(int(cm), ai & mp_mask(am))
|
|
mp_cond_sub_into(cm, am, bm, 1)
|
|
self.assertEqual(int(cm), (ai-bi) & mp_mask(am))
|
|
|
|
maxbits = max(mp_max_bits(am), mp_max_bits(bm))
|
|
cm = mp_new(maxbits)
|
|
dm = mp_new(maxbits)
|
|
mp_copy_into(cm, am)
|
|
mp_copy_into(dm, bm)
|
|
|
|
self.assertEqual(int(cm), ai)
|
|
self.assertEqual(int(dm), bi)
|
|
mp_cond_swap(cm, dm, 0)
|
|
self.assertEqual(int(cm), ai)
|
|
self.assertEqual(int(dm), bi)
|
|
mp_cond_swap(cm, dm, 1)
|
|
self.assertEqual(int(cm), bi)
|
|
self.assertEqual(int(dm), ai)
|
|
|
|
if bi != 0:
|
|
mp_cond_clear(cm, 0)
|
|
self.assertEqual(int(cm), bi)
|
|
mp_cond_clear(cm, 1)
|
|
self.assertEqual(int(cm), 0)
|
|
|
|
def testBasicArithmetic(self):
|
|
testnumbers = list(fibonacci_scattered(5))
|
|
testnumbers.extend([1 << (1 << i) for i in range(3,10)])
|
|
testnumbers.extend([(1 << (1 << i)) - 1 for i in range(3,10)])
|
|
|
|
testnumbers = [(mp_copy(n),n) for n in testnumbers]
|
|
|
|
for am, ai in testnumbers:
|
|
for bm, bi in testnumbers:
|
|
self.assertEqual(int(mp_add(am, bm)), ai + bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
# Cope with underflow in subtraction
|
|
diff = mp_sub(am, bm)
|
|
self.assertEqual(int(diff), (ai - bi) & mp_mask(diff))
|
|
|
|
for bits in range(64, 512, 64):
|
|
cm = mp_new(bits)
|
|
mp_add_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai + bi) & mp_mask(cm))
|
|
mp_mul_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai * bi) & mp_mask(cm))
|
|
mp_sub_into(cm, am, bm)
|
|
self.assertEqual(int(cm), (ai - bi) & mp_mask(cm))
|
|
|
|
# A test cherry-picked from the old bignum test script,
|
|
# involving two numbers whose product has a single 1 bit miles
|
|
# in the air and then all 0s until a bunch of cruft at the
|
|
# bottom, the aim being to test that carry propagation works
|
|
# all the way up.
|
|
ai, bi = 0xb4ff6ed2c633847562087ed9354c5c17be212ac83b59c10c316250f50b7889e5b058bf6bfafd12825225ba225ede0cba583ffbd0882de88c9e62677385a6dbdedaf81959a273eb7909ebde21ae5d12e2a584501a6756fe50ccb93b93f0d6ee721b6052a0d88431e62f410d608532868cdf3a6de26886559e94cc2677eea9bd797918b70e2717e95b45918bd1f86530cb9989e68b632c496becff848aa1956cd57ed46676a65ce6dd9783f230c8796909eef5583fcfe4acbf9c8b4ea33a08ec3fd417cf7175f434025d032567a00fc329aee154ca20f799b961fbab8f841cb7351f561a44aea45746ceaf56874dad99b63a7d7af2769d2f185e2d1c656cc6630b5aba98399fa57, 0xb50a77c03ac195225021dc18d930a352f27c0404742f961ca828c972737bad3ada74b1144657ab1d15fe1b8aefde8784ad61783f3c8d4584aa5f22a4eeca619f90563ae351b5da46770df182cf348d8e23b25fda07670c6609118e916a57ce4043608752c91515708327e36f5bb5ebd92cd4cfb39424167a679870202b23593aa524bac541a3ad322c38102a01e9659b06a4335c78d50739a51027954ac2bf03e500f975c2fa4d0ab5dd84cc9334f219d2ae933946583e384ed5dbf6498f214480ca66987b867df0f69d92e4e14071e4b8545212dd5e29ff0248ed751e168d78934da7930bcbe10e9a212128a68de5d749c61f5e424cf8cf6aa329674de0cf49c6f9b4c8b8cc3
|
|
am = mp_copy(ai)
|
|
bm = mp_copy(bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
|
|
# A regression test for a bug that came up during development
|
|
# of mpint.c, relating to an intermediate value overflowing
|
|
# its container.
|
|
ai, bi = (2**8512 * 2 // 3), (2**4224 * 11 // 15)
|
|
am = mp_copy(ai)
|
|
bm = mp_copy(bi)
|
|
self.assertEqual(int(mp_mul(am, bm)), ai * bi)
|
|
|
|
def testAddInteger(self):
|
|
initial = mp_copy(4444444444444444444444444)
|
|
|
|
x = mp_new(mp_max_bits(initial) + 64)
|
|
|
|
# mp_{add,sub,copy}_integer_into should be able to cope with
|
|
# any uintmax_t. Test a number that requires more than 32 bits.
|
|
mp_add_integer_into(x, initial, 123123123123123)
|
|
self.assertEqual(int(x), 4444444444567567567567567)
|
|
mp_sub_integer_into(x, initial, 123123123123123)
|
|
self.assertEqual(int(x), 4444444444321321321321321)
|
|
mp_copy_integer_into(x, 123123123123123)
|
|
self.assertEqual(int(x), 123123123123123)
|
|
|
|
# mp_mul_integer_into only takes a uint16_t integer input
|
|
mp_mul_integer_into(x, initial, 10001)
|
|
self.assertEqual(int(x), 44448888888888888888888884444)
|
|
|
|
def testDivision(self):
|
|
divisors = [1, 2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
|
|
141421356237309504880168872420969807856967187537694807]
|
|
quotients = [0, 1, 2, 2**64-1, 2**64, 2**64+1, 17320508075688772935]
|
|
for d in divisors:
|
|
for q in quotients:
|
|
remainders = {0, 1, d-1, 2*d//3}
|
|
for r in sorted(remainders):
|
|
if r >= d:
|
|
continue # silly cases with tiny divisors
|
|
n = q*d + r
|
|
mq = mp_new(max(nbits(q), 1))
|
|
mr = mp_new(max(nbits(r), 1))
|
|
mp_divmod_into(n, d, mq, mr)
|
|
self.assertEqual(int(mq), q)
|
|
self.assertEqual(int(mr), r)
|
|
self.assertEqual(int(mp_div(n, d)), q)
|
|
self.assertEqual(int(mp_mod(n, d)), r)
|
|
|
|
# Make sure divmod_into can handle not getting one
|
|
# of its output pointers (or even both).
|
|
mp_clear(mq)
|
|
mp_divmod_into(n, d, mq, None)
|
|
self.assertEqual(int(mq), q)
|
|
mp_clear(mr)
|
|
mp_divmod_into(n, d, None, mr)
|
|
self.assertEqual(int(mr), r)
|
|
mp_divmod_into(n, d, None, None)
|
|
# No tests we can do after that last one - we just
|
|
# insist that it isn't allowed to have crashed!
|
|
|
|
def testNthRoot(self):
|
|
roots = [1, 13, 1234567654321,
|
|
57721566490153286060651209008240243104215933593992]
|
|
tests = []
|
|
tests.append((0, 2, 0, 0))
|
|
tests.append((0, 3, 0, 0))
|
|
for r in roots:
|
|
for n in 2, 3, 5:
|
|
tests.append((r**n, n, r, 0))
|
|
tests.append((r**n+1, n, r, 1))
|
|
tests.append((r**n-1, n, r-1, r**n - (r-1)**n - 1))
|
|
for x, n, eroot, eremainder in tests:
|
|
with self.subTest(x=x):
|
|
mx = mp_copy(x)
|
|
remainder = mp_copy(mx)
|
|
root = mp_nthroot(x, n, remainder)
|
|
self.assertEqual(int(root), eroot)
|
|
self.assertEqual(int(remainder), eremainder)
|
|
self.assertEqual(int(mp_nthroot(2*10**100, 2, None)),
|
|
141421356237309504880168872420969807856967187537694)
|
|
self.assertEqual(int(mp_nthroot(3*10**150, 3, None)),
|
|
144224957030740838232163831078010958839186925349935)
|
|
|
|
def testBitwise(self):
|
|
p = 0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e
|
|
e = 0x2b7e151628aed2a6abf7158809cf4f3c762e7160f38b4da56a784d9045190
|
|
x = mp_new(nbits(p))
|
|
|
|
mp_and_into(x, p, e)
|
|
self.assertEqual(int(x), p & e)
|
|
|
|
mp_or_into(x, p, e)
|
|
self.assertEqual(int(x), p | e)
|
|
|
|
mp_xor_into(x, p, e)
|
|
self.assertEqual(int(x), p ^ e)
|
|
|
|
mp_bic_into(x, p, e)
|
|
self.assertEqual(int(x), p & ~e)
|
|
|
|
def testInversion(self):
|
|
# Test mp_invert_mod_2to.
|
|
testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()
|
|
if n & 1]
|
|
for power2 in [1, 2, 3, 5, 13, 32, 64, 127, 128, 129]:
|
|
for am, ai in testnumbers:
|
|
bm = mp_invert_mod_2to(am, power2)
|
|
bi = int(bm)
|
|
self.assertEqual(((ai * bi) & ((1 << power2) - 1)), 1)
|
|
|
|
# mp_reduce_mod_2to is a much simpler function, but
|
|
# this is as good a place as any to test it.
|
|
rm = mp_copy(am)
|
|
mp_reduce_mod_2to(rm, power2)
|
|
self.assertEqual(int(rm), ai & ((1 << power2) - 1))
|
|
|
|
# Test mp_invert proper.
|
|
moduli = [2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
|
|
141421356237309504880168872420969807856967187537694807,
|
|
2**128-1]
|
|
for m in moduli:
|
|
# Prepare a MontyContext for the monty_invert test below
|
|
# (unless m is even, in which case we can't)
|
|
mc = monty_new(m) if m & 1 else None
|
|
|
|
to_invert = {1, 2, 3, 7, 19, m-1, 5*m//17, (m-1)//2, (m+1)//2}
|
|
for x in sorted(to_invert):
|
|
if gcd(x, m) != 1:
|
|
continue # filter out non-invertible cases
|
|
inv = int(mp_invert(x, m))
|
|
assert x * inv % m == 1
|
|
|
|
# Test monty_invert too, while we're here
|
|
if mc is not None:
|
|
self.assertEqual(
|
|
int(monty_invert(mc, monty_import(mc, x))),
|
|
int(monty_import(mc, inv)))
|
|
|
|
def testGCD(self):
|
|
powerpairs = [(0,0), (1,0), (1,1), (2,1), (2,2), (75,3), (17,23)]
|
|
for a2, b2 in powerpairs:
|
|
for a3, b3 in powerpairs:
|
|
for a5, b5 in powerpairs:
|
|
a = 2**a2 * 3**a3 * 5**a5 * 17 * 19 * 23
|
|
b = 2**b2 * 3**b3 * 5**b5 * 65423
|
|
d = 2**min(a2, b2) * 3**min(a3, b3) * 5**min(a5, b5)
|
|
|
|
ma = mp_copy(a)
|
|
mb = mp_copy(b)
|
|
|
|
self.assertEqual(int(mp_gcd(ma, mb)), d)
|
|
|
|
md = mp_new(nbits(d))
|
|
mA = mp_new(nbits(b))
|
|
mB = mp_new(nbits(a))
|
|
mp_gcd_into(ma, mb, md, mA, mB)
|
|
self.assertEqual(int(md), d)
|
|
A = int(mA)
|
|
B = int(mB)
|
|
self.assertEqual(a*A - b*B, d)
|
|
self.assertTrue(0 <= A < b//d)
|
|
self.assertTrue(0 <= B < a//d)
|
|
|
|
self.assertEqual(mp_coprime(ma, mb), 1 if d==1 else 0)
|
|
|
|
# Make sure gcd_into can handle not getting some
|
|
# of its output pointers.
|
|
mp_clear(md)
|
|
mp_gcd_into(ma, mb, md, None, None)
|
|
self.assertEqual(int(md), d)
|
|
mp_clear(mA)
|
|
mp_gcd_into(ma, mb, None, mA, None)
|
|
self.assertEqual(int(mA), A)
|
|
mp_clear(mB)
|
|
mp_gcd_into(ma, mb, None, None, mB)
|
|
self.assertEqual(int(mB), B)
|
|
mp_gcd_into(ma, mb, None, None, None)
|
|
# No tests we can do after that last one - we just
|
|
# insist that it isn't allowed to have crashed!
|
|
|
|
def testMonty(self):
|
|
moduli = [5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
|
|
293828847201107461142630006802421204703,
|
|
113064788724832491560079164581712332614996441637880086878209969852674997069759]
|
|
|
|
for m in moduli:
|
|
mc = monty_new(m)
|
|
|
|
# Import some numbers
|
|
inputs = [(monty_import(mc, n), n)
|
|
for n in sorted({0, 1, 2, 3, 2*m//3, m-1})]
|
|
|
|
# Check modulus and identity
|
|
self.assertEqual(int(monty_modulus(mc)), m)
|
|
self.assertEqual(int(monty_identity(mc)), int(inputs[1][0]))
|
|
|
|
# Check that all those numbers export OK
|
|
for mn, n in inputs:
|
|
self.assertEqual(int(monty_export(mc, mn)), n)
|
|
|
|
for ma, a in inputs:
|
|
for mb, b in inputs:
|
|
xprod = int(monty_export(mc, monty_mul(mc, ma, mb)))
|
|
self.assertEqual(xprod, a*b % m)
|
|
|
|
xsum = int(monty_export(mc, monty_add(mc, ma, mb)))
|
|
self.assertEqual(xsum, (a+b) % m)
|
|
|
|
xdiff = int(monty_export(mc, monty_sub(mc, ma, mb)))
|
|
self.assertEqual(xdiff, (a-b) % m)
|
|
|
|
# Test the ordinary mp_mod{add,sub,mul} at the
|
|
# same time, even though those don't do any
|
|
# montying at all
|
|
|
|
xprod = int(mp_modmul(a, b, m))
|
|
self.assertEqual(xprod, a*b % m)
|
|
|
|
xsum = int(mp_modadd(a, b, m))
|
|
self.assertEqual(xsum, (a+b) % m)
|
|
|
|
xdiff = int(mp_modsub(a, b, m))
|
|
self.assertEqual(xdiff, (a-b) % m)
|
|
|
|
for ma, a in inputs:
|
|
# Compute a^0, a^1, a^1, a^2, a^3, a^5, ...
|
|
indices = list(fibonacci())
|
|
powers = [int(monty_export(mc, monty_pow(mc, ma, power)))
|
|
for power in indices]
|
|
# Check the first two make sense
|
|
self.assertEqual(powers[0], 1)
|
|
self.assertEqual(powers[1], a)
|
|
# Check the others using the Fibonacci identity:
|
|
# F_n + F_{n+1} = F_{n+2}, so a^{F_n} a^{F_{n+1}} = a^{F_{n+2}}
|
|
for p0, p1, p2 in adjtuples(powers, 3):
|
|
self.assertEqual(p2, p0 * p1 % m)
|
|
|
|
# Test the ordinary mp_modpow here as well, while
|
|
# we've got the machinery available
|
|
for index, power in zip(indices, powers):
|
|
self.assertEqual(int(mp_modpow(a, index, m)), power)
|
|
|
|
# A regression test for a bug I encountered during initial
|
|
# development of mpint.c, in which an incomplete reduction
|
|
# happened somewhere in an intermediate value.
|
|
b, e, m = 0x2B5B93812F253FF91F56B3B4DAD01CA2884B6A80719B0DA4E2159A230C6009EDA97C5C8FD4636B324F9594706EE3AD444831571BA5E17B1B2DFA92DEA8B7E, 0x25, 0xC8FCFD0FD7371F4FE8D0150EFC124E220581569587CCD8E50423FA8D41E0B2A0127E100E92501E5EE3228D12EA422A568C17E0AD2E5C5FCC2AE9159D2B7FB8CB
|
|
assert(int(mp_modpow(b, e, m)) == pow(b, e, m))
|
|
|
|
# Make sure mp_modpow can handle a base larger than the
|
|
# modulus, by pre-reducing it
|
|
assert(int(mp_modpow(1<<877, 907, 999979)) == pow(2, 877*907, 999979))
|
|
|
|
def testModsqrt(self):
|
|
moduli = [
|
|
5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
|
|
293828847201107461142630006802421204703,
|
|
113064788724832491560079164581712332614996441637880086878209969852674997069759,
|
|
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6FFFFFFFF00000001]
|
|
for p in moduli:
|
|
# Count the factors of 2 in the group. (That is, we want
|
|
# p-1 to be an odd multiple of 2^{factors_of_2}.)
|
|
factors_of_2 = nbits((p-1) & (1-p)) - 1
|
|
assert (p & ((2 << factors_of_2)-1)) == ((1 << factors_of_2)+1)
|
|
|
|
z = find_non_square_mod(p)
|
|
|
|
sc = modsqrt_new(p, z)
|
|
|
|
def ptest(x):
|
|
root, success = mp_modsqrt(sc, x)
|
|
r = int(root)
|
|
self.assertTrue(success)
|
|
self.assertEqual((r * r - x) % p, 0)
|
|
|
|
def ntest(x):
|
|
root, success = mp_modsqrt(sc, x)
|
|
self.assertFalse(success)
|
|
|
|
# Make up some more or less random values mod p to square
|
|
v1 = pow(3, nbits(p), p)
|
|
v2 = pow(5, v1, p)
|
|
test_roots = [0, 1, 2, 3, 4, 3*p//4, v1, v2, v1+1, 12873*v1, v1*v2]
|
|
known_squares = {r*r % p for r in test_roots}
|
|
for s in known_squares:
|
|
ptest(s)
|
|
if s != 0:
|
|
ntest(z*s % p)
|
|
|
|
# Make sure we've tested a value that is in each of the
|
|
# subgroups of order (p-1)/2^k but not in the next one
|
|
# (with the exception of k=0, which just means 'have we
|
|
# tested a non-square?', which we have in the above loop).
|
|
#
|
|
# We do this by starting with a known non-square; then
|
|
# squaring it (factors_of_2) times will return values
|
|
# nested deeper and deeper in those subgroups.
|
|
vbase = z
|
|
for k in range(factors_of_2):
|
|
# Adjust vbase by an arbitrary odd power of
|
|
# z, so that it won't look too much like the previous
|
|
# value.
|
|
vbase = vbase * pow(z, (vbase + v1 + v2) | 1, p) % p
|
|
|
|
# Move vbase into the next smaller group by squaring
|
|
# it.
|
|
vbase = pow(vbase, 2, p)
|
|
|
|
ptest(vbase)
|
|
|
|
def testShifts(self):
|
|
x = ((1<<900) // 9949) | 1
|
|
for i in range(2049):
|
|
mp = mp_copy(x)
|
|
|
|
mp_lshift_fixed_into(mp, mp, i)
|
|
self.assertEqual(int(mp), (x << i) & mp_mask(mp))
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_lshift_safe_into(mp, mp, i)
|
|
self.assertEqual(int(mp), (x << i) & mp_mask(mp))
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_rshift_fixed_into(mp, mp, i)
|
|
self.assertEqual(int(mp), x >> i)
|
|
|
|
mp_copy_into(mp, x)
|
|
mp_rshift_safe_into(mp, mp, i)
|
|
self.assertEqual(int(mp), x >> i)
|
|
|
|
self.assertEqual(int(mp_rshift_fixed(x, i)), x >> i)
|
|
|
|
self.assertEqual(int(mp_rshift_safe(x, i)), x >> i)
|
|
|
|
def testRandom(self):
|
|
# Test random_bits to ensure it correctly masks the return
|
|
# value, and uses exactly as many random bytes as we expect it
|
|
# to.
|
|
for bits in range(512):
|
|
bytes_needed = (bits + 7) // 8
|
|
with queued_random_data(bytes_needed, "random_bits test"):
|
|
mp = mp_random_bits(bits)
|
|
self.assertTrue(int(mp) < (1 << bits))
|
|
self.assertEqual(random_queue_len(), 0)
|
|
|
|
# Test mp_random_in_range to ensure it returns things in the
|
|
# right range.
|
|
for rangesize in [2, 3, 19, 35]:
|
|
for lo in [0, 1, 0x10001, 1<<512]:
|
|
hi = lo + rangesize
|
|
bytes_needed = mp_max_bytes(hi) + 16
|
|
for trial in range(rangesize*3):
|
|
with queued_random_data(
|
|
bytes_needed,
|
|
"random_in_range {:d}".format(trial)):
|
|
v = int(mp_random_in_range(lo, hi))
|
|
self.assertTrue(lo <= v < hi)
|
|
|
|
class ecc(MyTestBase):
|
|
def testWeierstrassSimple(self):
|
|
# Simple tests using a Weierstrass curve I made up myself,
|
|
# which (unlike the ones used for serious crypto) is small
|
|
# enough that you can fit all the coordinates for a curve on
|
|
# to your retina in one go.
|
|
|
|
p = 3141592661
|
|
a, b = -3 % p, 12345
|
|
rc = WeierstrassCurve(p, a, b)
|
|
wc = ecc_weierstrass_curve(p, a, b, None)
|
|
|
|
def check_point(wp, rp):
|
|
self.assertTrue(ecc_weierstrass_point_valid(wp))
|
|
is_id = ecc_weierstrass_is_identity(wp)
|
|
x, y = ecc_weierstrass_get_affine(wp)
|
|
if rp.infinite:
|
|
self.assertEqual(is_id, 1)
|
|
else:
|
|
self.assertEqual(is_id, 0)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
self.assertEqual(int(y), int(rp.y))
|
|
|
|
def make_point(x, y):
|
|
wp = ecc_weierstrass_point_new(wc, x, y)
|
|
rp = rc.point(x, y)
|
|
check_point(wp, rp)
|
|
return wp, rp
|
|
|
|
# Some sample points, including the identity and also a pair
|
|
# of mutual inverses.
|
|
wI, rI = ecc_weierstrass_point_new_identity(wc), rc.point()
|
|
wP, rP = make_point(102, 387427089)
|
|
wQ, rQ = make_point(1000, 546126574)
|
|
wmP, rmP = make_point(102, p - 387427089)
|
|
|
|
# Check the simple arithmetic functions.
|
|
check_point(ecc_weierstrass_add(wP, wQ), rP + rQ)
|
|
check_point(ecc_weierstrass_add(wQ, wP), rP + rQ)
|
|
check_point(ecc_weierstrass_double(wP), rP + rP)
|
|
check_point(ecc_weierstrass_double(wQ), rQ + rQ)
|
|
|
|
# Check all the special cases with add_general:
|
|
# Adding two finite unequal non-mutually-inverse points
|
|
check_point(ecc_weierstrass_add_general(wP, wQ), rP + rQ)
|
|
# Doubling a finite point
|
|
check_point(ecc_weierstrass_add_general(wP, wP), rP + rP)
|
|
check_point(ecc_weierstrass_add_general(wQ, wQ), rQ + rQ)
|
|
# Adding the identity to a point (both ways round)
|
|
check_point(ecc_weierstrass_add_general(wI, wP), rP)
|
|
check_point(ecc_weierstrass_add_general(wI, wQ), rQ)
|
|
check_point(ecc_weierstrass_add_general(wP, wI), rP)
|
|
check_point(ecc_weierstrass_add_general(wQ, wI), rQ)
|
|
# Doubling the identity
|
|
check_point(ecc_weierstrass_add_general(wI, wI), rI)
|
|
# Adding a point to its own inverse, giving the identity.
|
|
check_point(ecc_weierstrass_add_general(wmP, wP), rI)
|
|
check_point(ecc_weierstrass_add_general(wP, wmP), rI)
|
|
|
|
# Verify that point_valid fails if we pass it nonsense.
|
|
bogus = ecc_weierstrass_point_new(wc, int(rP.x), int(rP.y * 3))
|
|
self.assertFalse(ecc_weierstrass_point_valid(bogus))
|
|
|
|
# Re-instantiate the curve with the ability to take square
|
|
# roots, and check that we can reconstruct P and Q from their
|
|
# x coordinate and y parity only.
|
|
wc = ecc_weierstrass_curve(p, a, b, find_non_square_mod(p))
|
|
|
|
x, yp = int(rP.x), (int(rP.y) & 1)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rP)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp ^ 1), rmP)
|
|
x, yp = int(rQ.x), (int(rQ.y) & 1)
|
|
check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rQ)
|
|
|
|
def testMontgomerySimple(self):
|
|
p, a, b = 3141592661, 0xabc, 0xde
|
|
|
|
rc = MontgomeryCurve(p, a, b)
|
|
mc = ecc_montgomery_curve(p, a, b)
|
|
|
|
rP = rc.cpoint(0x1001)
|
|
rQ = rc.cpoint(0x20001)
|
|
rdiff = rP - rQ
|
|
rsum = rP + rQ
|
|
|
|
def make_mpoint(rp):
|
|
return ecc_montgomery_point_new(mc, int(rp.x))
|
|
|
|
mP = make_mpoint(rP)
|
|
mQ = make_mpoint(rQ)
|
|
mdiff = make_mpoint(rdiff)
|
|
msum = make_mpoint(rsum)
|
|
|
|
def check_point(mp, rp):
|
|
x = ecc_montgomery_get_affine(mp)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
|
|
check_point(ecc_montgomery_diff_add(mP, mQ, mdiff), rsum)
|
|
check_point(ecc_montgomery_diff_add(mQ, mP, mdiff), rsum)
|
|
check_point(ecc_montgomery_diff_add(mP, mQ, msum), rdiff)
|
|
check_point(ecc_montgomery_diff_add(mQ, mP, msum), rdiff)
|
|
check_point(ecc_montgomery_double(mP), rP + rP)
|
|
check_point(ecc_montgomery_double(mQ), rQ + rQ)
|
|
|
|
zero = ecc_montgomery_point_new(mc, 0)
|
|
self.assertEqual(ecc_montgomery_is_identity(zero), False)
|
|
identity = ecc_montgomery_double(zero)
|
|
ecc_montgomery_get_affine(identity)
|
|
self.assertEqual(ecc_montgomery_is_identity(identity), True)
|
|
|
|
def testEdwardsSimple(self):
|
|
p, d, a = 3141592661, 2688750488, 367934288
|
|
|
|
rc = TwistedEdwardsCurve(p, d, a)
|
|
ec = ecc_edwards_curve(p, d, a, None)
|
|
|
|
def check_point(ep, rp):
|
|
x, y = ecc_edwards_get_affine(ep)
|
|
self.assertEqual(int(x), int(rp.x))
|
|
self.assertEqual(int(y), int(rp.y))
|
|
|
|
def make_point(x, y):
|
|
ep = ecc_edwards_point_new(ec, x, y)
|
|
rp = rc.point(x, y)
|
|
check_point(ep, rp)
|
|
return ep, rp
|
|
|
|
# Some sample points, including the identity and also a pair
|
|
# of mutual inverses.
|
|
eI, rI = make_point(0, 1)
|
|
eP, rP = make_point(196270812, 1576162644)
|
|
eQ, rQ = make_point(1777630975, 2717453445)
|
|
emP, rmP = make_point(p - 196270812, 1576162644)
|
|
|
|
# Check that the ordinary add function handles all the special
|
|
# cases.
|
|
|
|
# Adding two finite unequal non-mutually-inverse points
|
|
check_point(ecc_edwards_add(eP, eQ), rP + rQ)
|
|
check_point(ecc_edwards_add(eQ, eP), rP + rQ)
|
|
# Doubling a finite point
|
|
check_point(ecc_edwards_add(eP, eP), rP + rP)
|
|
check_point(ecc_edwards_add(eQ, eQ), rQ + rQ)
|
|
# Adding the identity to a point (both ways round)
|
|
check_point(ecc_edwards_add(eI, eP), rP)
|
|
check_point(ecc_edwards_add(eI, eQ), rQ)
|
|
check_point(ecc_edwards_add(eP, eI), rP)
|
|
check_point(ecc_edwards_add(eQ, eI), rQ)
|
|
# Doubling the identity
|
|
check_point(ecc_edwards_add(eI, eI), rI)
|
|
# Adding a point to its own inverse, giving the identity.
|
|
check_point(ecc_edwards_add(emP, eP), rI)
|
|
check_point(ecc_edwards_add(eP, emP), rI)
|
|
|
|
# Re-instantiate the curve with the ability to take square
|
|
# roots, and check that we can reconstruct P and Q from their
|
|
# y coordinate and x parity only.
|
|
ec = ecc_edwards_curve(p, d, a, find_non_square_mod(p))
|
|
|
|
y, xp = int(rP.y), (int(rP.x) & 1)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp), rP)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp ^ 1), rmP)
|
|
y, xp = int(rQ.y), (int(rQ.x) & 1)
|
|
check_point(ecc_edwards_point_new_from_y(ec, y, xp), rQ)
|
|
|
|
# For testing point multiplication, let's switch to the full-sized
|
|
# standard curves, because I want to have tested those a bit too.
|
|
|
|
def testWeierstrassMultiply(self):
|
|
wc = ecc_weierstrass_curve(p256.p, int(p256.a), int(p256.b), None)
|
|
wG = ecc_weierstrass_point_new(wc, int(p256.G.x), int(p256.G.y))
|
|
self.assertTrue(ecc_weierstrass_point_valid(wG))
|
|
|
|
ints = set(i % p256.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
wGi = ecc_weierstrass_multiply(wG, i)
|
|
x, y = ecc_weierstrass_get_affine(wGi)
|
|
rGi = p256.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
self.assertEqual(int(y), int(rGi.y))
|
|
|
|
def testMontgomeryMultiply(self):
|
|
mc = ecc_montgomery_curve(
|
|
curve25519.p, int(curve25519.a), int(curve25519.b))
|
|
mG = ecc_montgomery_point_new(mc, int(curve25519.G.x))
|
|
|
|
ints = set(i % p256.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
mGi = ecc_montgomery_multiply(mG, i)
|
|
x = ecc_montgomery_get_affine(mGi)
|
|
rGi = curve25519.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
|
|
def testEdwardsMultiply(self):
|
|
ec = ecc_edwards_curve(ed25519.p, int(ed25519.d), int(ed25519.a), None)
|
|
eG = ecc_edwards_point_new(ec, int(ed25519.G.x), int(ed25519.G.y))
|
|
|
|
ints = set(i % ed25519.p for i in fibonacci_scattered(10))
|
|
ints.remove(0) # the zero multiple isn't expected to work
|
|
for i in sorted(ints):
|
|
eGi = ecc_edwards_multiply(eG, i)
|
|
x, y = ecc_edwards_get_affine(eGi)
|
|
rGi = ed25519.G * i
|
|
self.assertEqual(int(x), int(rGi.x))
|
|
self.assertEqual(int(y), int(rGi.y))
|
|
|
|
class keygen(MyTestBase):
|
|
def testPrimeCandidateSource(self):
|
|
def inspect(pcs):
|
|
# Returns (pcs->limit, pcs->factor, pcs->addend) as Python integers
|
|
return tuple(map(int, pcs_inspect(pcs)))
|
|
|
|
# Test accumulating modular congruence requirements, by
|
|
# inspecting the internal values computed during
|
|
# require_residue. We ensure that the addend satisfies all our
|
|
# congruences and the factor is the lcm of all the moduli
|
|
# (hence, the arithmetic progression defined by those
|
|
# parameters is precisely the set of integers satisfying the
|
|
# requirements); we also ensure that the limiting values
|
|
# (addend itself at the low end, and addend + (limit-1) *
|
|
# factor at the high end) are the maximal subsequence of that
|
|
# progression that are within the originally specified range.
|
|
|
|
def check(pcs, lo, hi, mod_res_pairs):
|
|
limit, factor, addend = inspect(pcs)
|
|
|
|
for mod, res in mod_res_pairs:
|
|
self.assertEqual(addend % mod, res % mod)
|
|
|
|
self.assertEqual(factor, functools.reduce(
|
|
lcm, [mod for mod, res in mod_res_pairs]))
|
|
|
|
self.assertFalse(lo <= addend + (-1) * factor < hi)
|
|
self.assertTrue (lo <= addend < hi)
|
|
self.assertTrue (lo <= addend + (limit-1) * factor < hi)
|
|
self.assertFalse(lo <= addend + limit * factor < hi)
|
|
|
|
pcs = pcs_new(64)
|
|
check(pcs, 2**63, 2**64, [(2, 1)])
|
|
pcs_require_residue(pcs, 3, 2)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2)])
|
|
pcs_require_residue_1(pcs, 7)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1)])
|
|
pcs_require_residue(pcs, 16, 7)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7)])
|
|
pcs_require_residue(pcs, 49, 8)
|
|
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7), (49, 8)])
|
|
|
|
# Now test-generate some actual values, and ensure they
|
|
# satisfy all the congruences, and also avoid one residue mod
|
|
# 5 that we told them to. Also, give a nontrivial range.
|
|
pcs = pcs_new_with_firstbits(64, 0xAB, 8)
|
|
pcs_require_residue(pcs, 0x100, 0xCD)
|
|
pcs_require_residue_1(pcs, 65537)
|
|
pcs_avoid_residue_small(pcs, 5, 3)
|
|
pcs_ready(pcs)
|
|
with random_prng("test seed"):
|
|
for i in range(100):
|
|
n = int(pcs_generate(pcs))
|
|
self.assertTrue((0xAB<<56) < n < (0xAC<<56))
|
|
self.assertEqual(n % 0x100, 0xCD)
|
|
self.assertEqual(n % 65537, 1)
|
|
self.assertNotEqual(n % 5, 3)
|
|
|
|
# I'm not actually testing here that the outputs of
|
|
# pcs_generate are non-multiples of _all_ primes up to
|
|
# 2^16. But checking this many for 100 turns is enough
|
|
# to be pretty sure. (If you take the product of
|
|
# (1-1/p) over all p in the list below, you find that
|
|
# a given random number has about a 13% chance of
|
|
# avoiding being a multiple of any of them. So 100
|
|
# trials without a mistake gives you 0.13^100 < 10^-88
|
|
# as the probability of it happening by chance. More
|
|
# likely the code is actually working :-)
|
|
|
|
for p in [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]:
|
|
self.assertNotEqual(n % p, 0)
|
|
|
|
def testPocklePositive(self):
|
|
def add_small(po, *ps):
|
|
for p in ps:
|
|
self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')
|
|
def add(po, *args):
|
|
self.assertEqual(pockle_add_prime(po, *args), 'POCKLE_OK')
|
|
|
|
# Transcription of the proof that 2^130-5 is prime from
|
|
# Theorem 3.1 from http://cr.yp.to/mac/poly1305-20050329.pdf
|
|
po = pockle_new()
|
|
p1 = (2**130 - 6) // 1517314646
|
|
p2 = (p1 - 1) // 222890620702
|
|
add_small(po, 37003, 221101)
|
|
add(po, p2, [37003, 221101], 2)
|
|
add(po, p1, [p2], 2)
|
|
add(po, 2**130 - 5, [p1], 2)
|
|
|
|
# My own proof that 2^255-19 is prime
|
|
po = pockle_new()
|
|
p1 = 8574133
|
|
p2 = 1919519569386763
|
|
p3 = 75445702479781427272750846543864801
|
|
p4 = (2**255 - 20) // (65147*12)
|
|
p = 2**255 - 19
|
|
add_small(po, p1)
|
|
add(po, p2, [p1], 2)
|
|
add(po, p3, [p2], 2)
|
|
add(po, p4, [p3], 2)
|
|
add(po, p, [p4], 2)
|
|
|
|
# And the prime used in Ed448, while I'm here
|
|
po = pockle_new()
|
|
p1 = 379979
|
|
p2 = 1764234391
|
|
p3 = 97859369123353
|
|
p4 = 34741861125639557
|
|
p5 = 36131535570665139281
|
|
p6 = 167773885276849215533569
|
|
p7 = 596242599987116128415063
|
|
p = 2**448 - 2**224 - 1
|
|
add_small(po, p1, p2)
|
|
add(po, p3, [p1], 2)
|
|
add(po, p4, [p2], 2)
|
|
add(po, p5, [p4], 2)
|
|
add(po, p6, [p3], 3)
|
|
add(po, p7, [p5], 3)
|
|
add(po, p, [p6, p7], 2)
|
|
|
|
p = 4095744004479977
|
|
factors = [2, 79999] # just enough factors to exceed cbrt(p)
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
add(po, p, factors, 3)
|
|
|
|
# The order of the generator in Ed25519
|
|
po = pockle_new()
|
|
p1a, p1b = 132667, 137849
|
|
p2 = 3044861653679985063343
|
|
p3 = 198211423230930754013084525763697
|
|
p = 2**252 + 0x14def9dea2f79cd65812631a5cf5d3ed
|
|
add_small(po, p1a, p1b)
|
|
add(po, p2, [p1a, p1b], 2)
|
|
add(po, p3, [p2], 2)
|
|
add(po, p, [p3], 2)
|
|
|
|
# And the one in Ed448
|
|
po = pockle_new()
|
|
p1 = 766223
|
|
p2 = 3009341
|
|
p3 = 7156907
|
|
p4 = 671065561
|
|
p5 = 342682509629
|
|
p6 = 6730519843040614479184435237013
|
|
p = 2**446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
|
|
add_small(po, p1, p2, p3, p4)
|
|
add(po, p5, [p1], 2)
|
|
add(po, p6, [p3,p4], 2)
|
|
add(po, p, [p2,p5,p6], 2)
|
|
|
|
# Combined certificate for the moduli and generator orders of
|
|
# the three NIST curves, generated by contrib/proveprime.py
|
|
# (with some cosmetic tidying)
|
|
p256 = 2**256 - 2**224 + 2**192 + 2**96 - 1
|
|
p384 = 2**384 - 2**128 - 2**96 + 2**32 - 1
|
|
p521 = 2**521 - 1
|
|
order256 = p256 - 0x4319055358e8617b0c46353d039cdaae
|
|
order384 = p384 - 0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c
|
|
t = 0x5ae79787c40d069948033feb708f65a2fc44a36477663b851449048e16ec79bf6
|
|
order521 = p521 - t
|
|
p0 = order384 // 12895580879789762060783039592702
|
|
p1 = 1059392654943455286185473617842338478315215895509773412096307
|
|
p2 = 55942463741690639
|
|
p3 = 37344768852931
|
|
p4 = order521 // 1898873518475180724503002533770555108536
|
|
p5 = p4 // 994165722
|
|
p6 = 144471089338257942164514676806340723
|
|
p7 = p384 // 2054993070433694
|
|
p8 = 1357291859799823621
|
|
po = pockle_new()
|
|
add_small(po, 2, 3, 5, 11, 17, 19, 31, 41, 53, 67, 71, 109, 131, 149,
|
|
157, 257, 521, 641, 1613, 2731, 3407, 6317, 8191, 8389,
|
|
14461, 17449, 38189, 38557, 42641, 51481, 61681, 65537,
|
|
133279, 248431, 312289, 409891, 490463, 858001, 6700417,
|
|
187019741)
|
|
add(po, p3, [149, 11, 5, 3, 2], 3)
|
|
add(po, p2, [p3], 2)
|
|
add(po, p8, [6317, 67, 2, 2], 2)
|
|
add(po, p6, [133279, 14461, 109, 3], 7)
|
|
add(po, p1, [p2, 248431], 2)
|
|
add(po, order256, [187019741, 38189, 17449, 3407, 131, 71, 2, 2, 2, 2],
|
|
7)
|
|
add(po, p256, [6700417, 490463, 65537, 641, 257, 17, 5, 5, 3, 2], 6)
|
|
add(po, p0, [p1], 2)
|
|
add(po, p7, [p8, 312289, 38557, 8389, 11, 2], 3)
|
|
add(po, p5, [p6, 19], 2)
|
|
add(po, order384, [p0], 2)
|
|
add(po, p384, [p7], 2)
|
|
add(po, p4, [p5], 2)
|
|
add(po, order521, [p4], 2)
|
|
add(po, p521, [858001, 409891, 61681, 51481, 42641, 8191, 2731, 1613,
|
|
521, 157, 131, 53, 41, 31, 17, 11, 5, 5, 3, 2], 3)
|
|
|
|
def testPockleNegative(self):
|
|
def add_small(po, p):
|
|
self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')
|
|
|
|
po = pockle_new()
|
|
self.assertEqual(pockle_add_small_prime(po, 0),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
self.assertEqual(pockle_add_small_prime(po, 1),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
self.assertEqual(pockle_add_small_prime(po, 2**61 - 1),
|
|
'POCKLE_SMALL_PRIME_NOT_SMALL')
|
|
self.assertEqual(pockle_add_small_prime(po, 4),
|
|
'POCKLE_SMALL_PRIME_NOT_PRIME')
|
|
|
|
po = pockle_new()
|
|
self.assertEqual(pockle_add_prime(po, 1919519569386763, [8574133], 2),
|
|
'POCKLE_FACTOR_NOT_KNOWN_PRIME')
|
|
|
|
po = pockle_new()
|
|
add_small(po, 8574133)
|
|
self.assertEqual(pockle_add_prime(po, 1919519569386765, [8574133], 2),
|
|
'POCKLE_FACTOR_NOT_A_FACTOR')
|
|
|
|
p = 4095744004479977
|
|
factors = [2, 79997] # not quite enough factors to reach cbrt(p)
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL')
|
|
|
|
p = 1999527 * 3999053
|
|
factors = [999763]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_DISCRIMINANT_IS_SQUARE')
|
|
|
|
p = 9999929 * 9999931
|
|
factors = [257, 2593]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 3),
|
|
'POCKLE_FERMAT_TEST_FAILED')
|
|
|
|
p = 1713000920401 # a Carmichael number
|
|
po = pockle_new()
|
|
add_small(po, 561787)
|
|
self.assertEqual(pockle_add_prime(po, p, [561787], 2),
|
|
'POCKLE_WITNESS_POWER_IS_1')
|
|
|
|
p = 4294971121
|
|
factors = [3, 5, 11, 17]
|
|
po = pockle_new()
|
|
for q in factors:
|
|
add_small(po, q)
|
|
self.assertEqual(pockle_add_prime(po, p, factors, 17),
|
|
'POCKLE_WITNESS_POWER_NOT_COPRIME')
|
|
|
|
po = pockle_new()
|
|
add_small(po, 2)
|
|
self.assertEqual(pockle_add_prime(po, 1, [2], 1),
|
|
'POCKLE_PRIME_SMALLER_THAN_2')
|
|
|
|
def testMillerRabin(self):
|
|
# A prime congruent to 3 mod 4, so M-R can only do one
|
|
# iteration: either a^{(p-1)/2} == +1, or -1. Either counts as
|
|
# a pass; the latter also means the number is potentially a
|
|
# primitive root.
|
|
n = 0xe76e6aaa42b5d7423aa4da5613eb21c3
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 2), "passed+ppr")
|
|
self.assertEqual(miller_rabin_test(mr, 4), "passed")
|
|
|
|
# The 'potential primitive root' test only means that M-R
|
|
# didn't _rule out_ the number being a primitive root, by
|
|
# finding that any of the powers _it tested_ less than n-1
|
|
# came out to be 1. In this case, 2 really is a primitive
|
|
# root, but since 13 | n-1, the 13th powers mod n form a
|
|
# multiplicative subgroup. So 2^13 is not a primitive root,
|
|
# and yet, M-R can't tell the difference, because it only
|
|
# tried the exponent (n-1)/2, not the actual counterexample
|
|
# (n-1)/13.
|
|
self.assertEqual(miller_rabin_test(mr, 2**13), "passed+ppr")
|
|
|
|
# A prime congruent to 1 mod a reasonably large power of 2, so
|
|
# M-R has lots of scope to have different things happen. 3 is
|
|
# a primitive root, so we expect that 3, 3^2, 3^4, ..., 3^256
|
|
# should all pass for different reasons, with only the first
|
|
# of them returning passed+ppr.
|
|
n = 0xb1b65ebe489ff0ab4597bb67c3d22d01
|
|
mr = miller_rabin_new(n)
|
|
w = 3
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
|
|
for i in range(1, 10):
|
|
w = w * w % n
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed")
|
|
|
|
# A prime with an _absurdly_ large power-of-2 factor in its
|
|
# multiplicative group.
|
|
n = 0x600000000000000000000000000000000000000000000001
|
|
mr = miller_rabin_new(n)
|
|
w = 10
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
|
|
for i in range(1, 200):
|
|
w = w * w % n
|
|
self.assertEqual(miller_rabin_test(mr, w), "passed")
|
|
|
|
# A blatantly composite number. But we still expect to see a
|
|
# pass if we give the witness 1 (which will give a maximal
|
|
# trailing string of 1s), or -1 (which will give -1 when
|
|
# raised to the maximal odd factor of n-1, or indeed any other
|
|
# odd power).
|
|
n = 0x1010101010101010101010101010101
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 1), "passed")
|
|
self.assertEqual(miller_rabin_test(mr, n-1), "passed")
|
|
self.assertEqual(miller_rabin_test(mr, 2), "failed")
|
|
|
|
# A Carmichael number, as a proper test that M-R detects
|
|
# things the Fermat test would not.
|
|
#
|
|
# (Its prime factorisation is 26823115100268314289505807 *
|
|
# 53646230200536628579011613 * 80469345300804942868517419,
|
|
# which is enough to re-check its Carmichaelness.)
|
|
n = 0xffffffffffffffffcf8032f3e044b4a8b1b1bf0b526538eae953d90f44d65511
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 16), "passed")
|
|
assert(pow(2, n-1, n) == 1) # Fermat test would pass, but ...
|
|
self.assertEqual(miller_rabin_test(mr, 2), "failed") # ... this fails
|
|
|
|
# A white-box test for the side-channel-safe M-R
|
|
# implementation, which has to check a^e against +-1 for every
|
|
# exponent e of the form floor((n-1) / power of 2), so as to
|
|
# avoid giving away exactly how many of the trailing values of
|
|
# that sequence are significant to the test.
|
|
#
|
|
# When the power of 2 is large enough that the division was
|
|
# not exact, the results of these comparisons are _not_
|
|
# significant to the test, and we're required to ignore them!
|
|
#
|
|
# This pair of values has the property that none of the values
|
|
# legitimately computed by M-R is either +1 _or_ -1, but if
|
|
# you shift n-1 right by one too many bits (losing the lowest
|
|
# set bit of 0x6d00 to get 0x36), then _that_ power of the
|
|
# witness integer is -1. This should not cause a spurious pass.
|
|
n = 0x6d01
|
|
mr = miller_rabin_new(n)
|
|
self.assertEqual(miller_rabin_test(mr, 0x251), "failed")
|
|
|
|
class ntru(MyTestBase):
|
|
def testMultiply(self):
|
|
self.assertEqual(
|
|
ntru_ring_multiply([1,1,1,1,1,1], [1,1,1,1,1,1], 11, 59),
|
|
[1,2,3,4,5,6,5,4,3,2,1])
|
|
self.assertEqual(ntru_ring_multiply(
|
|
[1,0,1,2,0,0,1,2,0,1,2], [2,0,0,1,0,1,2,2,2,0,2], 11, 3),
|
|
[1,0,0,0,0,0,0,0,0,0,0])
|
|
|
|
def testInvert(self):
|
|
# Over GF(3), x^11-x-1 factorises as
|
|
# (x^3+x^2+2) * (x^8+2*x^7+x^6+2*x^4+2*x^3+x^2+x+1)
|
|
# so we expect that 2,0,1,1 has no inverse, being one of those factors.
|
|
self.assertEqual(ntru_ring_invert([0], 11, 3), None)
|
|
self.assertEqual(ntru_ring_invert([1], 11, 3),
|
|
[1,0,0,0,0,0,0,0,0,0,0])
|
|
self.assertEqual(ntru_ring_invert([2,0,1,1], 11, 3), None)
|
|
self.assertEqual(ntru_ring_invert([1,0,1,2,0,0,1,2,0,1,2], 11, 3),
|
|
[2,0,0,1,0,1,2,2,2,0,2])
|
|
|
|
self.assertEqual(ntru_ring_invert([1,0,1,2,0,0,1,2,0,1,2], 11, 59),
|
|
[1,26,10,1,38,48,34,37,53,3,53])
|
|
|
|
def testMod3Round3(self):
|
|
# Try a prime congruent to 1 mod 3
|
|
self.assertEqual(ntru_mod3([4,5,6,0,1,2,3], 7, 7),
|
|
[0,1,-1,0,1,-1,0])
|
|
self.assertEqual(ntru_round3([4,5,6,0,1,2,3], 7, 7),
|
|
[-3,-3,0,0,0,3,3])
|
|
|
|
# And one congruent to 2 mod 3
|
|
self.assertEqual(ntru_mod3([6,7,8,9,10,0,1,2,3,4,5], 11, 11),
|
|
[1,-1,0,1,-1,0,1,-1,0,1,-1])
|
|
self.assertEqual(ntru_round3([6,7,8,9,10,0,1,2,3,4,5], 11, 11),
|
|
[-6,-3,-3,-3,0,0,0,3,3,3,6])
|
|
|
|
def testBiasScale(self):
|
|
self.assertEqual(ntru_bias([0,1,2,3,4,5,6,7,8,9,10], 4, 11, 11),
|
|
[4,5,6,7,8,9,10,0,1,2,3])
|
|
self.assertEqual(ntru_scale([0,1,2,3,4,5,6,7,8,9,10], 4, 11, 11),
|
|
[0,4,8,1,5,9,2,6,10,3,7])
|
|
|
|
def testEncode(self):
|
|
# Test a small case. Worked through in detail:
|
|
#
|
|
# Pass 1:
|
|
# Input list is (89:123, 90:234, 344:345, 432:456, 222:567)
|
|
# (89:123, 90:234) -> (89+123*90 : 123*234) = (11159:28782)
|
|
# Emit low byte of 11159 = 0x97, and get (43:113)
|
|
# (344:345, 432:456) -> (344+345*432 : 345*456) = (149384:157320)
|
|
# Emit low byte of 149384 = 0x88, and get (583:615)
|
|
# Odd pair (222:567) is copied to end of new list
|
|
# Final list is (43:113, 583:615, 222:567)
|
|
# Pass 2:
|
|
# Input list is (43:113, 583:615, 222:567)
|
|
# (43:113, 583:615) -> (43+113*583, 113*615) = (65922:69495)
|
|
# Emit low byte of 65922 = 0x82, and get (257:272)
|
|
# Odd pair (222:567) is copied to end of new list
|
|
# Final list is (257:272, 222:567)
|
|
# Pass 3:
|
|
# Input list is (257:272, 222:567)
|
|
# (257:272, 222:567) -> (257+272*222, 272*567) = (60641:154224)
|
|
# Emit low byte of 60641 = 0xe1, and get (236:603)
|
|
# Final list is (236:603)
|
|
# Cleanup:
|
|
# Emit low byte of 236 = 0xec, and get (0:3)
|
|
# Emit low byte of 0 = 0x00, and get (0:1)
|
|
|
|
ms = [123,234,345,456,567]
|
|
rs = [89,90,344,432,222]
|
|
encoding = unhex('978882e1ec00')
|
|
sched = ntru_encode_schedule(ms)
|
|
self.assertEqual(sched.encode(rs), encoding)
|
|
self.assertEqual(sched.decode(encoding), rs)
|
|
|
|
# Encode schedules for sntrup761 public keys and ciphertexts
|
|
pubsched = ntru_encode_schedule([4591]*761)
|
|
self.assertEqual(pubsched.length(), 1158)
|
|
ciphersched = ntru_encode_schedule([1531]*761)
|
|
self.assertEqual(ciphersched.length(), 1007)
|
|
|
|
# Test round-trip encoding using those schedules
|
|
testlist = list(range(761))
|
|
pubtext = pubsched.encode(testlist)
|
|
self.assertEqual(pubsched.decode(pubtext), testlist)
|
|
ciphertext = ciphersched.encode(testlist)
|
|
self.assertEqual(ciphersched.decode(ciphertext), testlist)
|
|
|
|
def testCore(self):
|
|
# My own set of NTRU Prime parameters, satisfying all the
|
|
# requirements and tiny enough for convenient testing
|
|
p, q, w = 11, 59, 3
|
|
|
|
with random_prng('ntru keygen seed'):
|
|
keypair = ntru_keygen(p, q, w)
|
|
plaintext = ntru_gen_short(p, w)
|
|
|
|
ciphertext = ntru_encrypt(plaintext, ntru_pubkey(keypair), p, q)
|
|
recovered = ntru_decrypt(ciphertext, keypair)
|
|
self.assertEqual(plaintext, recovered)
|
|
|
|
class crypt(MyTestBase):
|
|
def testSSH1Fingerprint(self):
|
|
# Example key and reference fingerprint value generated by
|
|
# OpenSSH 6.7 ssh-keygen
|
|
rsa = rsa_bare(65537, 984185866443261798625575612408956568591522723900235822424492423996716524817102482330189709310179009158443944785704183009867662230534501187034891091310377917105259938712348098594526746211645472854839799025154390701673823298369051411)
|
|
fp = rsa_ssh1_fingerprint(rsa)
|
|
self.assertEqual(
|
|
fp, b"768 96:12:c8:bc:e6:03:75:86:e8:c7:b9:af:d8:0c:15:75")
|
|
|
|
def testSSH2Fingerprints(self):
|
|
# A sensible key blob that we can make sense of.
|
|
sensible_blob = b64(
|
|
'AAAAC3NzaC1lZDI1NTE5AAAAICWiV0VAD4lQ7taUN7vZ5Rkc'
|
|
'SLJBW5ubn6ZINwCOzpn3')
|
|
self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "sha256"),
|
|
b'ssh-ed25519 255 SHA256:'
|
|
b'E4VmaHW0sUF7SUgSEOmMJ8WBtt0e/j3zbsKvyqfFnu4')
|
|
self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "md5"),
|
|
b'ssh-ed25519 255 '
|
|
b'35:73:80:df:a3:2c:1a:f2:2c:a6:5c:84:ce:48:6a:7e')
|
|
|
|
# A key blob with an unknown algorithm name, so that we can't
|
|
# extract the bit count.
|
|
silly_blob = ssh_string(b'foo') + ssh_string(b'key data')
|
|
self.assertEqual(ssh2_fingerprint_blob(silly_blob, "sha256"),
|
|
b'foo SHA256:'
|
|
b'mvfJTB4PaRI7hxYaYwn0sH8G6zW1HbLkbWnZE2YIKc4')
|
|
self.assertEqual(ssh2_fingerprint_blob(silly_blob, "md5"),
|
|
b'foo '
|
|
b'5f:5f:97:94:97:be:01:5c:f6:3f:e3:6e:55:46:ea:52')
|
|
|
|
# A key blob without even a valid algorithm-name string at the start.
|
|
very_silly_blob = b'foo'
|
|
self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "sha256"),
|
|
b'SHA256:'
|
|
b'LCa0a2j/xo/5m0U8HTBBNBNCLXBkg7+g+YpeiGJm564')
|
|
self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "md5"),
|
|
b'ac:bd:18:db:4c:c2:f8:5c:ed:ef:65:4f:cc:c4:a4:d8')
|
|
|
|
# A certified key.
|
|
cert_blob = b64(
|
|
'AAAAIHNzaC1lZDI1NTE5LWNlcnQtdjAxQG9wZW5zc2guY29tAAAAIJ4Ds9YwRHxs'
|
|
'xdtUitRbZGz0MgKGZSBVrTHI1AbvetofAAAAIMt0/CMBL+64GQ/r/JyGxo6oHs86'
|
|
'i9bOHhMJYbDbxEJfAAAAAAAAAG8AAAABAAAAAmlkAAAADAAAAAh1c2VybmFtZQAA'
|
|
'AAAAAAPoAAAAAAAAB9AAAAAAAAAAAAAAAAAAAAE+AAAAIHNzaC1lZDI1NTE5LWNl'
|
|
'cnQtdjAxQG9wZW5zc2guY29tAAAAICl5MiUNt8hoAAHT0v00JYOkWe2UW31+Qq5Q'
|
|
'HYKWGyVjAAAAIMUJEFAmSV/qtoxSmVOHUgTMKYjqkDy8fTfsfCKV+sN7AAAAAAAA'
|
|
'AG8AAAABAAAAAmlkAAAAEgAAAA5kb2Vzbid0IG1hdHRlcgAAAAAAAAPoAAAAAAAA'
|
|
'B9AAAAAAAAAAAAAAAAAAAAAzAAAAC3NzaC1lZDI1NTE5AAAAIMUJEFAmSV/qtoxS'
|
|
'mVOHUgTMKYjqkDy8fTfsfCKV+sN7AAAAUwAAAAtzc2gtZWQyNTUxOQAAAEAXbRz3'
|
|
'lBmoU4FVge29jn04MfubF6U0CoPG1nbeZSgDN2iz7qtZ75XIk5O/Z/W9nA8jwsiz'
|
|
'iSEMItjvR7HEN8MIAAAAUwAAAAtzc2gtZWQyNTUxOQAAAECszhkY8bUbSCjmHEMP'
|
|
'LjcOX6OaeBzPIYYYXJzpLn+m+CIwDXRIxyvON5/d/TomgAFNJutfOEsqIzy5OAvl'
|
|
'p5IO')
|
|
self.assertEqual(ssh2_fingerprint_blob(cert_blob, "sha256"),
|
|
b'ssh-ed25519-cert-v01@openssh.com 255 '
|
|
b'SHA256:42JaqhHUNa5CoKxGWqtKXF0Awz7b0aPrtgBZ9VLLHfY')
|
|
self.assertEqual(ssh2_fingerprint_blob(cert_blob, "md5"),
|
|
b'ssh-ed25519-cert-v01@openssh.com 255 '
|
|
b'8e:40:00:e0:1f:4a:9c:b3:c8:e9:05:59:04:03:44:b3')
|
|
self.assertEqual(ssh2_fingerprint_blob(cert_blob, "sha256-cert"),
|
|
b'ssh-ed25519-cert-v01@openssh.com 255 '
|
|
b'SHA256:W/+SDEg7S+/dAn4SrodJ2c8bYvt13XXA7YYlQ6E8R5U')
|
|
self.assertEqual(ssh2_fingerprint_blob(cert_blob, "md5-cert"),
|
|
b'ssh-ed25519-cert-v01@openssh.com 255 '
|
|
b'03:cf:aa:8e:aa:c3:a0:97:bb:2e:7e:57:9d:08:b5:be')
|
|
|
|
|
|
def testAES(self):
|
|
# My own test cases, generated by a mostly independent
|
|
# reference implementation of AES in Python. ('Mostly'
|
|
# independent in that it was written by me.)
|
|
|
|
def vector(cipherbase, key, iv, plaintext, ciphertext):
|
|
for cipher in get_implementations(cipherbase):
|
|
c = ssh_cipher_new(cipher)
|
|
if c is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(c, key)
|
|
ssh_cipher_setiv(c, iv)
|
|
self.assertEqualBin(
|
|
ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
ssh_cipher_setiv(c, iv)
|
|
self.assertEqualBin(
|
|
ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# Tests of CBC mode.
|
|
|
|
key = unhex(
|
|
'98483c6eb40b6c31a448c22a66ded3b5e5e8d5119cac8327b655c8b5c4836489')
|
|
iv = unhex('38f87b0b9b736160bfc0cbd8447af6ee')
|
|
plaintext = unhex('''
|
|
ee16271827b12d828f61d56fddccc38ccaa69601da2b36d3af1a34c51947b71a
|
|
362f05e07bf5e7766c24599799b252ad2d5954353c0c6ca668c46779c2659c94
|
|
8df04e4179666e335470ff042e213c8bcff57f54842237fbf9f3c7e6111620ac
|
|
1c007180edd25f0e337c2a49d890a7173f6b52d61e3d2a21ddc8e41513a0e825
|
|
afd5932172270940b01014b5b7fb8495946151520a126518946b44ea32f9b2a9
|
|
''')
|
|
|
|
vector('aes128_cbc', key[:16], iv, plaintext, unhex('''
|
|
547ee90514cb6406d5bb00855c8092892c58299646edda0b4e7c044247795c8d
|
|
3c3eb3d91332e401215d4d528b94a691969d27b7890d1ae42fe3421b91c989d5
|
|
113fefa908921a573526259c6b4f8e4d90ea888e1d8b7747457ba3a43b5b79b9
|
|
34873ebf21102d14b51836709ee85ed590b7ca618a1e884f5c57c8ea73fe3d0d
|
|
6bf8c082dd602732bde28131159ed0b6e9cf67c353ffdd010a5a634815aaa963'''))
|
|
|
|
vector('aes192_cbc', key[:24], iv, plaintext, unhex('''
|
|
e3dee5122edd3fec5fab95e7db8c784c0cb617103e2a406fba4ae3b4508dd608
|
|
4ff5723a670316cc91ed86e413c11b35557c56a6f5a7a2c660fc6ee603d73814
|
|
73a287645be0f297cdda97aef6c51faeb2392fec9d33adb65138d60f954babd9
|
|
8ee0daab0d1decaa8d1e07007c4a3c7b726948025f9fb72dd7de41f74f2f36b4
|
|
23ac6a5b4b6b39682ec74f57d9d300e547f3c3e467b77f5e4009923b2f94c903'''))
|
|
|
|
vector('aes256_cbc', key[:32], iv, plaintext, unhex('''
|
|
088c6d4d41997bea79c408925255266f6c32c03ea465a5f607c2f076ec98e725
|
|
7e0beed79609b3577c16ebdf17d7a63f8865278e72e859e2367de81b3b1fe9ab
|
|
8f045e1d008388a3cfc4ff87daffedbb47807260489ad48566dbe73256ce9dd4
|
|
ae1689770a883b29695928f5983f33e8d7aec4668f64722e943b0b671c365709
|
|
dfa86c648d5fb00544ff11bd29121baf822d867e32da942ba3a0d26299bcee13'''))
|
|
|
|
# Tests of SDCTR mode, one with a random IV and one with an IV
|
|
# about to wrap round. More vigorous tests of IV carry and
|
|
# wraparound behaviour are in the testAESSDCTR method.
|
|
|
|
sdctrIVs = [
|
|
unhex('38f87b0b9b736160bfc0cbd8447af6ee'),
|
|
unhex('fffffffffffffffffffffffffffffffe'),
|
|
]
|
|
|
|
vector('aes128_ctr', key[:16], sdctrIVs[0], plaintext[:64], unhex('''
|
|
d0061d7b6e8c4ef4fe5614b95683383f46cdd2766e66b6fb0b0f0b3a24520b2d
|
|
15d869b06cbf685ede064bcf8fb5fb6726cfd68de7016696a126e9e84420af38'''))
|
|
vector('aes128_ctr', key[:16], sdctrIVs[1], plaintext[:64], unhex('''
|
|
49ac67164fd9ce8701caddbbc9a2b06ac6524d4aa0fdac95253971974b8f3bc2
|
|
bb8d7c970f6bcd79b25218cc95582edf7711aae2384f6cf91d8d07c9d9b370bc'''))
|
|
|
|
vector('aes192_ctr', key[:24], sdctrIVs[0], plaintext[:64], unhex('''
|
|
0baa86acbe8580845f0671b7ebad4856ca11b74e5108f515e34e54fa90f87a9a
|
|
c6eee26686253c19156f9be64957f0dbc4f8ecd7cabb1f4e0afefe33888faeec'''))
|
|
vector('aes192_ctr', key[:24], sdctrIVs[1], plaintext[:64], unhex('''
|
|
2da1791250100dc0d1461afe1bbfad8fa0320253ba5d7905d837386ba0a3a41f
|
|
01965c770fcfe01cf307b5316afb3981e0e4aa59a6e755f0a5784d9accdc52be'''))
|
|
|
|
vector('aes256_ctr', key[:32], sdctrIVs[0], plaintext[:64], unhex('''
|
|
49c7b284222d408544c770137b6ef17ef770c47e24f61fa66e7e46cae4888882
|
|
f980a0f2446956bf47d2aed55ebd2e0694bfc46527ed1fd33efe708fec2f8b1f'''))
|
|
vector('aes256_ctr', key[:32], sdctrIVs[1], plaintext[:64], unhex('''
|
|
f1d013c3913ccb4fc0091e25d165804480fb0a1d5c741bf012bba144afda6db2
|
|
c512f3942018574bd7a8fdd88285a73d25ef81e621aebffb6e9b8ecc8e2549d4'''))
|
|
|
|
def testAESSDCTR(self):
|
|
# A thorough test of the IV-incrementing component of SDCTR
|
|
# mode. We set up an AES-SDCTR cipher object with the given
|
|
# input IV; we encrypt two all-zero blocks, expecting the
|
|
# return values to be the AES-ECB encryptions of the input IV
|
|
# and the incremented version. Then we decrypt each of them by
|
|
# feeding them to an AES-CBC cipher object with its IV set to
|
|
# zero.
|
|
|
|
def increment(keylen, suffix, iv):
|
|
key = b'\xab' * (keylen//8)
|
|
sdctr = ssh_cipher_new("aes{}_ctr_{}".format(keylen, suffix))
|
|
if sdctr is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(sdctr, key)
|
|
cbc = ssh_cipher_new("aes{}_cbc_{}".format(keylen, suffix))
|
|
ssh_cipher_setkey(cbc, key)
|
|
|
|
ssh_cipher_setiv(sdctr, iv)
|
|
ec0 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
|
|
ec1 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
|
|
ssh_cipher_setiv(cbc, b'\x00' * 16)
|
|
dc0 = ssh_cipher_decrypt(cbc, ec0)
|
|
ssh_cipher_setiv(cbc, b'\x00' * 16)
|
|
dc1 = ssh_cipher_decrypt(cbc, ec1)
|
|
self.assertEqualBin(iv, dc0)
|
|
return dc1
|
|
|
|
def test(keylen, suffix, ivInteger):
|
|
mask = (1 << 128) - 1
|
|
ivInteger &= mask
|
|
ivBinary = unhex("{:032x}".format(ivInteger))
|
|
ivIntegerInc = (ivInteger + 1) & mask
|
|
ivBinaryInc = unhex("{:032x}".format((ivIntegerInc)))
|
|
actualResult = increment(keylen, suffix, ivBinary)
|
|
if actualResult is not None:
|
|
self.assertEqualBin(actualResult, ivBinaryInc)
|
|
|
|
# Check every input IV you can make by gluing together 32-bit
|
|
# pieces of the form 0, 1 or -1. This should test all the
|
|
# places where carry propagation within the 128-bit integer
|
|
# can go wrong.
|
|
#
|
|
# We also test this at all three AES key lengths, in case the
|
|
# core cipher routines are written separately for each one.
|
|
|
|
for suffix in get_aes_impls():
|
|
for keylen in [128, 192, 256]:
|
|
hexTestValues = ["00000000", "00000001", "ffffffff"]
|
|
for ivHexBytes in itertools.product(*([hexTestValues] * 4)):
|
|
ivInteger = int("".join(ivHexBytes), 16)
|
|
test(keylen, suffix, ivInteger)
|
|
|
|
def testAESParallelism(self):
|
|
# Since at least one of our implementations of AES works in
|
|
# parallel, here's a test that CBC decryption works the same
|
|
# way no matter how the input data is divided up.
|
|
|
|
# A pile of conveniently available random-looking test data.
|
|
test_ciphertext = ssh2_mpint(last(fibonacci_scattered(14)))
|
|
test_ciphertext += b"x" * (15 & -len(test_ciphertext)) # pad to a block
|
|
|
|
# Test key and IV.
|
|
test_key = b"foobarbazquxquuxFooBarBazQuxQuux"
|
|
test_iv = b"FOOBARBAZQUXQUUX"
|
|
|
|
for keylen in [128, 192, 256]:
|
|
decryptions = []
|
|
|
|
for suffix in get_aes_impls():
|
|
c = ssh_cipher_new("aes{:d}_cbc_{}".format(keylen, suffix))
|
|
if c is None: continue
|
|
ssh_cipher_setkey(c, test_key[:keylen//8])
|
|
for chunklen in range(16, 16*12, 16):
|
|
ssh_cipher_setiv(c, test_iv)
|
|
decryption = b""
|
|
for pos in range(0, len(test_ciphertext), chunklen):
|
|
chunk = test_ciphertext[pos:pos+chunklen]
|
|
decryption += ssh_cipher_decrypt(c, chunk)
|
|
decryptions.append(decryption)
|
|
|
|
for d in decryptions:
|
|
self.assertEqualBin(d, decryptions[0])
|
|
|
|
def testCRC32(self):
|
|
# Check the effect of every possible single-byte input to
|
|
# crc32_update. In the traditional implementation with a
|
|
# 256-word lookup table, this exercises every table entry; in
|
|
# _any_ implementation which iterates over the input one byte
|
|
# at a time, it should be a similarly exhaustive test. (But if
|
|
# a more optimised implementation absorbed _more_ than 8 bits
|
|
# at a time, then perhaps this test wouldn't be enough...)
|
|
|
|
# It would be nice if there was a functools.iterate() which
|
|
# would apply a function n times. Failing that, making shift1
|
|
# accept and ignore a second argument allows me to iterate it
|
|
# 8 times using functools.reduce.
|
|
shift1 = lambda x, dummy=None: (x >> 1) ^ (0xEDB88320 * (x & 1))
|
|
shift8 = lambda x: functools.reduce(shift1, [None]*8, x)
|
|
|
|
# A small selection of choices for the other input to
|
|
# crc32_update, just to check linearity.
|
|
test_prior_values = [0, 0xFFFFFFFF, 0x45CC1F6A, 0xA0C4ADCF, 0xD482CDF1]
|
|
|
|
for prior in test_prior_values:
|
|
prior_shifted = shift8(prior)
|
|
for i in range(256):
|
|
exp = shift8(i) ^ prior_shifted
|
|
self.assertEqual(crc32_update(prior, struct.pack("B", i)), exp)
|
|
|
|
# Check linearity of the _reference_ implementation, while
|
|
# we're at it!
|
|
self.assertEqual(shift8(i ^ prior), exp)
|
|
|
|
def testCRCDA(self):
|
|
def pattern(badblk, otherblks, pat):
|
|
# Arrange copies of the bad block in a pattern
|
|
# corresponding to the given bit string.
|
|
retstr = b""
|
|
while pat != 0:
|
|
retstr += (badblk if pat & 1 else next(otherblks))
|
|
pat >>= 1
|
|
return retstr
|
|
|
|
def testCases(pat):
|
|
badblock = b'muhahaha' # the block we'll maliciously repeat
|
|
|
|
# Various choices of the other blocks, including all the
|
|
# same, all different, and all different but only in the
|
|
# byte at one end.
|
|
for otherblocks in [
|
|
itertools.repeat(b'GoodData'),
|
|
(struct.pack('>Q', i) for i in itertools.count()),
|
|
(struct.pack('<Q', i) for i in itertools.count())]:
|
|
yield pattern(badblock, otherblocks, pat)
|
|
|
|
def positiveTest(pat):
|
|
for data in testCases(pat):
|
|
self.assertTrue(crcda_detect(data, ""))
|
|
self.assertTrue(crcda_detect(data[8:], data[:8]))
|
|
|
|
def negativeTest(pat):
|
|
for data in testCases(pat):
|
|
self.assertFalse(crcda_detect(data, ""))
|
|
self.assertFalse(crcda_detect(data[8:], data[:8]))
|
|
|
|
# Tests of successful attack detection, derived by taking
|
|
# multiples of the CRC polynomial itself.
|
|
#
|
|
# (The CRC32 polynomial is usually written as 0xEDB88320.
|
|
# That's in bit-reversed form, but then, that's the form we
|
|
# need anyway for these patterns. But it's also missing the
|
|
# leading term - really, 0xEDB88320 is the value you get by
|
|
# reducing X^32 modulo the real poly, i.e. the value you put
|
|
# back in to the CRC to compensate for an X^32 that's just
|
|
# been shifted out. If you put that bit back on - at the
|
|
# bottom, because of the bit-reversal - you get the less
|
|
# familiar-looking 0x1db710641.)
|
|
positiveTest(0x1db710641) # the CRC polynomial P itself
|
|
positiveTest(0x26d930ac3) # (X+1) * P
|
|
positiveTest(0xbdbdf21cf) # (X^3+X^2+X+1) * P
|
|
positiveTest(0x3a66a39b653f6889d)
|
|
positiveTest(0x170db3167dd9f782b9765214c03e71a18f685b7f3)
|
|
positiveTest(0x1751997d000000000000000000000000000000001)
|
|
positiveTest(0x800000000000000000000000000000000f128a2d1)
|
|
|
|
# Tests of non-detection.
|
|
negativeTest(0x1db711a41)
|
|
negativeTest(0x3a66a39b453f6889d)
|
|
negativeTest(0x170db3167dd9f782b9765214c03e71b18f685b7f3)
|
|
negativeTest(0x1751997d000000000000000000000001000000001)
|
|
negativeTest(0x800000000000002000000000000000000f128a2d1)
|
|
|
|
def testAuxEncryptFns(self):
|
|
# Test helper functions such as aes256_encrypt_pubkey. The
|
|
# test cases are all just things I made up at random, and the
|
|
# expected outputs are generated by running PuTTY's own code;
|
|
# this doesn't independently check them against any other
|
|
# implementation, but it at least means we're protected
|
|
# against code reorganisations changing the behaviour from
|
|
# what it was before.
|
|
|
|
p = b'three AES blocks, or six DES, of arbitrary input'
|
|
|
|
k = b'thirty-two-byte aes-256 test key'
|
|
iv = b'\0' * 16
|
|
c = unhex('7b112d00c0fc95bc13fcdacfd43281bf'
|
|
'de9389db1bbcfde79d59a303d41fd2eb'
|
|
'0955c9477ae4ee3a4d6c1fbe474c0ef6')
|
|
self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
|
|
self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)
|
|
|
|
# same k as in the previous case
|
|
iv = unhex('0102030405060708090a0b0c0d0e0f10')
|
|
c = unhex('9e9c8a91b739677b834397bdd8e70c05'
|
|
'c3e2cf6cce68d376d798a59848621c6d'
|
|
'42b9e7101260a438daadd7b742875a36')
|
|
self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
|
|
self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)
|
|
|
|
k = b'3des with keys distinct.'
|
|
iv = b'randomIV'
|
|
c = unhex('be81ff840d885869a54d63b03d7cd8db'
|
|
'd39ab875e5f7b9da1081f8434cb33c47'
|
|
'dee5bcd530a3f6c13a9fc73e321a843a')
|
|
self.assertEqualBin(des3_encrypt_pubkey_ossh(k, iv, p), c)
|
|
self.assertEqualBin(des3_decrypt_pubkey_ossh(k, iv, c), p)
|
|
|
|
k = b'3des, 2keys only'
|
|
c = unhex('0b845650d73f615cf16ee3ed20535b5c'
|
|
'd2a8866ee628547bbdad916e2b4b9f19'
|
|
'67c15bde33c5b03ff7f403b4f8cf2364')
|
|
self.assertEqualBin(des3_encrypt_pubkey(k, p), c)
|
|
self.assertEqualBin(des3_decrypt_pubkey(k, c), p)
|
|
|
|
k = b'7 bytes'
|
|
c = unhex('5cac9999cffc980a1d1184d84b71c8cb'
|
|
'313d12a1d25a7831179aeb11edaca5ad'
|
|
'9482b224105a61c27137587620edcba8')
|
|
self.assertEqualBin(des_encrypt_xdmauth(k, p), c)
|
|
self.assertEqualBin(des_decrypt_xdmauth(k, c), p)
|
|
|
|
def testSSHCiphers(self):
|
|
# Test all the SSH ciphers we support, on the same principle
|
|
# as testAuxCryptFns that we should have test cases to verify
|
|
# that things still work the same today as they did yesterday.
|
|
|
|
p = b'64 bytes of test input data, enough to check any cipher mode xyz'
|
|
k = b'sixty-four bytes of test key data, enough to key any cipher pqrs'
|
|
iv = b'16 bytes of IV w'
|
|
|
|
ciphers = [
|
|
("3des_ctr", 24, 8, False, unhex('83c17a29250d3d4fa81250fc0362c54e40456936445b77709a30fccf8b983d57129a969c59070d7c2977f3d25dd7d71163687c7b3cd2edb0d07514e6c77479f5')),
|
|
("3des_ssh2", 24, 8, True, unhex('d5f1cc25b8fbc62decc74b432344de674f7249b2e38871f764411eaae17a1097396bd97b66a1e4d49f08c219acaef2a483198ce837f75cc1ef67b37c2432da3e')),
|
|
("3des_ssh1", 24, 8, False, unhex('d5f1cc25b8fbc62de63590b9b92344adf6dd72753273ff0fb32d4dbc6af858529129f34242f3d557eed3a5c84204eb4f868474294964cf70df5d8f45dfccfc45')),
|
|
("des_cbc", 8, 8, True, unhex('051524e77fb40e109d9fffeceacf0f28c940e2f8415ddccc117020bdd2612af5036490b12085d0e46129919b8e499f51cb82a4b341d7a1a1ea3e65201ef248f6')),
|
|
("aes256_ctr", 32, 16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
|
|
("aes256_cbc", 32, 16, True, unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
|
|
("aes192_ctr", 24, 16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
|
|
("aes192_cbc", 24, 16, True, unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
|
|
("aes128_ctr", 16, 16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
|
|
("aes128_cbc", 16, 16, True, unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
|
|
("blowfish_ctr", 32, 8, False, unhex('079daf0f859363ccf72e975764d709232ec48adc74f88ccd1f342683f0bfa89ca0e8dbfccc8d4d99005d6b61e9cc4e6eaa2fd2a8163271b94bf08ef212129f01')),
|
|
("blowfish_ssh2", 16, 8, True, unhex('e986b7b01f17dfe80ee34cac81fa029b771ec0f859ae21ae3ec3df1674bc4ceb54a184c6c56c17dd2863c3e9c068e76fd9aef5673465995f0d648b0bb848017f')),
|
|
("blowfish_ssh1", 32, 8, True, unhex('d44092a9035d895acf564ba0365d19570fbb4f125d5a4fd2a1812ee6c8a1911a51bb181fbf7d1a261253cab71ee19346eb477b3e7ecf1d95dd941e635c1a4fbf')),
|
|
("arcfour256", 32, None, False, unhex('db68db4cd9bbc1d302cce5919ff3181659272f5d38753e464b3122fc69518793fe15dd0fbdd9cd742bd86c5e8a3ae126c17ecc420bd2d5204f1a24874d00fda3')),
|
|
("arcfour128", 16, None, False, unhex('fd4af54c5642cb29629e50a15d22e4944e21ffba77d0543b27590eafffe3886686d1aefae0484afc9e67edc0e67eb176bbb5340af1919ea39adfe866d066dd05')),
|
|
]
|
|
|
|
for algbase, keylen, ivlen, simple_cbc, c in ciphers:
|
|
for alg in get_implementations(algbase):
|
|
cipher = ssh_cipher_new(alg)
|
|
if cipher is None:
|
|
continue # hardware-accelerated cipher not available
|
|
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
if ivlen is not None:
|
|
ssh_cipher_setiv(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_encrypt(cipher, p), c)
|
|
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
if ivlen is not None:
|
|
ssh_cipher_setiv(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)
|
|
|
|
if simple_cbc:
|
|
# CBC ciphers (other than the three-layered CBC used
|
|
# by SSH-1 3DES) have more specific semantics for
|
|
# their IV than 'some kind of starting state for the
|
|
# cipher mode': the IV is specifically supposed to
|
|
# represent the previous block of ciphertext. So we
|
|
# can check that, by supplying the IV _as_ a
|
|
# ciphertext block via a call to decrypt(), and seeing
|
|
# if that causes our test ciphertext to decrypt the
|
|
# same way as when we provided the same IV via
|
|
# setiv().
|
|
ssh_cipher_setkey(cipher, k[:keylen])
|
|
ssh_cipher_decrypt(cipher, iv[:ivlen])
|
|
self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)
|
|
|
|
def testChaCha20Poly1305(self):
|
|
# A test case of this cipher taken from a real connection to
|
|
# OpenSSH.
|
|
key = unhex('49e67c5ae596ea7f230e266538d0e373'
|
|
'177cc8fe08ff7b642c22d736ca975655'
|
|
'c3fb639010fd297ca03c36b20a182ef4'
|
|
'0e1272f0c54251c175546ee00b150805')
|
|
len_p = unhex('00000128')
|
|
len_c = unhex('3ff3677b')
|
|
msg_p = unhex('0807000000020000000f736572766572'
|
|
'2d7369672d616c6773000000db737368'
|
|
'2d656432353531392c736b2d7373682d'
|
|
'65643235353139406f70656e7373682e'
|
|
'636f6d2c7373682d7273612c7273612d'
|
|
'736861322d3235362c7273612d736861'
|
|
'322d3531322c7373682d6473732c6563'
|
|
'6473612d736861322d6e697374703235'
|
|
'362c65636473612d736861322d6e6973'
|
|
'74703338342c65636473612d73686132'
|
|
'2d6e697374703532312c736b2d656364'
|
|
'73612d736861322d6e69737470323536'
|
|
'406f70656e7373682e636f6d2c776562'
|
|
'617574686e2d736b2d65636473612d73'
|
|
'6861322d6e69737470323536406f7065'
|
|
'6e7373682e636f6d0000001f7075626c'
|
|
'69636b65792d686f7374626f756e6440'
|
|
'6f70656e7373682e636f6d0000000130'
|
|
'c34aaefcafae6fc2')
|
|
msg_c = unhex('bf587eabf385b1281fa9c755d8515dfd'
|
|
'c40cb5e993b346e722dce48b1741b4e5'
|
|
'ce9ae075f6df0a1d2f72f94f73570125'
|
|
'7011630bbb0c7febd767184c0d5aa810'
|
|
'47cbce82972129a234b8ac5fc5f2b5be'
|
|
'9264baca6d13ff3c9813a61e1f23468f'
|
|
'31964b60fc3f0888a227f02c737b2d27'
|
|
'b7ae3cd60ede17533863a5bb6bb2d60a'
|
|
'c998ccd27e8ba56259f676ed04749fad'
|
|
'4114678fb871add3a40625110637947c'
|
|
'e91459811622fd3d1fa7eb7efad4b1e8'
|
|
'97f3e860473935d3d8df0679a8b0df85'
|
|
'aa4124f2d9ac7207abd10719f465c9ed'
|
|
'859d2b03bde55315b9024f660ba8d63a'
|
|
'64e0beb81e532201df830a52cf221484'
|
|
'18d0c4c7da242346161d7320ac534cb5'
|
|
'c6b6fec905ee5f424becb9f97c3afbc5'
|
|
'5ef4ba369e61bce847158f0dc5bd7227'
|
|
'3b8693642db36f87')
|
|
mac = unhex('09757178642dfc9f2c38ac5999e0fcfd')
|
|
seqno = 3
|
|
c = ssh_cipher_new('chacha20_poly1305')
|
|
m = ssh2_mac_new('poly1305', c)
|
|
c.setkey(key)
|
|
self.assertEqualBin(c.encrypt_length(len_p, seqno), len_c)
|
|
self.assertEqualBin(c.encrypt(msg_p), msg_c)
|
|
m.start()
|
|
m.update(ssh_uint32(seqno) + len_c + msg_c)
|
|
self.assertEqualBin(m.genresult(), mac)
|
|
self.assertEqualBin(c.decrypt_length(len_c, seqno), len_p)
|
|
self.assertEqualBin(c.decrypt(msg_c), msg_p)
|
|
|
|
def testRSAKex(self):
|
|
# Round-trip test of the RSA key exchange functions, plus a
|
|
# hardcoded plain/ciphertext pair to guard against the
|
|
# behaviour accidentally changing.
|
|
def blobs(n, e, d, p, q, iqmp):
|
|
# For RSA kex, the public blob is formatted exactly like
|
|
# any other SSH-2 RSA public key. But there's no private
|
|
# key blob format defined by the protocol, so for the
|
|
# purposes of making a test RSA private key, we borrow the
|
|
# function we already had that decodes one out of the wire
|
|
# format used in the SSH-1 agent protocol.
|
|
pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
|
|
privblob = (ssh_uint32(nbits(n)) + ssh1_mpint(n) + ssh1_mpint(e) +
|
|
ssh1_mpint(d) + ssh1_mpint(iqmp) +
|
|
ssh1_mpint(q) + ssh1_mpint(p))
|
|
return pubblob, privblob
|
|
|
|
# Parameters for a test key.
|
|
p = 0xf49e4d21c1ec3d1c20dc8656cc29aadb2644a12c98ed6c81a6161839d20d398d
|
|
q = 0xa5f0bc464bf23c4c83cf17a2f396b15136fbe205c07cb3bb3bdb7ed357d1cd13
|
|
n = p*q
|
|
e = 37
|
|
d = int(mp_invert(e, (p-1)*(q-1)))
|
|
iqmp = int(mp_invert(q, p))
|
|
assert iqmp * q % p == 1
|
|
assert d * e % (p-1) == 1
|
|
assert d * e % (q-1) == 1
|
|
|
|
pubblob, privblob = blobs(n, e, d, p, q, iqmp)
|
|
|
|
pubkey = ssh_rsakex_newkey(pubblob)
|
|
privkey = get_rsa_ssh1_priv_agent(privblob)
|
|
|
|
plain = 0x123456789abcdef
|
|
hashalg = 'md5'
|
|
with queued_random_data(64, "rsakex encrypt test"):
|
|
cipher = ssh_rsakex_encrypt(pubkey, hashalg, ssh2_mpint(plain))
|
|
decoded = ssh_rsakex_decrypt(privkey, hashalg, cipher)
|
|
self.assertEqual(int(decoded), plain)
|
|
self.assertEqualBin(cipher, unhex(
|
|
'34277d1060dc0a434d98b4239de9cec59902a4a7d17a763587cdf8c25d57f51a'
|
|
'7964541892e7511798e61dd78429358f4d6a887a50d2c5ebccf0e04f48fc665c'
|
|
))
|
|
|
|
def testMontgomeryKexLowOrderPoints(self):
|
|
# List of all the bad input values for Curve25519 which can
|
|
# end up generating a zero output key. You can find the first
|
|
# five (the ones in canonical representation, i.e. in
|
|
# [0,2^255-19)) by running
|
|
# find_montgomery_power2_order_x_values(curve25519.p, curve25519.a)
|
|
# and then encoding the results little-endian.
|
|
bad_keys_25519 = [
|
|
"0000000000000000000000000000000000000000000000000000000000000000",
|
|
"0100000000000000000000000000000000000000000000000000000000000000",
|
|
"5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f1157",
|
|
"e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b800",
|
|
"ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
|
|
# Input values less than 2^255 are reduced mod p, so those
|
|
# of the above values which are still in that range when
|
|
# you add 2^255-19 to them should also be caught.
|
|
"edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
"eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
|
|
|
|
# Input values are reduced mod 2^255 before reducing mod
|
|
# p. So setting the high-order bit of any of the above 7
|
|
# values should also lead to rejection, because it will be
|
|
# stripped off and then the value will be recognised as
|
|
# one of the above.
|
|
"0000000000000000000000000000000000000000000000000000000000000080",
|
|
"0100000000000000000000000000000000000000000000000000000000000080",
|
|
"5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f11d7",
|
|
"e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b880",
|
|
"ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
"edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
"eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
]
|
|
|
|
# Same for Curve448, found by the analogous eccref function call
|
|
# find_montgomery_power2_order_x_values(curve448.p, curve448.a)
|
|
bad_keys_448 = [
|
|
# The first three are the bad values in canonical
|
|
# representationm. In Curve448 these are just 0, 1 and -1.
|
|
'0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
|
|
'0100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
|
|
'fefffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',
|
|
|
|
# As with Curve25519, we must also include values in
|
|
# non-canonical representation that reduce to one of the
|
|
# above mod p.
|
|
'fffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',
|
|
'00000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff'
|
|
|
|
# But that's all, because Curve448 fits neatly into a
|
|
# whole number of bytes, so there's no secondary reduction
|
|
# mod a power of 2.
|
|
]
|
|
|
|
with random_prng("doesn't matter"):
|
|
ecdh25519 = ecdh_key_new('curve25519', False)
|
|
ecdh448 = ecdh_key_new('curve448', False)
|
|
for pub in bad_keys_25519:
|
|
key = ecdh_key_getkey(ecdh25519, unhex(pub))
|
|
self.assertEqual(key, None)
|
|
for pub in bad_keys_448:
|
|
key = ecdh_key_getkey(ecdh448, unhex(pub))
|
|
self.assertEqual(key, None)
|
|
|
|
def testPRNG(self):
|
|
hashalg = 'sha256'
|
|
seed = b"hello, world"
|
|
entropy = b'1234567890' * 100
|
|
|
|
# Replicate the generation of some random numbers. to ensure
|
|
# they really are the hashes of what they're supposed to be.
|
|
pr = prng_new(hashalg)
|
|
prng_seed_begin(pr)
|
|
prng_seed_update(pr, seed)
|
|
prng_seed_finish(pr)
|
|
data1 = prng_read(pr, 128)
|
|
data2 = prng_read(pr, 127) # a short read shouldn't confuse things
|
|
prng_add_entropy(pr, 0, entropy) # forces a reseed
|
|
data3 = prng_read(pr, 128)
|
|
|
|
le128 = lambda x: le_integer(x, 128)
|
|
|
|
key1 = hash_str(hashalg, b'R' + seed)
|
|
expected_data1 = b''.join(
|
|
hash_str(hashalg, key1 + b'G' + le128(counter))
|
|
for counter in range(4))
|
|
# After prng_read finishes, we expect the PRNG to have
|
|
# automatically reseeded itself, so that if its internal state
|
|
# is revealed then the previous output can't be reconstructed.
|
|
key2 = hash_str(hashalg, key1 + b'R')
|
|
expected_data2 = b''.join(
|
|
hash_str(hashalg, key2 + b'G' + le128(counter))
|
|
for counter in range(4,8))
|
|
# There will have been another reseed after the second
|
|
# prng_read, and then another due to the entropy.
|
|
key3 = hash_str(hashalg, key2 + b'R')
|
|
key4 = hash_str(hashalg, key3 + b'R' + hash_str(hashalg, entropy))
|
|
expected_data3 = b''.join(
|
|
hash_str(hashalg, key4 + b'G' + le128(counter))
|
|
for counter in range(8,12))
|
|
|
|
self.assertEqualBin(data1, expected_data1)
|
|
self.assertEqualBin(data2, expected_data2[:127])
|
|
self.assertEqualBin(data3, expected_data3)
|
|
|
|
def testHashPadding(self):
|
|
# A consistency test for hashes that use MD5/SHA-1/SHA-2 style
|
|
# padding of the message into a whole number of fixed-size
|
|
# blocks. We test-hash a message of every length up to twice
|
|
# the block length, to make sure there's no off-by-1 error in
|
|
# the code that decides how much padding to put on.
|
|
|
|
# Source: generated using Python hashlib as an independent
|
|
# implementation. The function below will do it, called with
|
|
# parameters such as (hashlib.sha256,128).
|
|
#
|
|
# def gen_testcase(hashclass, maxlen):
|
|
# return hashclass(b''.join(hashclass(text[:i]).digest()
|
|
# for i in range(maxlen))).hexdigest()
|
|
|
|
text = """
|
|
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
|
|
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
|
|
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
|
|
aliquip ex ea commodo consequat. Duis aute irure dolor in
|
|
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
|
|
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
|
|
culpa qui officia deserunt mollit anim id est laborum.
|
|
""".replace('\n', ' ').strip()
|
|
|
|
def test(hashname, maxlen, expected):
|
|
assert len(text) >= maxlen
|
|
buf = b''.join(hash_str(hashname, text[:i])
|
|
for i in range(maxlen))
|
|
self.assertEqualBin(hash_str(hashname, buf), unhex(expected))
|
|
|
|
test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15')
|
|
test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259')
|
|
test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232'
|
|
'35d4eed3368d876fdf10c9df27396640')
|
|
test('sha512', 256,
|
|
'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578'
|
|
'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055'
|
|
)
|
|
|
|
def testDSA(self):
|
|
p = 0xe93618c54716992ffd54e79df6e1b0edd517f7bbe4a49d64631eb3efe8105f676e8146248cfb4f05720862533210f0c2ab0f9dd61dbc0e5195200c4ebd95364b
|
|
q = 0xf3533bcece2e164ca7c5ce64bc1e395e9a15bbdd
|
|
g = 0x5ac9d0401c27d7abfbc5c17cdc1dc43323cd0ef18b79e1909bdace6d17af675a10d37dde8bd8b70e72a8666592216ccb00614629c27e870e4fbf393b812a9f05
|
|
y = 0xac3ddeb22d65a5a2ded4a28418b2a748d8e5e544ba5e818c137d7b042ef356b0ef6d66cfca0b3ab5affa2969522e7b07bee60562fa4869829a5afce0ad0c4cd0
|
|
x = 0x664f8250b7f1a5093047fe0c7fe4b58e46b73295
|
|
pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
|
|
privblob = ssh2_mpint(x)
|
|
pubkey = ssh_key_new_pub('dsa', pubblob)
|
|
privkey = ssh_key_new_priv('dsa', pubblob, privblob)
|
|
|
|
sig = ssh_key_sign(privkey, b"hello, world", 0)
|
|
self.assertTrue(ssh_key_verify(pubkey, sig, b"hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, sig, b"hello, again"))
|
|
|
|
badsig0 = unhex('{:040x}{:040x}'.format(1, 0))
|
|
badsigq = unhex('{:040x}{:040x}'.format(1, q))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, world"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
|
|
self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))
|
|
|
|
def testBLAKE2b(self):
|
|
# The standard test vectors for BLAKE2b (in the separate class
|
|
# below) don't satisfy me because they only test one hash
|
|
# size. These additional tests exercise BLAKE2b's configurable
|
|
# output length. The expected results are derived from the
|
|
# BLAKE2 reference implementation.
|
|
|
|
def b2_with_len(data, length):
|
|
h = blake2b_new_general(length)
|
|
h.update(data)
|
|
return h.digest()[:length]
|
|
|
|
self.assertEqualBin(b2_with_len(b'hello', 1), unhex("29"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 2), unhex("accd"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 3), unhex("980032"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 5), unhex("9baecc38f2"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 8), unhex(
|
|
"a7b6eda801e5347d"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 13), unhex(
|
|
"6eedb122c6707328a66aa34a07"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 21), unhex(
|
|
"c7f0f74a227116547b3d2788e927ee2a76c87d8797"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 34), unhex(
|
|
"2f5fcdf2b870fa254051dd448193a1fb6e92be122efca539ba2aeac0bc6c77d0"
|
|
"dadc"))
|
|
self.assertEqualBin(b2_with_len(b'hello', 55), unhex(
|
|
"daafcf2bd6fccf976cbc234b71cd9f4f7d56fe0eb33a40018707089a215c44a8"
|
|
"4b272d0329ae6d85a0f8acc7e964dc2facb715ba472bb6"))
|
|
|
|
def testArgon2LongHash(self):
|
|
# Unit-test the Argon2 long hash function H', which starts off
|
|
# the same as BLAKE2b, but comes with its own method of
|
|
# extending the output length past 64 bytes.
|
|
#
|
|
# I generated these test values using a test program linked
|
|
# against the reference implementation's libargon2.a and
|
|
# calling its blake2b_long function.
|
|
preimage = b'hello, world'
|
|
|
|
self.assertEqualBin(argon2_long_hash(1, preimage), unhex("8b"))
|
|
self.assertEqualBin(argon2_long_hash(2, preimage), unhex("1ff9"))
|
|
self.assertEqualBin(argon2_long_hash(63, preimage), unhex(
|
|
"e2c997721f1d64aa8c25e588fb8ab19646ce6d5c2a431fa560fcb813e55dd481"
|
|
"322d2630d95ca6b1b63317b13d6b111e5816170c80c3ca7d5b4bf894096de4"))
|
|
self.assertEqualBin(argon2_long_hash(64, preimage), unhex(
|
|
"0c7ba7ee6d510b4bb5c9b69ac91e25e0b11aa30dd6234b8e61b0fe1537c037b8"
|
|
"8ed5aa59a277e8cc07095c81aff26d08967e4dfdabd32db8b6af6ceb78cf8c47"))
|
|
self.assertEqualBin(argon2_long_hash(65, preimage), unhex(
|
|
"680941abbd8fc80f28c38d623e90903f08709bf76575e2775d4ce01c31b192c8"
|
|
"73038d9a31af8991c8b1ad4f2b1991f4d15f73ab0f4f3add415c297a12eb9ddb"
|
|
"76"))
|
|
self.assertEqualBin(argon2_long_hash(95, preimage), unhex(
|
|
"4be28c51850fed70d9403e1406b6ba68a83d98cf222a4ee162beef60fd3384df"
|
|
"eba3fce9d95f646982eb384ac943ce5263cb03428fd8d261cc41ffdb7ba328fe"
|
|
"098526f2b49593f9e7f38188598ce4693b59f4dd32db30c1be9a9d35784fa0"))
|
|
self.assertEqualBin(argon2_long_hash(96, preimage), unhex(
|
|
"20295ea01e822cca113f668f33e5e481ed5879bfd7de6359ea42d497da97be52"
|
|
"2cdd518d34ae32c44cabd45249b4e697626b0b14b6a33a2bd138be0a4bceeaf4"
|
|
"9528f93acef01b093ee84d8d871d1ee6cf7c10e83ad0619631aed19345166f03"))
|
|
self.assertEqualBin(argon2_long_hash(97, preimage), unhex(
|
|
"d24b31f3ac0baad168d524efc4bafee55fef743fd60b14e28b860d7523e319c7"
|
|
"520e2d5457cc3d06dc1044530afdf6990fa12e38d5802eb642f8e77fcfee2c0b"
|
|
"1f84a28877f2f2f049ed9299e1e0230f98af3a161185970aad21f0ea0f5184cf"
|
|
"90"))
|
|
self.assertEqualBin(argon2_long_hash(127, preimage), unhex(
|
|
"5d1e8380450dbc985418ed1f3700b925ae0719e4486e29131c81bca7083ac6b8"
|
|
"f535c3398488e34d3dc1390de44097f1eee498f10ebe85b579e99a7672023b01"
|
|
"ca5c20e63c595b640e00d80f113a52e3773719889b266ab4c65269c11fb212e4"
|
|
"75f2b769bb26321bb60ecc0d490821e5056d7dfc9def3cd065d3ba90360764"))
|
|
self.assertEqualBin(argon2_long_hash(128, preimage), unhex(
|
|
"be15b316f3483c4d0d00f71a65b974894a2025f441b79b9fe461bc740cb0b039"
|
|
"c4fe914f61c05a612d63ebc50a662b2d59b1996091e5e3474340544ea46a46cb"
|
|
"25c41ff700fafcd96c4f12ddc698cd2426558f960696837ea8170fd2fe284b54"
|
|
"8f585f97919ef14f2b3cbb351eb98872add7ba6d08c1401232df6cc878fbeb22"))
|
|
self.assertEqualBin(argon2_long_hash(129, preimage), unhex(
|
|
"83da464c278dcb12c29b6685fee6d32f0b461337c155369ad0d56b58b0aa5f80"
|
|
"9aa7b56bd41b664c8d768957f8f0e40999fb0178eb53cf83f31d725bf92881bc"
|
|
"900774bce4cdf56b6386ad3de6891d11a0ccd4564a3431fc4c24105a02d0a6a2"
|
|
"434712b9a7471f3223c72a6e64912200d0a3d149a19d06fe9dc8ec09d7ed5a48"
|
|
"bb"))
|
|
self.assertEqualBin(argon2_long_hash(511, preimage), unhex(
|
|
"30c0c0d0467e7665368db0b40a2324a61fb569d35172de2df53a9739a8d18e60"
|
|
"b4f25d521c8855604be3e24ea56302566074323d94c0bd3a33d08f185d8ba5ac"
|
|
"a2bc3fb2e4c4e5ffec5778daea67c6b5913c9cac16f2e5c7b7818e757fa747b3"
|
|
"69e586d616010a752762f69c604238ed8738430366fbdb7493454fa02391a76b"
|
|
"30f241695b9fa8d3a3116227c6bb6f72d325cf104ab153d15f928b22767d467d"
|
|
"4bf7e16176aaa7315954b7872061933c12d548f1f93a8abb9d73791661bee521"
|
|
"b2ae51be373a229dfef32787234c1be5846d133563002b9a029178716ad41e70"
|
|
"1539d3fad300c77607c5217701e3e485d72c980f3f71d525c8148375a2f8d22c"
|
|
"a211ba165330a90b7e0e6baa6073833925c23bdd388ee904f38463c7e6b85475"
|
|
"09b810aae5c9ffc5dd902c2ffe049c338e3ae2c6416d3b874d6a9d384089564c"
|
|
"0d8e4dce9b6e47e1d5ec9087bf526cc9fa35aab1893a0588d31b77fea37e0799"
|
|
"468deacde47629d2960a3519b3bcd4e22364a9cccd3b128cba21cac27f140d53"
|
|
"f79c11e4157e4cb48272eecdf62f52084a27e5b0933bbe66ded17e2df6f8d398"
|
|
"f6c479c3c716457820ad177b8bd9334cb594e03d09fcc4f82d4385e141eacd7d"
|
|
"9ad1e1c4cb42788af70bac0509f0a891e662960955490abf2763373803e8c89c"
|
|
"df632579cb9c647634b30df214a3d67b92fd55d283c42c63b470a48a78cd5b"))
|
|
self.assertEqualBin(argon2_long_hash(512, preimage), unhex(
|
|
"79a6974e29a9a6c069e0156774d35c5014a409f5ffc60013725367a7208d4929"
|
|
"7d228637751768a31a59e27aa89372f1bcc095a6fa331198a5bd5ad053ba2ebb"
|
|
"cbcc501ea55cf142e8d95209228c9ab60cd104d5077472f2a9ecaa071aed6ee9"
|
|
"5de29e188b7399d5b6b7ed897b2bc4dd1ea745eb9974e39ca6fb983380cc537a"
|
|
"c04dfe6caefe85faf206b1613092ebadf791eaa8a5b814c9a79a73a5733b0505"
|
|
"a47163c10a0f7309df6663896df6079a7c88c6879bb591a40abd398c6deda792"
|
|
"1cc3986435b1c840a768b2fa507446f2f77a406b1b2f739f7795db24789c8927"
|
|
"24b4c84b7005445123154f8cd2ba63a7ede672af5d197f846700732025c9931d"
|
|
"1c67c5493417ca394a8f68ba532645815cf7b5102af134ecb4fd9e326f53779a"
|
|
"3039dbef6a0880db9e38b6b61d2f9ead969e4224c2d9c69b5897e5eeb7032e83"
|
|
"334e192ff50017056ccb84d4cc8eee3ab248d2614643d0174fe18c72186dd967"
|
|
"92d8545645ddf4a9b2c7a91c9a71857a399449d7154077a8e9580f1a2d20227d"
|
|
"671b455ccb897cba0491e50892120d7877f7776d653cfdb176fa3f64a9e6f848"
|
|
"cd681c487b488775aaf698294eec813b2cca90d68d63b5d886d61c1a8e922aaa"
|
|
"330fd658ede56e34bcd288048e845eba7b8e2e7cc22ba6c91b523e48017aa878"
|
|
"8ce4f91d0e6d6c6706762fb0cc7f465cee3916684fb21e337cfe1b583e0b1e92"))
|
|
self.assertEqualBin(argon2_long_hash(513, preimage), unhex(
|
|
"32243cfbd7eca582d60b3b8ea3ba3d93783537689c7cbcd1d1cbde46200b8c86"
|
|
"617fc00e8a9ae991a1e2f91c67e07d5f0a777d982c1461d0c5474e4e164b053c"
|
|
"2808559e2b8a5ac4a46a5fcbc825b1d5302c7b0611940194eb494d45ce7113a2"
|
|
"3424b51c199c6a5100ab159ff323eda5feffee4da4155a028a81da9d44e4286b"
|
|
"ac3dab4ffce43a80b6ce97a47ea0ac51ee16e8b4d3b68942afdc20e1c21747c4"
|
|
"94859c3d3883e7dc19ea416a393a3507683d9d03e6a3a91f8f1cb8a7d5d9892e"
|
|
"80c8fb0222527a73a1f59b9dd41770982f2af177a6e96093064534803edd0713"
|
|
"71ede53024cedc291d768325bb4e4def9af1b5569c349b64816496c37a8787b5"
|
|
"4fbe248372ebadb5ce20e03eaa935dc55ff4b8cbe5d6d844c7b71d4656fef22c"
|
|
"5a49f13d75a7a8368a2dbc1e78d732b879bfc5c9467eda2bf4918f0c59037ae3"
|
|
"dee7880a171409dd1a4e143c814e60301ac77237f261fa7519a04e68000530f9"
|
|
"708ed9fda5609d655560a9491f80f5875ad5725e3120686b73319c6a727932e3"
|
|
"20a2174422523498c38fea47aeb20d135ff9fd93c6fa6db0005e0001685d7577"
|
|
"33a82a4dc9dd6556b938f7b8dafd0d670846780b9931b815063708189b17877b"
|
|
"825533bcc250fb576a28be4caa107e6a3a6f7b0c60fb51b0def27008b7e272ac"
|
|
"95d610bfa912339799a2e537ce543d7862dddbe31bb224fda4ae283571847a28"
|
|
"54"))
|
|
self.assertEqualBin(argon2_long_hash(1024, preimage), unhex(
|
|
"951252f6fa152124f381266a358d9b78b88e469d08d5fc78e4ea32253c7fc26c"
|
|
"3ff1c93529ab4ee6fcf00acf29bbaba934a4014ce2625e0806601c55e6ce70d7"
|
|
"121fd82f0904f335c5c7ba07dc6e6adf7582c92f7f255072203ea85844b4fe54"
|
|
"817476a20bb742710ffc42750361be94332d0fc721b192309acfa70da43db6ae"
|
|
"1d0f0bbe8a3250966a4532b36728162073c9eb3e119ea4c1c187c775dbb25a5d"
|
|
"d883e3f65706a5fca897cdc4a8aa7b68ba3f57940c72f3a3396c417e758ba071"
|
|
"95be4afba325237c0e2738a74d96fd1350fb623cb2ad40ea8b1e070cf398b98c"
|
|
"2865ea40225b81f031f2b405409ca01dc5d9903d3d8e1d6381fbe7ccfc8f3dab"
|
|
"eadafd7c976c0ba84a936f78ff7df0f112c089ba88f82bed7f9a6e31a91e5fee"
|
|
"f675755454b948de22695660b243b9eca3bcc89608f83d2baa1d73dd6b8bd4f9"
|
|
"b995ed9cb0f1edc6e98a49ed841b506c1bf59b43f4b3457a376bbff116c1a4f6"
|
|
"07cc62381fc5c19953c68f300c1b51198d40784d812d25810ba404862f04b680"
|
|
"6039a074f612ad8b84e0941ba23c915c3e7162c225fbecffdb7dc1ab559b2b54"
|
|
"32fe8a498c32e918d8e7e33254ff75077f648827705e987f4d90fba971e78e1a"
|
|
"6896b4d775c7359dc950f1e964fa04621aacf3c0988969490f4c72c54caf79e8"
|
|
"481053cc0a27ffcd3580aabf9ef1268d498d8a18bd70e9b8402e011753bb7dc7"
|
|
"e856c00d988fca924ee7cf61979c38cda8a872e4cc4fbdc90c23a0ded71eb944"
|
|
"bb816ab22d9a4380e3e9d1cec818165c2fba6c5d51dcbf452c0cb1779a384937"
|
|
"64d695370e13a301eca7be68d4112d2177381514efbb36fe08fc5bc2970301b8"
|
|
"06f8e5a57a780e894d5276e2025bb775b6d1861e33c54ab6e3eb72947fbe6f91"
|
|
"8174ce24eb4682efbb3c4f01233dc7ce9ef44792e9e876bb03e6751b3d559047"
|
|
"d045127d976aa042fc55c690c9048e200065e7b7de19d9353aa9ac9b3e7611f0"
|
|
"d1c42d069a300455ca1f7420a352bace89215e705106927510c11b3b1c1486d9"
|
|
"f3ab006d2de2ee2c94574f760ce8c246bca229f98c66f06042b14f1fff9a16c0"
|
|
"1550237e16d108ce5597299b1eb406a9ee505a29a6e0fa526b3e6beafd336aea"
|
|
"138b2f31971586f67c5ffffbd6826d1c75666038c43d0bdff4edfc294e064a49"
|
|
"2eed43e2dc78d00abc4e85edcd9563b8251b66f57b0f4b6d17f5a3f35c87c488"
|
|
"dbeeb84fd720286197c2dec8290eccf3a313747de285b9cd3548e90cf81b3838"
|
|
"3ffcc8c2a7f582feb369d05cb96b9b224d05902b3e39e5b96536032e9dddeb9b"
|
|
"9d4f40a9c8f544ca37cf8d39d7c8c6a33880e9184ed017bd642db9590759bd10"
|
|
"7362048ede5c0257feecc4984584592c566f37fba8469c064015339fb4f03023"
|
|
"56ece37fd3655aae2bfc989b9b4c1384efc3503c8866db901802cb36eda9fb00"))
|
|
|
|
def testArgon2(self):
|
|
# A few tests of my own of Argon2, derived from the reference
|
|
# implementation.
|
|
pwd = b"password"
|
|
salt = b"salt of at least 16 bytes"
|
|
secret = b"secret"
|
|
assoc = b"associated data"
|
|
|
|
# Smallest memory (8Kbyte) and parallelism (1) parameters the
|
|
# reference implementation will accept, but lots of passes
|
|
self.assertEqualBin(
|
|
argon2('i', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"314da280240a3ca1eedd1f1db417a76eb0741e7df64b8cdf"))
|
|
self.assertEqualBin(
|
|
argon2('d', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"9cc961cf43e0f86c2d4e202b816dc5bc5b2177e68faa0b08"))
|
|
self.assertEqualBin(
|
|
argon2('id', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
|
|
"6cd6c490c582fa597721d772d4e3de166987792491b48c51"))
|
|
|
|
# Test a memory cost value that isn't a power of 2. This
|
|
# checks a wraparound case during the conversion of J1 to a
|
|
# block index, and is a regression test for a bug that nearly
|
|
# got past me during original development.
|
|
self.assertEqualBin(
|
|
argon2('i', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"a561963623f1073c9aa8caecdb600c73ffc6de677ba8d97c"))
|
|
self.assertEqualBin(
|
|
argon2('d', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"a9014db7f1d468fb25b88fa7fc0deac0f2e7f27e25d2cf6e"))
|
|
self.assertEqualBin(
|
|
argon2('id', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
|
|
"64f3212b1e7725ffcf9ae2d1753d63e763bcd6970061a435"))
|
|
|
|
# Larger parameters that should exercise the pseudorandom
|
|
# block indexing reasonably thoroughly. Also generate plenty
|
|
# of output data.
|
|
self.assertEqualBin(
|
|
argon2('i', 1024, 5, 16, 77, pwd, salt, secret, assoc), unhex(
|
|
"b008a685ff57730fad0e6f3ef3b9189282c0d9b05303675f43b5f3054724"
|
|
"733fcbe8e2639cc2c930535b31b723339041bcd703bf2483455acf86c0e6"
|
|
"9ed88c545ad40f1f2068855e4d61e99407"))
|
|
self.assertEqualBin(
|
|
argon2('d', 1024, 5, 16, 111, pwd, salt, secret, assoc), unhex(
|
|
"399ffbcd720c47745b9deb391ed0de7d5e0ffe53aef9f8ef7a7918cfa212"
|
|
"53df8cc577affbd5e0c0f8bf6d93c11b2f63973f8fc8f89dccd832fc587e"
|
|
"5d61717be6e88ca33eef5d1e168c028bae632a2a723c6c83f8e755f39171"
|
|
"5eda1c77c8e2fe06fbdd4e56d35262587e7df73cd7"))
|
|
self.assertEqualBin(
|
|
argon2('id', 1024, 5, 16, 123, pwd, salt, secret, assoc), unhex(
|
|
"6636807289cb9b9c032f48dcc31ffed1de4ca6c1b97e1ce768d690486341"
|
|
"2ac84b39d568a81dd01d9ee3ceec6cc23441d95e6abeb4a2024f1f540d56"
|
|
"9b799277c4037ddc7195ba783c9158a901adc7d4a5df8357b34a3869e5d6"
|
|
"aeae2a21201eef5e347de22c922192e8f46274b0c9d33e965155a91e7686"
|
|
"9d530e"))
|
|
|
|
def testOpenSSHBcrypt(self):
|
|
# Test case created by making an OpenSSH private key file
|
|
# using their own ssh-keygen, then decrypting it successfully
|
|
# using PuTTYgen and printing the inputs and outputs to
|
|
# openssh_bcrypt in the process. So this output key is known
|
|
# to agree with OpenSSH's own answer.
|
|
|
|
self.assertEqualBin(
|
|
openssh_bcrypt('test passphrase',
|
|
unhex('d0c3b40ace4afeaf8c0f81202ae36718'),
|
|
16, 48),
|
|
unhex('d78ba86e7273de0e007ab0ba256646823d5c902bc44293ae'
|
|
'78547e9a7f629be928cc78ff78a75a4feb7aa6f125079c7d'))
|
|
|
|
def testRSAVerify(self):
|
|
def blobs(n, e, d, p, q, iqmp):
|
|
pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
|
|
privblob = (ssh2_mpint(d) + ssh2_mpint(p) +
|
|
ssh2_mpint(q) + ssh2_mpint(iqmp))
|
|
return pubblob, privblob
|
|
|
|
def failure_test(*args):
|
|
pubblob, privblob = blobs(*args)
|
|
key = ssh_key_new_priv('rsa', pubblob, privblob)
|
|
self.assertEqual(key, None)
|
|
|
|
def success_test(*args):
|
|
pubblob, privblob = blobs(*args)
|
|
key = ssh_key_new_priv('rsa', pubblob, privblob)
|
|
self.assertNotEqual(key, None)
|
|
|
|
# Parameters for a (trivially small) test key.
|
|
n = 0xb5d545a2f6423eabd55ffede53e21628d5d4491541482e10676d9d6f2783b9a5
|
|
e = 0x25
|
|
d = 0x6733db6a546ac99fcc21ba2b28b0c077156e8a705976205a955c6d9cef98f419
|
|
p = 0xe30ebd7348bf10dca72b36f2724dafa7
|
|
q = 0xcd02c87a7f7c08c4e9dc80c9b9bad5d3
|
|
iqmp = 0x60a129b30db9227910efe1608976c513
|
|
|
|
# Check the test key makes sense unmodified.
|
|
success_test(n, e, d, p, q, iqmp)
|
|
|
|
# Try modifying the values one by one to ensure they are
|
|
# rejected, except iqmp, which sshrsa.c regenerates anyway so
|
|
# it won't matter at all.
|
|
failure_test(n+1, e, d, p, q, iqmp)
|
|
failure_test(n, e+1, d, p, q, iqmp)
|
|
failure_test(n, e, d+1, p, q, iqmp)
|
|
failure_test(n, e, d, p+1, q, iqmp)
|
|
failure_test(n, e, d, p, q+1, iqmp)
|
|
success_test(n, e, d, p, q, iqmp+1)
|
|
|
|
# The key should also be accepted with p,q reversed. (Again,
|
|
# iqmp gets regenerated, so it won't matter if that's wrong.)
|
|
success_test(n, e, d, q, p, iqmp)
|
|
|
|
# Replace each of p and q with 0, and with 1. These should
|
|
# still fail validation (obviously), but the point is that the
|
|
# validator should also avoid trying to divide by zero in the
|
|
# process.
|
|
failure_test(n, e, d, 0, q, iqmp)
|
|
failure_test(n, e, d, p, 0, iqmp)
|
|
failure_test(n, e, d, 1, q, iqmp)
|
|
failure_test(n, e, d, p, 1, iqmp)
|
|
|
|
def testKeyMethods(self):
|
|
# Exercise all the methods of the ssh_key trait on all key
|
|
# types, and ensure that they're consistent with each other.
|
|
# No particular test is done on the rightness of the
|
|
# signatures by any objective standard, only that the output
|
|
# from our signing method can be verified by the corresponding
|
|
# verification method.
|
|
#
|
|
# However, we do include the expected signature text in each
|
|
# case, which checks determinism in the sense of being
|
|
# independent of any random numbers, and also in the sense of
|
|
# tomorrow's change to the code not having accidentally
|
|
# changed the behaviour.
|
|
|
|
test_message = b"Message to be signed by crypt.testKeyMethods\n"
|
|
|
|
test_keys = [
|
|
('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
|
|
('ed448', 'AAAACXNzaC1lZDQ0OAAAADnRI0CQDym5IqUidLNDcSdHe54bYEwqjpjBlab8uKGoe6FRqqejha7+5U/VAHy7BmE23+ju26O9XgA=', 'AAAAObP9klqyiJSJsdFJf+xwZQdkbZGUqXE07K6e5plfRTGjYYkyWJFUNFH4jzIn9xH1TX9z9EGycPaXAA==', 448, b'0x4bf4a2b6586c60d8cdb52c2b45b897f6d2224bc37987489c0d70febb449e8c82964ed5785827be808e44d31dd31e6ff7c99f43e49f419928,0x5ebda3dbeee8df366106bb7c00d54fe5feae85a3a7aa51a17ba8a1b8fca695c1988e2a4c601b9e7b47277143b37422a522b9290f904023d1', [(0, 'AAAACXNzaC1lZDQ0OAAAAHLkSVioGMvLesZp3Tn+Z/sSK0Hl7RHsHP4q9flLzTpZG5h6JDH3VmZBEjTJ6iOLaa0v4FoNt0ng4wAB53WrlQC4h3iAusoGXnPMAKJLmqzplKOCi8HKXk8Xl8fsXbaoyhatv1OZpwJcffmh1x+x+LSgNQA=')]),
|
|
('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]),
|
|
('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]),
|
|
('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]),
|
|
('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]),
|
|
('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
|
|
]
|
|
|
|
for alg, pubb64, privb64, bits, cachestr, siglist in test_keys:
|
|
# Decode the blobs in the above test data.
|
|
pubblob = b64(pubb64)
|
|
privblob = b64(privb64)
|
|
|
|
# Check the method that examines a public blob directly
|
|
# and returns an integer showing the key size.
|
|
self.assertEqual(ssh_key_public_bits(alg, pubblob), bits)
|
|
|
|
# Make a public-only and a full ssh_key object.
|
|
pubkey = ssh_key_new_pub(alg, pubblob)
|
|
privkey = ssh_key_new_priv(alg, pubblob, privblob)
|
|
|
|
# Test that they re-export the public and private key
|
|
# blobs unchanged.
|
|
self.assertEqual(ssh_key_public_blob(pubkey), pubblob)
|
|
self.assertEqual(ssh_key_public_blob(privkey), pubblob)
|
|
self.assertEqual(ssh_key_private_blob(privkey), privblob)
|
|
|
|
# Round-trip through the OpenSSH wire encoding used by the
|
|
# agent protocol (and the newer OpenSSH key file format),
|
|
# and check the result still exports all the same blobs.
|
|
osshblob = ssh_key_openssh_blob(privkey)
|
|
privkey2 = ssh_key_new_priv_openssh(alg, osshblob)
|
|
self.assertEqual(ssh_key_public_blob(privkey2), pubblob)
|
|
self.assertEqual(ssh_key_private_blob(privkey2), privblob)
|
|
self.assertEqual(ssh_key_openssh_blob(privkey2), osshblob)
|
|
|
|
# Test that the string description used in the host key
|
|
# cache is as expected.
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertEqual(ssh_key_cache_str(key), cachestr)
|
|
|
|
# Now test signatures, separately for each provided flags
|
|
# value.
|
|
for flags, sigb64 in siglist:
|
|
# Decode the signature blob from the test data.
|
|
sigblob = b64(sigb64)
|
|
|
|
# Sign our test message, and check it produces exactly
|
|
# the expected signature blob.
|
|
#
|
|
# We do this with both the original private key and
|
|
# the one we round-tripped through OpenSSH wire
|
|
# format, just in case that round trip made some kind
|
|
# of a mess that didn't show up in the re-extraction
|
|
# of the blobs.
|
|
for key in [privkey, privkey2]:
|
|
self.assertEqual(ssh_key_sign(
|
|
key, test_message, flags), sigblob)
|
|
|
|
if flags != 0:
|
|
# Currently we only support _generating_
|
|
# signatures with flags != 0, not verifying them.
|
|
continue
|
|
|
|
# Check the signature verifies successfully, with all
|
|
# three of the key objects we have.
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertTrue(ssh_key_verify(key, sigblob, test_message))
|
|
|
|
# A crude check that at least _something_ doesn't
|
|
# verify successfully: flip a bit of the signature
|
|
# and expect it to fail.
|
|
#
|
|
# We do this twice, at the 1/3 and 2/3 points along
|
|
# the signature's length, so that in the case of
|
|
# signatures in two parts (DSA-like) we try perturbing
|
|
# both parts. Other than that, we don't do much to
|
|
# make this a rigorous cryptographic test.
|
|
for n, d in [(1,3),(2,3)]:
|
|
sigbytes = list(sigblob)
|
|
bit = 8 * len(sigbytes) * n // d
|
|
sigbytes[bit // 8] ^= 1 << (bit % 8)
|
|
badsig = bytes(sigbytes)
|
|
for key in [pubkey, privkey, privkey2]:
|
|
self.assertFalse(ssh_key_verify(
|
|
key, badsig, test_message))
|
|
|
|
def testPPKLoadSave(self):
|
|
# Stability test of PPK load/save functions.
|
|
input_clear_key = b"""\
|
|
PuTTY-User-Key-File-3: ssh-ed25519
|
|
Encryption: none
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
|
|
Private-MAC: 816c84093fc4877e8411b8e5139c5ce35d8387a2630ff087214911d67417a54d
|
|
"""
|
|
input_encrypted_key = b"""\
|
|
PuTTY-User-Key-File-3: ssh-ed25519
|
|
Encryption: aes256-cbc
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Key-Derivation: Argon2id
|
|
Argon2-Memory: 8192
|
|
Argon2-Passes: 13
|
|
Argon2-Parallelism: 1
|
|
Argon2-Salt: 37c3911bfefc8c1d11ec579627d2b3d9
|
|
Private-Lines: 1
|
|
amviz4sVUBN64jLO3gt4HGXJosUArghc4Soi7aVVLb2Tir5Baj0OQClorycuaPRd
|
|
Private-MAC: 6f5e588e475e55434106ec2c3569695b03f423228b44993a9e97d52ffe7be5a8
|
|
"""
|
|
algorithm = b'ssh-ed25519'
|
|
comment = b'ed25519-key-20200105'
|
|
pp = b'test-passphrase'
|
|
public_blob = unhex(
|
|
'0000000b7373682d65643235353139000000207242b33387688f57ff218bb639'
|
|
'f6d9fd213ba54f3100d5b5cb64ca6e85247d56')
|
|
|
|
self.assertEqual(ppk_encrypted_s(input_clear_key), (False, comment))
|
|
self.assertEqual(ppk_encrypted_s(input_encrypted_key), (True, comment))
|
|
self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(ppk_loadpub_s(input_clear_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s(input_encrypted_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s("not a key file"),
|
|
(False, None, b'', None,
|
|
b'not a public key or a PuTTY SSH-2 private key'))
|
|
|
|
k1, c, e = ppk_load_s(input_clear_key, None)
|
|
self.assertEqual((c, e), (comment, None))
|
|
k2, c, e = ppk_load_s(input_encrypted_key, pp)
|
|
self.assertEqual((c, e), (comment, None))
|
|
privblob = ssh_key_private_blob(k1)
|
|
self.assertEqual(ssh_key_private_blob(k2), privblob)
|
|
|
|
salt = unhex('37c3911bfefc8c1d11ec579627d2b3d9')
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k1, comment, None,
|
|
3, 'id', 8192, 13, 1),
|
|
input_clear_key)
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k2, comment, None,
|
|
3, 'id', 8192, 13, 1),
|
|
input_clear_key)
|
|
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k1, comment, pp,
|
|
3, 'id', 8192, 13, 1),
|
|
input_encrypted_key)
|
|
with queued_specific_random_data(salt):
|
|
self.assertEqual(ppk_save_sb(k2, comment, pp,
|
|
3, 'id', 8192, 13, 1),
|
|
input_encrypted_key)
|
|
|
|
# And check we can still handle v2 key files.
|
|
v2_clear_key = b"""\
|
|
PuTTY-User-Key-File-2: ssh-ed25519
|
|
Encryption: none
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
|
|
Private-MAC: 2a629acfcfbe28488a1ba9b6948c36406bc28422
|
|
"""
|
|
v2_encrypted_key = b"""\
|
|
PuTTY-User-Key-File-2: ssh-ed25519
|
|
Encryption: aes256-cbc
|
|
Comment: ed25519-key-20200105
|
|
Public-Lines: 2
|
|
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
|
|
JH1W
|
|
Private-Lines: 1
|
|
4/jKlTgC652oa9HLVGrMjHZw7tj0sKRuZaJPOuLhGTvb25Jzpcqpbi+Uf+y+uo+Z
|
|
Private-MAC: 5b1f6f4cc43eb0060d2c3e181bc0129343adba2b
|
|
"""
|
|
|
|
self.assertEqual(ppk_encrypted_s(v2_clear_key), (False, comment))
|
|
self.assertEqual(ppk_encrypted_s(v2_encrypted_key), (True, comment))
|
|
self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(ppk_loadpub_s(v2_clear_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s(v2_encrypted_key),
|
|
(True, algorithm, public_blob, comment, None))
|
|
self.assertEqual(ppk_loadpub_s("not a key file"),
|
|
(False, None, b'', None,
|
|
b'not a public key or a PuTTY SSH-2 private key'))
|
|
|
|
k1, c, e = ppk_load_s(v2_clear_key, None)
|
|
self.assertEqual((c, e), (comment, None))
|
|
k2, c, e = ppk_load_s(v2_encrypted_key, pp)
|
|
self.assertEqual((c, e), (comment, None))
|
|
self.assertEqual(ssh_key_private_blob(k1), privblob)
|
|
self.assertEqual(ssh_key_private_blob(k2), privblob)
|
|
|
|
self.assertEqual(ppk_save_sb(k2, comment, None,
|
|
2, 'id', 8192, 13, 1),
|
|
v2_clear_key)
|
|
self.assertEqual(ppk_save_sb(k1, comment, pp,
|
|
2, 'id', 8192, 13, 1),
|
|
v2_encrypted_key)
|
|
|
|
def testRSA1LoadSave(self):
|
|
# Stability test of SSH-1 RSA key-file load/save functions.
|
|
input_clear_key = unhex(
|
|
"5353482050524956415445204B45592046494C4520464F524D415420312E310A"
|
|
"000000000000000002000200BB115A85B741E84E3D940E690DF96A0CBFDC07CA"
|
|
"70E51DA8234D211DE77341CEF40C214CAA5DCF68BE2127447FD6C84CCB17D057"
|
|
"A74F2365B9D84A78906AEB51000625000000107273612D6B65792D3230323030"
|
|
"313036208E208E0200929EE615C6FC4E4B29585E52570F984F2E97B3144AA5BD"
|
|
"4C6EB2130999BB339305A21FFFA79442462A8397AF8CAC395A3A3827DE10457A"
|
|
"1F1B277ABFB8C069C100FF55B1CAD69B3BD9E42456CF28B1A4B98130AFCE08B2"
|
|
"8BCFFF5FFFED76C5D51E9F0100C5DE76889C62B1090A770AE68F087A19AB5126"
|
|
"E60DF87710093A2AD57B3380FB0100F2068AC47ECB33BF8F13DF402BABF35EE7"
|
|
"26BD32F7564E51502DF5C8F4888B2300000000")
|
|
input_encrypted_key = unhex(
|
|
"5353482050524956415445204b45592046494c4520464f524d415420312e310a"
|
|
"000300000000000002000200bb115a85b741e84e3d940e690df96a0cbfdc07ca"
|
|
"70e51da8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057"
|
|
"a74f2365b9d84a78906aeb51000625000000107273612d6b65792d3230323030"
|
|
"3130363377f926e811a5f044c52714801ecdcf9dd572ee0a193c4f67e87ab2ce"
|
|
"4569d0c5776fd6028909ed8b6d663bef15d207d3ef6307e7e21dbec56e8d8b4e"
|
|
"894ded34df891bb29bae6b2b74805ac80f7304926abf01ae314dd69c64240761"
|
|
"34f15d50c99f7573252993530ec9c4d5016dd1f5191730cda31a5d95d362628b"
|
|
"2a26f4bb21840d01c8360e4a6ce216c4686d25b8699d45cf361663bb185e2c5e"
|
|
"652012a1e0f9d6d19afbb28506f7775bfd8129")
|
|
|
|
comment = b'rsa-key-20200106'
|
|
pp = b'test-passphrase'
|
|
public_blob = unhex(
|
|
"000002000006250200bb115a85b741e84e3d940e690df96a0cbfdc07ca70e51d"
|
|
"a8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057a74f23"
|
|
"65b9d84a78906aeb51")
|
|
|
|
self.assertEqual(rsa1_encrypted_s(input_clear_key), (False, comment))
|
|
self.assertEqual(rsa1_encrypted_s(input_encrypted_key),
|
|
(True, comment))
|
|
self.assertEqual(rsa1_encrypted_s("not a key file"), (False, None))
|
|
|
|
self.assertEqual(rsa1_loadpub_s(input_clear_key),
|
|
(1, public_blob, comment, None))
|
|
self.assertEqual(rsa1_loadpub_s(input_encrypted_key),
|
|
(1, public_blob, comment, None))
|
|
|
|
k1 = rsa_new()
|
|
status, c, e = rsa1_load_s(input_clear_key, k1, None)
|
|
self.assertEqual((status, c, e), (1, comment, None))
|
|
k2 = rsa_new()
|
|
status, c, e = rsa1_load_s(input_clear_key, k2, None)
|
|
self.assertEqual((status, c, e), (1, comment, None))
|
|
|
|
with queued_specific_random_data(unhex("208e")):
|
|
self.assertEqual(rsa1_save_sb(k1, comment, None), input_clear_key)
|
|
with queued_specific_random_data(unhex("208e")):
|
|
self.assertEqual(rsa1_save_sb(k2, comment, None), input_clear_key)
|
|
|
|
with queued_specific_random_data(unhex("99f3")):
|
|
self.assertEqual(rsa1_save_sb(k1, comment, pp),
|
|
input_encrypted_key)
|
|
with queued_specific_random_data(unhex("99f3")):
|
|
self.assertEqual(rsa1_save_sb(k2, comment, pp),
|
|
input_encrypted_key)
|
|
|
|
def testOpenSSHCert(self):
|
|
def per_base_keytype_tests(alg, run_validation_tests=False,
|
|
run_ca_rsa_tests=False, ca_signflags=None):
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = CertType.user,
|
|
keyid = b'id',
|
|
serial = 111,
|
|
principals = [b'username'],
|
|
valid_after = 1000,
|
|
valid_before = 2000), ca_key, signflags=ca_signflags)
|
|
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
|
|
# Check the simple certificate methods
|
|
self.assertEqual(certified_key.cert_id_string(), b'id')
|
|
self.assertEqual(certified_key.ca_public_blob(),
|
|
ca_key.public_blob())
|
|
recovered_base_key = certified_key.base_key()
|
|
self.assertEqual(recovered_base_key.public_blob(),
|
|
base_key.public_blob())
|
|
self.assertEqual(recovered_base_key.private_blob(),
|
|
base_key.private_blob())
|
|
|
|
# Check that an ordinary key also supports base_key()
|
|
redundant_base_key = base_key.base_key()
|
|
self.assertEqual(redundant_base_key.public_blob(),
|
|
base_key.public_blob())
|
|
self.assertEqual(redundant_base_key.private_blob(),
|
|
base_key.private_blob())
|
|
|
|
# Test signing and verifying using the certified key type
|
|
test_string = b'hello, world'
|
|
base_sig = base_key.sign(test_string, 0)
|
|
certified_sig = certified_key.sign(test_string, 0)
|
|
self.assertEqual(base_sig, certified_sig)
|
|
self.assertEqual(certified_key.verify(base_sig, test_string), True)
|
|
|
|
# Check a successful certificate verification
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, '')
|
|
self.assertEqual(result, True)
|
|
|
|
# If the key type is RSA, check that the validator rejects
|
|
# wrong kinds of CA signature
|
|
if run_ca_rsa_tests:
|
|
forbid_all = ",".join(["permit_rsa_sha1=false",
|
|
"permit_rsa_sha256=false,"
|
|
"permit_rsa_sha512=false"])
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, forbid_all)
|
|
self.assertEqual(result, False)
|
|
|
|
algname = ("rsa-sha2-512" if ca_signflags == 4 else
|
|
"rsa-sha2-256" if ca_signflags == 2 else
|
|
"ssh-rsa")
|
|
self.assertEqual(err, (
|
|
"Certificate signature uses '{}' signature type "
|
|
"(forbidden by user configuration)".format(algname)
|
|
.encode("ASCII")))
|
|
|
|
permitflag = ("permit_rsa_sha512" if ca_signflags == 4 else
|
|
"permit_rsa_sha256" if ca_signflags == 2 else
|
|
"permit_rsa_sha1")
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, "{},{}=true".format(
|
|
forbid_all, permitflag))
|
|
self.assertEqual(result, True)
|
|
|
|
# That's the end of the tests we need to repeat for all
|
|
# the key types. Now we move on to detailed tests of the
|
|
# validation, which are independent of key type, so we
|
|
# only need to test this part once.
|
|
if not run_validation_tests:
|
|
return
|
|
|
|
# Check cert verification at the other end of the valid
|
|
# time range
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1999, '')
|
|
self.assertEqual(result, True)
|
|
|
|
# Oops, wrong certificate type
|
|
result, err = certified_key.check_cert(
|
|
True, b'username', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate type is user; expected host')
|
|
|
|
# Oops, wrong username
|
|
result, err = certified_key.check_cert(
|
|
False, b'someoneelse', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate\'s username list ["username"] '
|
|
b'does not contain expected username "someoneelse"')
|
|
|
|
# Oops, time is wrong. (But we can't check the full error
|
|
# message including the translated start/end times, because
|
|
# those vary with LC_TIME.)
|
|
result, err = certified_key.check_cert(
|
|
False, b'someoneelse', 999, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err[:30], b'Certificate is not valid until')
|
|
result, err = certified_key.check_cert(
|
|
False, b'someoneelse', 2000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err[:22], b'Certificate expired at')
|
|
|
|
# Modify the certificate so that the signature doesn't validate
|
|
username_position = cert_pub.index(b'username')
|
|
bytelist = list(cert_pub)
|
|
bytelist[username_position] ^= 1
|
|
miscertified_key = ssh_key_new_priv(alg + '-cert', bytes(bytelist),
|
|
base_key.private_blob())
|
|
result, err = miscertified_key.check_cert(
|
|
False, b'username', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b"Certificate's signature is invalid")
|
|
|
|
# Make a certificate containing a critical option, to test we
|
|
# reject it
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = CertType.user,
|
|
keyid = b'id',
|
|
serial = 112,
|
|
principals = [b'username'],
|
|
critical_options = {b'unknown-option': b'yikes!'}), ca_key)
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate specifies an unsupported '
|
|
b'critical option "unknown-option"')
|
|
|
|
# Make a certificate containing a non-critical extension, to
|
|
# test we _accept_ it
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = CertType.user,
|
|
keyid = b'id',
|
|
serial = 113,
|
|
principals = [b'username'],
|
|
extensions = {b'unknown-ext': b'whatever, dude'}), ca_key)
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, '')
|
|
self.assertEqual(result, True)
|
|
|
|
# Make a certificate on the CA key, and re-sign the main
|
|
# key using that, to ensure that two-level certs are rejected
|
|
ca_self_certificate = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = ca_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = CertType.user,
|
|
keyid = b'id',
|
|
serial = 111,
|
|
principals = [b"doesn't matter"],
|
|
valid_after = 1000,
|
|
valid_before = 2000), ca_key, signflags=ca_signflags)
|
|
import base64
|
|
self_signed_ca_key = ssh_key_new_pub(
|
|
alg + '-cert', ca_self_certificate)
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = self_signed_ca_key,
|
|
certtype = CertType.user,
|
|
keyid = b'id',
|
|
serial = 111,
|
|
principals = [b'username'],
|
|
valid_after = 1000,
|
|
valid_before = 2000), ca_key, signflags=ca_signflags)
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1500, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(
|
|
err, b'Certificate is signed with a certified key '
|
|
b'(forbidden by OpenSSH certificate specification)')
|
|
|
|
# Now try a host certificate. We don't need to do _all_ the
|
|
# checks over again, but at least make sure that setting
|
|
# CertType.host leads to the certificate validating with
|
|
# host=True and not with host=False.
|
|
#
|
|
# Also, in this test, give two hostnames.
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = CertType.host,
|
|
keyid = b'id',
|
|
serial = 114,
|
|
principals = [b'hostname.example.com',
|
|
b'hostname2.example.com'],
|
|
valid_after = 1000,
|
|
valid_before = 2000), ca_key)
|
|
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
|
|
# Check certificate type
|
|
result, err = certified_key.check_cert(
|
|
True, b'hostname.example.com', 1000, '')
|
|
self.assertEqual(result, True)
|
|
result, err = certified_key.check_cert(
|
|
False, b'hostname.example.com', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate type is host; expected user')
|
|
|
|
# Check the second hostname and an unknown one
|
|
result, err = certified_key.check_cert(
|
|
True, b'hostname2.example.com', 1000, '')
|
|
self.assertEqual(result, True)
|
|
result, err = certified_key.check_cert(
|
|
True, b'hostname3.example.com', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate\'s hostname list ['
|
|
b'"hostname.example.com", "hostname2.example.com"] '
|
|
b'does not contain expected hostname '
|
|
b'"hostname3.example.com"')
|
|
|
|
# And just for luck, try a totally unknown certificate type,
|
|
# making sure that it's rejected in both modes and gives the
|
|
# right error message
|
|
cert_pub = sign_cert_via_testcrypt(
|
|
make_signature_preimage(
|
|
key_to_certify = base_key.public_blob(),
|
|
ca_key = ca_key,
|
|
certtype = 12345,
|
|
keyid = b'id',
|
|
serial = 114,
|
|
principals = [b'username', b'hostname.example.com'],
|
|
valid_after = 1000,
|
|
valid_before = 2000), ca_key)
|
|
certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
|
|
base_key.private_blob())
|
|
result, err = certified_key.check_cert(
|
|
False, b'username', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate type is unknown value 12345; '
|
|
b'expected user')
|
|
result, err = certified_key.check_cert(
|
|
True, b'hostname.example.com', 1000, '')
|
|
self.assertEqual(result, False)
|
|
self.assertEqual(err, b'Certificate type is unknown value 12345; '
|
|
b'expected host')
|
|
|
|
ca_key = ssh_key_new_priv('ed25519', b64('AAAAC3NzaC1lZDI1NTE5AAAAIMUJEFAmSV/qtoxSmVOHUgTMKYjqkDy8fTfsfCKV+sN7'), b64('AAAAIK4STyaf63xHidqhvUop9/OKiYqSh/YEWLCp1lL5Vs4u'))
|
|
|
|
base_key = ssh_key_new_priv('ed25519', b64('AAAAC3NzaC1lZDI1NTE5AAAAIMt0/CMBL+64GQ/r/JyGxo6oHs86i9bOHhMJYbDbxEJf'), b64('AAAAIB38jy02ZWYb4EXrJG9RIljEhqidrG5DdhZvMvoeOTZs'))
|
|
per_base_keytype_tests('ed25519', run_validation_tests=True)
|
|
|
|
base_key = ssh_key_new_priv('p256', b64('AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBGc8VXplXScdWckJgAw6Hag5PP7g0JEVdLY5lP2ujvVxU5GwwquYLbX3yyj1zY5h2n9GoXrnRxzR5+5g8wsNjTA='), b64('AAAAICVRicPD5MyOHfKdnC/8IP84t+nQ4bqmMUyX7NHyCKjS'))
|
|
per_base_keytype_tests('p256')
|
|
|
|
base_key = ssh_key_new_priv('p384', b64('AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBLITujAbKwHDEzVDFqWtA+CleAhN/Y+53mHbEoTpU0aof9L+2lHeUshXdxHDLxY69wO5+WfqWJCwSY58PuXIZzIisQkvIKq6LhpzK6C5JpWJ8Kbv7su+qZPf5sYoxx0xZg=='), b64('AAAAMHyQTQYcIA/bR4ZvWS86ohb5Lu0MhzjD8bUb3q8jnROOe3BrE9I8oJcx+l1lddPouA=='))
|
|
per_base_keytype_tests('p384')
|
|
|
|
base_key = ssh_key_new_priv('p521', b64('AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBADButwMRGdLkFhWcSDsLhRhgyrLQq1/A0M8x4GgEmesh4iydo4tGKZR14GhHvx150IWTE1Tre4wyH+1FsTfAlpUBgBDQjsZE0D3u3SLp4qjjhzyrJGhEUDd9J6lsr6JrXbTefz5+LkM9m5l86y9PoAgT+F25OiTYlfvR5qx/pzIPoCnpA=='), b64('AAAAQgFV8xBXC7XZNxdW1oWg6yCZjys2AX4beZVehE9A2R/4m11dHnfqoE1FzbRxj9xqwKvHZRhMOJ//DYuhtcG6+6yHsA=='))
|
|
per_base_keytype_tests('p521')
|
|
|
|
base_key = ssh_key_new_priv('dsa', b64('AAAAB3NzaC1kc3MAAABCAXgDrF9Fw/Ty+QcoljAGjGL/Ph5+NBQqUYADm4wxF+aazjQXLuZ0VW9OdYBisgDZlYDj/w7y9NxCBgax2BSkhDNxAAAAFQC/YwnFzcom6cRRHPXtOUDLi2I29QAAAEIAqGOUYpfFPwzhgAmYXwWKdK8ouSUplNE29FOpv6NYjyf7k+tLSWF3b8oZdtw6XP8lr4vcKXC9Ik0YpKYKM7iKfb8AAABCAUDCcojlDLQmLHg8HhFCtT/CpayNh4OfmSrP8XOwJnFD/eBaSGuPB5EvGd+m6gr+Pc0RSAlWP1aIzUbYkQ33Yk58'), b64('AAAAFQChVuOTNrCwLSJygxlRQhDwHozwSg=='))
|
|
per_base_keytype_tests('dsa')
|
|
|
|
base_key = ssh_key_new_priv('rsa', b64('AAAAB3NzaC1yc2EAAAADAQABAAAAgQDXLnqGPQLL9byoHFQWPiF5Uzcd0KedMRRJmuwyCAWprlh8EN43mL2F7q27Uv54m/ztqW4DsVtiCN6cDYvB9QPNYFR5npwsEAJ06Ro4s9ZpFsZVOvitqeoYIs+jkS8vq5V8X4hwLlJ8vXYPD6rHJhOz6HFpImHmVu40Mu5lq+MCQQ=='), b64('AAAAgH5dBwrJzVilKHK4oBCnz9SFr7pMjAHdjoJi/g2rdFfe0IubBEQ16CY8sb1t0Y5WXEPc2YRFpNp/RurxcX8nOWFPzgNJXEtkKpKO9Juqu5hL4xcf8QKC2aJFk3EXrn/M6dXEdjqN4UhsT6iFTsHKU4b8T6VTtgKzwkOdic/YotaBAAAAQQD6liDTlzTKzLhbypI6l+y2BGA3Kkzz71Y2o7XH/6bZ6HJOFgHuJeL3eNQptzd8Q+ctfvR0fa2PItYydDOlVUeZAAAAQQDb1IsO1/fkflDZhPQT2XOxtrjgQhotKjr6CSmJtDNmo1mOCN+mOgxtDfJ0PNEEM1P9CO2Ia3njtkxt4Ep2EpjpAAAAQQClRxLEHsRK9nMPZ4HW45iyw5dHhYar9pYUql2VnixWQxrHy13ZIaWxi6xwWjuPglrdBgEQfYwH9KGmlFmZXT/Z'))
|
|
per_base_keytype_tests('rsa')
|
|
|
|
# Now switch to an RSA certifying key, and test different RSA
|
|
# signature subtypes being used to sign the certificate
|
|
ca_key = ssh_key_new_priv('rsa', b64('AAAAB3NzaC1yc2EAAAADAQABAAAAgQCKHiavhtnAZQLUPtYlzlQmVTHSKq2ChCKZP0cLNtN2YSS0/f4D1hi8W04Qh/JuSXZAdUThTAVjxDmxpiOMNwa/2WDXMuqip47dzZSQxtSdvTfeL9TVC/M1NaOzy8bqFx6pzi37zPATETT4PP1Zt/Pd23ZJYhwjxSyTlqj7529v0w=='), b64('AAAAgCwTZyEIlaCyG28EBm7WI0CAW3/IIsrNxATHjrJjcqQKaB5iF5e90PL66DSaTaEoTFZRlgOXsPiffBHXBO0P+lTyZ2jlq2J2zgeofRH3Yong4BT4xDtqBKtxixgC1MAHmrOnRXjAcDUiLxIGgU0YKSv0uAlgARsUwDsk0GEvK+jBAAAAQQDMi7liRBQ4/Z6a4wDL/rVnIJ9x+2h2UPK9J8U7f97x/THIBtfkbf9O7nDP6onValuSr86tMR24DJZsEXaGPwjDAAAAQQCs3J3D3jNVwwk16oySRSjA5x3tKCEITYMluyXX06cvFew8ldgRCYl1sh8RYAfbBKXhnJD77qIxtVNaF1yl/guxAAAAQFTRdKRUF2wLu/K/Rr34trwKrV6aW0GWyHlLuWvF7FUB85aDmtqYI2BSk92mVCKHBNw2T3cJMabN9JOznjtADiM='))
|
|
per_base_keytype_tests('rsa', run_ca_rsa_tests=True)
|
|
per_base_keytype_tests('rsa', run_ca_rsa_tests=True, ca_signflags=2)
|
|
per_base_keytype_tests('rsa', run_ca_rsa_tests=True, ca_signflags=4)
|
|
|
|
class standard_test_vectors(MyTestBase):
|
|
def testAES(self):
|
|
def vector(cipher, key, plaintext, ciphertext):
|
|
for suffix in get_aes_impls():
|
|
c = ssh_cipher_new("{}_{}".format(cipher, suffix))
|
|
if c is None: return # skip test if HW AES not available
|
|
ssh_cipher_setkey(c, key)
|
|
|
|
# The AES test vectors are implicitly in ECB mode,
|
|
# because they're testing the cipher primitive rather
|
|
# than any mode layered on top of it. We fake this by
|
|
# using PuTTY's CBC setting, and clearing the IV to
|
|
# all zeroes before each operation.
|
|
|
|
ssh_cipher_setiv(c, b'\x00' * 16)
|
|
self.assertEqualBin(
|
|
ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
|
|
ssh_cipher_setiv(c, b'\x00' * 16)
|
|
self.assertEqualBin(
|
|
ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# The test vector from FIPS 197 appendix B. (This is also the
|
|
# same key whose key setup phase is shown in detail in
|
|
# appendix A.)
|
|
vector('aes128_cbc',
|
|
unhex('2b7e151628aed2a6abf7158809cf4f3c'),
|
|
unhex('3243f6a8885a308d313198a2e0370734'),
|
|
unhex('3925841d02dc09fbdc118597196a0b32'))
|
|
|
|
# The test vectors from FIPS 197 appendix C: the key bytes go
|
|
# 00 01 02 03 ... for as long as needed, and the plaintext
|
|
# bytes go 00 11 22 33 ... FF.
|
|
fullkey = struct.pack("B"*32, *range(32))
|
|
plaintext = struct.pack("B"*16, *[0x11*i for i in range(16)])
|
|
vector('aes128_cbc', fullkey[:16], plaintext,
|
|
unhex('69c4e0d86a7b0430d8cdb78070b4c55a'))
|
|
vector('aes192_cbc', fullkey[:24], plaintext,
|
|
unhex('dda97ca4864cdfe06eaf70a0ec0d7191'))
|
|
vector('aes256_cbc', fullkey[:32], plaintext,
|
|
unhex('8ea2b7ca516745bfeafc49904b496089'))
|
|
|
|
def testDES(self):
|
|
c = ssh_cipher_new("des_cbc")
|
|
def vector(key, plaintext, ciphertext):
|
|
key = unhex(key)
|
|
plaintext = unhex(plaintext)
|
|
ciphertext = unhex(ciphertext)
|
|
|
|
# Similarly to above, we fake DES ECB by using DES CBC and
|
|
# resetting the IV to zero all the time
|
|
ssh_cipher_setkey(c, key)
|
|
ssh_cipher_setiv(c, b'\x00' * 8)
|
|
self.assertEqualBin(ssh_cipher_encrypt(c, plaintext), ciphertext)
|
|
ssh_cipher_setiv(c, b'\x00' * 8)
|
|
self.assertEqualBin(ssh_cipher_decrypt(c, ciphertext), plaintext)
|
|
|
|
# Source: FIPS SP PUB 500-20
|
|
|
|
# 'Initial permutation and expansion tests': key fixed at 8
|
|
# copies of the byte 01, but ciphertext and plaintext in turn
|
|
# run through all possible values with exactly 1 bit set.
|
|
# Expected plaintexts and ciphertexts (respectively) listed in
|
|
# the arrays below.
|
|
ipe_key = '01' * 8
|
|
ipe_plaintexts = [
|
|
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
|
|
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
|
|
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
|
|
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
|
|
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
|
|
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
|
|
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
|
|
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
|
|
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
|
|
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
|
|
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
|
|
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
|
|
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
|
|
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
|
|
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
|
|
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
|
|
]
|
|
ipe_ciphertexts = [
|
|
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
|
|
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
|
|
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
|
|
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
|
|
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
|
|
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
|
|
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
|
|
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
|
|
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
|
|
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
|
|
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
|
|
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
|
|
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
|
|
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
|
|
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
|
|
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
|
|
]
|
|
ipe_single_bits = ["{:016x}".format(1 << bit) for bit in range(64)]
|
|
for plaintext, ciphertext in zip(ipe_plaintexts, ipe_single_bits):
|
|
vector(ipe_key, plaintext, ciphertext)
|
|
for plaintext, ciphertext in zip(ipe_single_bits, ipe_ciphertexts):
|
|
vector(ipe_key, plaintext, ciphertext)
|
|
|
|
# 'Key permutation tests': plaintext fixed at all zeroes, key
|
|
# is a succession of tweaks of the previous key made by
|
|
# replacing each 01 byte in turn with one containing a
|
|
# different single set bit (e.g. 01 20 01 01 01 01 01 01).
|
|
# Expected ciphertexts listed.
|
|
kp_ciphertexts = [
|
|
'95A8D72813DAA94D', '0EEC1487DD8C26D5', '7AD16FFB79C45926', 'D3746294CA6A6CF3',
|
|
'809F5F873C1FD761', 'C02FAFFEC989D1FC', '4615AA1D33E72F10', '2055123350C00858',
|
|
'DF3B99D6577397C8', '31FE17369B5288C9', 'DFDD3CC64DAE1642', '178C83CE2B399D94',
|
|
'50F636324A9B7F80', 'A8468EE3BC18F06D', 'A2DC9E92FD3CDE92', 'CAC09F797D031287',
|
|
'90BA680B22AEB525', 'CE7A24F350E280B6', '882BFF0AA01A0B87', '25610288924511C2',
|
|
'C71516C29C75D170', '5199C29A52C9F059', 'C22F0A294A71F29F', 'EE371483714C02EA',
|
|
'A81FBD448F9E522F', '4F644C92E192DFED', '1AFA9A66A6DF92AE', 'B3C1CC715CB879D8',
|
|
'19D032E64AB0BD8B', '3CFAA7A7DC8720DC', 'B7265F7F447AC6F3', '9DB73B3C0D163F54',
|
|
'8181B65BABF4A975', '93C9B64042EAA240', '5570530829705592', '8638809E878787A0',
|
|
'41B9A79AF79AC208', '7A9BE42F2009A892', '29038D56BA6D2745', '5495C6ABF1E5DF51',
|
|
'AE13DBD561488933', '024D1FFA8904E389', 'D1399712F99BF02E', '14C1D7C1CFFEC79E',
|
|
'1DE5279DAE3BED6F', 'E941A33F85501303', 'DA99DBBC9A03F379', 'B7FC92F91D8E92E9',
|
|
'AE8E5CAA3CA04E85', '9CC62DF43B6EED74', 'D863DBB5C59A91A0', 'A1AB2190545B91D7',
|
|
'0875041E64C570F7', '5A594528BEBEF1CC', 'FCDB3291DE21F0C0', '869EFD7F9F265A09',
|
|
]
|
|
kp_key_repl_bytes = ["{:02x}".format(0x80>>i) for i in range(7)]
|
|
kp_keys = ['01'*j + b + '01'*(7-j)
|
|
for j in range(8) for b in kp_key_repl_bytes]
|
|
kp_plaintext = '0' * 16
|
|
for key, ciphertext in zip(kp_keys, kp_ciphertexts):
|
|
vector(key, kp_plaintext, ciphertext)
|
|
|
|
# 'Data permutation test': plaintext fixed at all zeroes,
|
|
# pairs of key and expected ciphertext listed below.
|
|
dp_keys_and_ciphertexts = [
|
|
'1046913489980131:88D55E54F54C97B4', '1007103489988020:0C0CC00C83EA48FD',
|
|
'10071034C8980120:83BC8EF3A6570183', '1046103489988020:DF725DCAD94EA2E9',
|
|
'1086911519190101:E652B53B550BE8B0', '1086911519580101:AF527120C485CBB0',
|
|
'5107B01519580101:0F04CE393DB926D5', '1007B01519190101:C9F00FFC74079067',
|
|
'3107915498080101:7CFD82A593252B4E', '3107919498080101:CB49A2F9E91363E3',
|
|
'10079115B9080140:00B588BE70D23F56', '3107911598080140:406A9A6AB43399AE',
|
|
'1007D01589980101:6CB773611DCA9ADA', '9107911589980101:67FD21C17DBB5D70',
|
|
'9107D01589190101:9592CB4110430787', '1007D01598980120:A6B7FF68A318DDD3',
|
|
'1007940498190101:4D102196C914CA16', '0107910491190401:2DFA9F4573594965',
|
|
'0107910491190101:B46604816C0E0774', '0107940491190401:6E7E6221A4F34E87',
|
|
'19079210981A0101:AA85E74643233199', '1007911998190801:2E5A19DB4D1962D6',
|
|
'10079119981A0801:23A866A809D30894', '1007921098190101:D812D961F017D320',
|
|
'100791159819010B:055605816E58608F', '1004801598190101:ABD88E8B1B7716F1',
|
|
'1004801598190102:537AC95BE69DA1E1', '1004801598190108:AED0F6AE3C25CDD8',
|
|
'1002911498100104:B3E35A5EE53E7B8D', '1002911598190104:61C79C71921A2EF8',
|
|
'1002911598100201:E2F5728F0995013C', '1002911698100101:1AEAC39A61F0A464',
|
|
]
|
|
dp_plaintext = '0' * 16
|
|
for key_and_ciphertext in dp_keys_and_ciphertexts:
|
|
key, ciphertext = key_and_ciphertext.split(":")
|
|
vector(key, dp_plaintext, ciphertext)
|
|
|
|
# Tests intended to select every entry in every S-box. Full
|
|
# arbitrary triples (key, plaintext, ciphertext).
|
|
sb_complete_tests = [
|
|
'7CA110454A1A6E57:01A1D6D039776742:690F5B0D9A26939B',
|
|
'0131D9619DC1376E:5CD54CA83DEF57DA:7A389D10354BD271',
|
|
'07A1133E4A0B2686:0248D43806F67172:868EBB51CAB4599A',
|
|
'3849674C2602319E:51454B582DDF440A:7178876E01F19B2A',
|
|
'04B915BA43FEB5B6:42FD443059577FA2:AF37FB421F8C4095',
|
|
'0113B970FD34F2CE:059B5E0851CF143A:86A560F10EC6D85B',
|
|
'0170F175468FB5E6:0756D8E0774761D2:0CD3DA020021DC09',
|
|
'43297FAD38E373FE:762514B829BF486A:EA676B2CB7DB2B7A',
|
|
'07A7137045DA2A16:3BDD119049372802:DFD64A815CAF1A0F',
|
|
'04689104C2FD3B2F:26955F6835AF609A:5C513C9C4886C088',
|
|
'37D06BB516CB7546:164D5E404F275232:0A2AEEAE3FF4AB77',
|
|
'1F08260D1AC2465E:6B056E18759F5CCA:EF1BF03E5DFA575A',
|
|
'584023641ABA6176:004BD6EF09176062:88BF0DB6D70DEE56',
|
|
'025816164629B007:480D39006EE762F2:A1F9915541020B56',
|
|
'49793EBC79B3258F:437540C8698F3CFA:6FBF1CAFCFFD0556',
|
|
'4FB05E1515AB73A7:072D43A077075292:2F22E49BAB7CA1AC',
|
|
'49E95D6D4CA229BF:02FE55778117F12A:5A6B612CC26CCE4A',
|
|
'018310DC409B26D6:1D9D5C5018F728C2:5F4C038ED12B2E41',
|
|
'1C587F1C13924FEF:305532286D6F295A:63FAC0D034D9F793',
|
|
]
|
|
for test in sb_complete_tests:
|
|
key, plaintext, ciphertext = test.split(":")
|
|
vector(key, plaintext, ciphertext)
|
|
|
|
def testMD5(self):
|
|
MD5 = lambda s: hash_str('md5', s)
|
|
|
|
# The test vectors from RFC 1321 section A.5.
|
|
self.assertEqualBin(MD5(""),
|
|
unhex('d41d8cd98f00b204e9800998ecf8427e'))
|
|
self.assertEqualBin(MD5("a"),
|
|
unhex('0cc175b9c0f1b6a831c399e269772661'))
|
|
self.assertEqualBin(MD5("abc"),
|
|
unhex('900150983cd24fb0d6963f7d28e17f72'))
|
|
self.assertEqualBin(MD5("message digest"),
|
|
unhex('f96b697d7cb7938d525a2f31aaf161d0'))
|
|
self.assertEqualBin(MD5("abcdefghijklmnopqrstuvwxyz"),
|
|
unhex('c3fcd3d76192e4007dfb496cca67e13b'))
|
|
self.assertEqualBin(MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz0123456789"),
|
|
unhex('d174ab98d277d9f5a5611c2c9f419d9f'))
|
|
self.assertEqualBin(MD5("1234567890123456789012345678901234567890"
|
|
"1234567890123456789012345678901234567890"),
|
|
unhex('57edf4a22be3c955ac49da2e2107b67a'))
|
|
|
|
def testHmacMD5(self):
|
|
# The test vectors from the RFC 2104 Appendix.
|
|
self.assertEqualBin(mac_str('hmac_md5', unhex('0b'*16), "Hi There"),
|
|
unhex('9294727a3638bb1c13f48ef8158bfc9d'))
|
|
self.assertEqualBin(mac_str('hmac_md5', "Jefe",
|
|
"what do ya want for nothing?"),
|
|
unhex('750c783e6ab0b503eaa86e310a5db738'))
|
|
self.assertEqualBin(mac_str('hmac_md5', unhex('aa'*16), unhex('dd'*50)),
|
|
unhex('56be34521d144c88dbb8c733f0e8b3f6'))
|
|
|
|
def testSHA1(self):
|
|
for hashname in get_implementations("sha1"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"), unhex(
|
|
"a9993e364706816aba3e25717850c26c9cd0d89d"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"),
|
|
unhex("84983e441c3bd26ebaae4aa1f95129e5e54670f1"))
|
|
self.assertEqualBin(hash_str_iter(hashname,
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
"34aa973cd4c4daa4f61eeb2bdbad27316534016f"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
"dea356a2cddd90c7a7ecedc5ebb563934f460452"))
|
|
self.assertEqualBin(hash_str(hashname, b"\x5e"), unhex(
|
|
"5e6f80a34a9798cafc6a5db96cc57ba4c4db59c2"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
unhex("9a7dfdf1ecead06ed646aa55fe757146")), unhex(
|
|
"82abff6605dbe1c17def12a394fa22a82b544a35"))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"f78f92141bcd170ae89b4fba15a1d59f"
|
|
"3fd84d223c9251bdacbbae61d05ed115"
|
|
"a06a7ce117b7beead24421ded9c32592"
|
|
"bd57edeae39c39fa1fe8946a84d0cf1f"
|
|
"7beead1713e2e0959897347f67c80b04"
|
|
"00c209815d6b10a683836fd5562a56ca"
|
|
"b1a28e81b6576654631cf16566b86e3b"
|
|
"33a108b05307c00aff14a768ed735060"
|
|
"6a0f85e6a91d396f5b5cbe577f9b3880"
|
|
"7c7d523d6d792f6ebc24a4ecf2b3a427"
|
|
"cdbbfb")), unhex(
|
|
"cb0082c8f197d260991ba6a460e76e202bad27b3"))
|
|
|
|
def testSHA256(self):
|
|
for hashname in get_implementations("sha256"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"),
|
|
unhex("ba7816bf8f01cfea414140de5dae2223"
|
|
"b00361a396177a9cb410ff61f20015ad"))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdbcdecdefdefgefghfghighijhijk""ijkljklmklmnlmnomnopnopq"),
|
|
unhex("248d6a61d20638b8e5c026930c3e6039"
|
|
"a33ce45964ff2167f6ecedd419db06c1"))
|
|
self.assertEqualBin(
|
|
hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))),
|
|
unhex("cdc76e5c9914fb9281a1c7e284d73e67"
|
|
"f1809a48a497200e046d39ccc7112cd0"))
|
|
self.assertEqualBin(
|
|
hash_str(hashname, "01234567012345670123456701234567" * 20),
|
|
unhex("594847328451bdfa85056225462cc1d8"
|
|
"67d877fb388df0ce35f25ab5562bfbb5"))
|
|
self.assertEqualBin(hash_str(hashname, b"\x19"),
|
|
unhex("68aa2e2ee5dff96e3355e6c7ee373e3d"
|
|
"6a4e17f75f9518d843709c0c9bc3e3d4"))
|
|
self.assertEqualBin(
|
|
hash_str(hashname, unhex("e3d72570dcdd787ce3887ab2cd684652")),
|
|
unhex("175ee69b02ba9b58e2b0a5fd13819cea"
|
|
"573f3940a94f825128cf4209beabb4e8"))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"8326754e2277372f4fc12b20527afef0"
|
|
"4d8a056971b11ad57123a7c137760000"
|
|
"d7bef6f3c1f7a9083aa39d810db31077"
|
|
"7dab8b1e7f02b84a26c773325f8b2374"
|
|
"de7a4b5a58cb5c5cf35bcee6fb946e5b"
|
|
"d694fa593a8beb3f9d6592ecedaa66ca"
|
|
"82a29d0c51bcf9336230e5d784e4c0a4"
|
|
"3f8d79a30a165cbabe452b774b9c7109"
|
|
"a97d138f129228966f6c0adc106aad5a"
|
|
"9fdd30825769b2c671af6759df28eb39"
|
|
"3d54d6")), unhex(
|
|
"97dbca7df46d62c8a422c941dd7e835b"
|
|
"8ad3361763f7e9b2d95f4f0da6e1ccbc"))
|
|
|
|
def testSHA384(self):
|
|
for hashname in get_implementations("sha384"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"), unhex(
|
|
'cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163'
|
|
'1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
|
|
unhex('09330c33f71147e83d192fc782cd1b4753111b173b3b05d2'
|
|
'2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039'))
|
|
self.assertEqualBin(hash_str_iter(hashname,
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
'9d0e1809716474cb086e834e310a4a1ced149e9c00f24852'
|
|
'7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
'2fc64a4f500ddb6828f6a3430b8dd72a368eb7f3a8322a70'
|
|
'bc84275b9c0b3ab00d27a5cc3c2d224aa6b61a0d79fb4596'))
|
|
self.assertEqualBin(hash_str(hashname, b"\xB9"), unhex(
|
|
'bc8089a19007c0b14195f4ecc74094fec64f01f90929282c'
|
|
'2fb392881578208ad466828b1c6c283d2722cf0ad1ab6938'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
unhex("a41c497779c0375ff10a7f4e08591739")), unhex(
|
|
'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591'
|
|
'3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7'))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621"
|
|
"db0f3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202"
|
|
"fc3f5042e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d5286"
|
|
"5f25cc22b5e87784a12fc961d66cb6e89573199a2ce6565cbdf13dca4038"
|
|
"32cfcb0e8b7211e83af32a11ac17929ff1c073a51cc027aaedeff85aad7c"
|
|
"2b7c5a803e2404d96d2a77357bda1a6daeed17151cb9bc5125a422e941de"
|
|
"0ca0fc5011c23ecffefdd09676711cf3db0a3440720e1615c1f22fbc3c72"
|
|
"1de521e1b99ba1bd5577408642147ed096")), unhex(
|
|
'4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf'
|
|
'38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0'))
|
|
|
|
def testSHA512(self):
|
|
for hashname in get_implementations("sha512"):
|
|
if ssh_hash_new(hashname) is None:
|
|
continue # skip testing of unavailable HW implementation
|
|
|
|
# Test cases from RFC 6234 section 8.5, omitting the ones
|
|
# whose input is not a multiple of 8 bits
|
|
self.assertEqualBin(hash_str(hashname, "abc"), unhex(
|
|
'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55'
|
|
'd39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94f'
|
|
'a54ca49f'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
|
|
unhex('8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299'
|
|
'aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26'
|
|
'545e96e55b874be909'))
|
|
self.assertEqualBin(hash_str_iter(hashname,
|
|
("a" * 1000 for _ in range(1000))), unhex(
|
|
'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa9'
|
|
'73ebde0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217'
|
|
'ad8cc09b'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
"01234567012345670123456701234567" * 20), unhex(
|
|
'89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2b'
|
|
'a8141a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f'
|
|
'3fb7bae9'))
|
|
self.assertEqualBin(hash_str(hashname, b"\xD0"), unhex(
|
|
'9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4a'
|
|
'ceeee50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4a'
|
|
'b3fbba15'))
|
|
self.assertEqualBin(hash_str(hashname,
|
|
unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex(
|
|
'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c98289'
|
|
'24c3ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0'
|
|
'c95c90f8'))
|
|
self.assertEqualBin(hash_str(hashname, unhex(
|
|
"a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0d"
|
|
"e1de6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d"
|
|
"03e56ff2f868002bc3e431edc44df2f0223d4bb3b243586e1a7d92493669"
|
|
"4fcbbaf88d9519e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab"
|
|
"4981164bbb6dc32f969087a145b0d9cc9c67c22b763299419cc4128be9a0"
|
|
"77b3ace634064e6d99283513dc06e7515d0d73132e9a0dc6d3b1f8b246f1"
|
|
"a98a3fc72941b1e3bb2098e8bf16f268d64f0b0f4707fe1ea1a1791ba2f3"
|
|
"c0c758e5f551863a96c949ad47d7fb40d2")), unhex(
|
|
'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d48'
|
|
'719377966b957a878e720584779a62825c18da26415e49a7176a894e7510'
|
|
'fd1451f5'))
|
|
|
|
def testSHA3(self):
|
|
# Source: all the SHA-3 test strings from
|
|
# https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values#aHashing
|
|
# which are a multiple of 8 bits long.
|
|
|
|
self.assertEqualBin(hash_str('sha3_224', ''), unhex("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7"))
|
|
self.assertEqualBin(hash_str('sha3_224', unhex('a3')*200), unhex("9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0"))
|
|
self.assertEqualBin(hash_str('sha3_256', ''), unhex("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a"))
|
|
self.assertEqualBin(hash_str('sha3_256', unhex('a3')*200), unhex("79f38adec5c20307a98ef76e8324afbfd46cfd81b22e3973c65fa1bd9de31787"))
|
|
self.assertEqualBin(hash_str('sha3_384', ''), unhex("0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004"))
|
|
self.assertEqualBin(hash_str('sha3_384', unhex('a3')*200), unhex("1881de2ca7e41ef95dc4732b8f5f002b189cc1e42b74168ed1732649ce1dbcdd76197a31fd55ee989f2d7050dd473e8f"))
|
|
self.assertEqualBin(hash_str('sha3_512', ''), unhex("a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26"))
|
|
self.assertEqualBin(hash_str('sha3_512', unhex('a3')*200), unhex("e76dfad22084a8b1467fcf2ffa58361bec7628edf5f3fdc0e4805dc48caeeca81b7c13c30adf52a3659584739a2df46be589c51ca1a4a8416df6545a1ce8ba00"))
|
|
self.assertEqualBin(hash_str('shake256_114bytes', ''), unhex("46b9dd2b0ba88d13233b3feb743eeb243fcd52ea62b81b82b50c27646ed5762fd75dc4ddd8c0f200cb05019d67b592f6fc821c49479ab48640292eacb3b7c4be141e96616fb13957692cc7edd0b45ae3dc07223c8e92937bef84bc0eab862853349ec75546f58fb7c2775c38462c5010d846"))
|
|
self.assertEqualBin(hash_str('shake256_114bytes', unhex('a3')*200), unhex("cd8a920ed141aa0407a22d59288652e9d9f1a7ee0c1e7c1ca699424da84a904d2d700caae7396ece96604440577da4f3aa22aeb8857f961c4cd8e06f0ae6610b1048a7f64e1074cd629e85ad7566048efc4fb500b486a3309a8f26724c0ed628001a1099422468de726f1061d99eb9e93604"))
|
|
|
|
def testBLAKE2b(self):
|
|
# Test case from RFC 7693 appendix A.
|
|
self.assertEqualBin(hash_str('blake2b', b'abc'), unhex(
|
|
"ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d1"
|
|
"7d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923"))
|
|
|
|
# A small number of test cases from the larger test vector
|
|
# set, testing multiple blocks and the empty input.
|
|
self.assertEqualBin(hash_str('blake2b', b''), unhex(
|
|
"786a02f742015903c6c6fd852552d272912f4740e15847618a86e217f71f5419"
|
|
"d25e1031afee585313896444934eb04b903a685b1448b755d56f701afe9be2ce"))
|
|
self.assertEqualBin(hash_str('blake2b', unhex('00')), unhex(
|
|
"2fa3f686df876995167e7c2e5d74c4c7b6e48f8068fe0e44208344d480f7904c"
|
|
"36963e44115fe3eb2a3ac8694c28bcb4f5a0f3276f2e79487d8219057a506e4b"))
|
|
self.assertEqualBin(hash_str('blake2b', bytes(range(255))), unhex(
|
|
"5b21c5fd8868367612474fa2e70e9cfa2201ffeee8fafab5797ad58fefa17c9b"
|
|
"5b107da4a3db6320baaf2c8617d5a51df914ae88da3867c2d41f0cc14fa67928"))
|
|
|
|
# You can get this test program to run the full version of the
|
|
# test vectors by modifying the source temporarily to set this
|
|
# variable to a pathname where you downloaded the JSON file
|
|
# blake2-kat.json.
|
|
blake2_test_vectors_path = None
|
|
if blake2_test_vectors_path is not None:
|
|
with open(blake2_test_vectors_path) as fh:
|
|
vectors = json.load(fh)
|
|
for vector in vectors:
|
|
if vector['hash'] != 'blake2b':
|
|
continue
|
|
if len(vector['key']) != 0:
|
|
continue
|
|
|
|
h = blake2b_new_general(len(vector['out']) // 2)
|
|
ssh_hash_update(h, unhex(vector['in']))
|
|
digest = ssh_hash_digest(h)
|
|
self.assertEqualBin(digest, unhex(vector['out']))
|
|
|
|
def testArgon2(self):
|
|
# draft-irtf-cfrg-argon2-12 section 5
|
|
self.assertEqualBin(
|
|
argon2('d', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("512b391b6f1162975371d30919734294"
|
|
"f868e3be3984f3c1a13a4db9fabe4acb"))
|
|
self.assertEqualBin(
|
|
argon2('i', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("c814d9d1dc7f37aa13f0d77f2494bda1"
|
|
"c8de6b016dd388d29952a4c4672b6ce8"))
|
|
self.assertEqualBin(
|
|
argon2('id', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
|
|
b'\x03' * 8, b'\x04' * 12),
|
|
unhex("0d640df58d78766c08c037a34a8b53c9"
|
|
"d01ef0452d75b65eb52520e96b01e659"))
|
|
|
|
def testHmacSHA(self):
|
|
# Test cases from RFC 6234 section 8.5.
|
|
def vector(key, message, s1=None, s256=None):
|
|
if s1 is not None:
|
|
self.assertEqualBin(
|
|
mac_str('hmac_sha1', key, message), unhex(s1))
|
|
if s256 is not None:
|
|
self.assertEqualBin(
|
|
mac_str('hmac_sha256', key, message), unhex(s256))
|
|
vector(
|
|
unhex("0b"*20), "Hi There",
|
|
"b617318655057264e28bc0b6fb378c8ef146be00",
|
|
"b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7")
|
|
vector(
|
|
"Jefe", "what do ya want for nothing?",
|
|
"effcdf6ae5eb2fa2d27416d5f184df9c259a7c79",
|
|
"5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843")
|
|
vector(
|
|
unhex("aa"*20), unhex('dd'*50),
|
|
"125d7342b9ac11cd91a39af48aa17b4f63f175d3",
|
|
"773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565FE")
|
|
vector(
|
|
unhex("0102030405060708090a0b0c0d0e0f10111213141516171819"),
|
|
unhex("cd"*50),
|
|
"4c9007f4026250c6bc8414f9bf50c86c2d7235da",
|
|
"82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b")
|
|
vector(
|
|
unhex("aa"*80),
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
s1="aa4ae5e15272d00e95705637ce8a3b55ed402112")
|
|
vector(
|
|
unhex("aa"*131),
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
s256="60e431591ee0b67f0d8a26aacbf5b77f"
|
|
"8e0bc6213728c5140546040f0ee37f54")
|
|
vector(
|
|
unhex("aa"*80),
|
|
"Test Using Larger Than Block-Size Key and "
|
|
"Larger Than One Block-Size Data",
|
|
s1="e8e99d0f45237d786d6bbaa7965c7808bbff1a91")
|
|
vector(
|
|
unhex("aa"*131),
|
|
"This is a test using a larger than block-size key and a "
|
|
"larger than block-size data. The key needs to be hashed "
|
|
"before being used by the HMAC algorithm.",
|
|
s256="9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A35E2")
|
|
|
|
def testEd25519(self):
|
|
def vector(privkey, pubkey, message, signature):
|
|
x, y = ecc_edwards_get_affine(eddsa_public(
|
|
mp_from_bytes_le(privkey), 'ed25519'))
|
|
self.assertEqual(int(y) | ((int(x) & 1) << 255),
|
|
int(mp_from_bytes_le(pubkey)))
|
|
pubblob = ssh_string(b"ssh-ed25519") + ssh_string(pubkey)
|
|
privblob = ssh_string(privkey)
|
|
sigblob = ssh_string(b"ssh-ed25519") + ssh_string(signature)
|
|
pubkey = ssh_key_new_pub('ed25519', pubblob)
|
|
self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
|
|
privkey = ssh_key_new_priv('ed25519', pubblob, privblob)
|
|
# By testing that the signature is exactly the one expected in
|
|
# the test vector and not some equivalent one generated with a
|
|
# different nonce, we're verifying in particular that we do
|
|
# our deterministic nonce generation in the manner specified
|
|
# by Ed25519. Getting that wrong would lead to no obvious
|
|
# failure, but would surely turn out to be a bad idea sooner
|
|
# or later...
|
|
self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)
|
|
|
|
# A cherry-picked example from DJB's test vector data at
|
|
# https://ed25519.cr.yp.to/python/sign.input, which is too
|
|
# large to copy into here in full.
|
|
privkey = unhex(
|
|
'c89955e0f7741d905df0730b3dc2b0ce1a13134e44fef3d40d60c020ef19df77')
|
|
pubkey = unhex(
|
|
'fdb30673402faf1c8033714f3517e47cc0f91fe70cf3836d6c23636e3fd2287c')
|
|
message = unhex(
|
|
'507c94c8820d2a5793cbf3442b3d71936f35fe3afef316')
|
|
signature = unhex(
|
|
'7ef66e5e86f2360848e0014e94880ae2920ad8a3185a46b35d1e07dea8fa8ae4'
|
|
'f6b843ba174d99fa7986654a0891c12a794455669375bf92af4cc2770b579e0c')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
# You can get this test program to run the full version of
|
|
# DJB's test vectors by modifying the source temporarily to
|
|
# set this variable to a pathname where you downloaded the
|
|
# file.
|
|
ed25519_test_vector_path = None
|
|
if ed25519_test_vector_path is not None:
|
|
with open(ed25519_test_vector_path) as f:
|
|
for line in iter(f.readline, ""):
|
|
words = line.split(":")
|
|
# DJB's test vector input format concatenates a
|
|
# spare copy of the public key to the end of the
|
|
# private key, and a spare copy of the message to
|
|
# the end of the signature. Strip those off.
|
|
privkey = unhex(words[0])[:32]
|
|
pubkey = unhex(words[1])
|
|
message = unhex(words[2])
|
|
signature = unhex(words[3])[:64]
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
def testEd448(self):
|
|
def vector(privkey, pubkey, message, signature):
|
|
x, y = ecc_edwards_get_affine(eddsa_public(
|
|
mp_from_bytes_le(privkey), 'ed448'))
|
|
self.assertEqual(int(y) | ((int(x) & 1) << 455),
|
|
int(mp_from_bytes_le(pubkey)))
|
|
pubblob = ssh_string(b"ssh-ed448") + ssh_string(pubkey)
|
|
privblob = ssh_string(privkey)
|
|
sigblob = ssh_string(b"ssh-ed448") + ssh_string(signature)
|
|
pubkey = ssh_key_new_pub('ed448', pubblob)
|
|
self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
|
|
privkey = ssh_key_new_priv('ed448', pubblob, privblob)
|
|
# Deterministic signature check as in Ed25519
|
|
self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)
|
|
|
|
# Source: RFC 8032 section 7.4
|
|
|
|
privkey = unhex('6c82a562cb808d10d632be89c8513ebf6c929f34ddfa8c9f63c9960ef6e348a3528c8a3fcc2f044e39a3fc5b94492f8f032e7549a20098f95b')
|
|
pubkey = unhex('5fd7449b59b461fd2ce787ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf124769b46c7061bd6783df1e50f6cd1fa1abeafe8256180')
|
|
message = b''
|
|
signature = unhex('533a37f6bbe457251f023c0d88f976ae2dfb504a843e34d2074fd823d41a591f2b233f034f628281f2fd7a22ddd47d7828c59bd0a21bfd3980ff0d2028d4b18a9df63e006c5d1c2d345b925d8dc00b4104852db99ac5c7cdda8530a113a0f4dbb61149f05a7363268c71d95808ff2e652600')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('c4eab05d357007c632f3dbb48489924d552b08fe0c353a0d4a1f00acda2c463afbea67c5e8d2877c5e3bc397a659949ef8021e954e0a12274e')
|
|
pubkey = unhex('43ba28f430cdff456ae531545f7ecd0ac834a55d9358c0372bfa0c6c6798c0866aea01eb00742802b8438ea4cb82169c235160627b4c3a9480')
|
|
message = unhex('03')
|
|
signature = unhex('26b8f91727bd62897af15e41eb43c377efb9c610d48f2335cb0bd0087810f4352541b143c4b981b7e18f62de8ccdf633fc1bf037ab7cd779805e0dbcc0aae1cbcee1afb2e027df36bc04dcecbf154336c19f0af7e0a6472905e799f1953d2a0ff3348ab21aa4adafd1d234441cf807c03a00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('cd23d24f714274e744343237b93290f511f6425f98e64459ff203e8985083ffdf60500553abc0e05cd02184bdb89c4ccd67e187951267eb328')
|
|
pubkey = unhex('dcea9e78f35a1bf3499a831b10b86c90aac01cd84b67a0109b55a36e9328b1e365fce161d71ce7131a543ea4cb5f7e9f1d8b00696447001400')
|
|
message = unhex('0c3e544074ec63b0265e0c')
|
|
signature = unhex('1f0a8888ce25e8d458a21130879b840a9089d999aaba039eaf3e3afa090a09d389dba82c4ff2ae8ac5cdfb7c55e94d5d961a29fe0109941e00b8dbdeea6d3b051068df7254c0cdc129cbe62db2dc957dbb47b51fd3f213fb8698f064774250a5028961c9bf8ffd973fe5d5c206492b140e00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('258cdd4ada32ed9c9ff54e63756ae582fb8fab2ac721f2c8e676a72768513d939f63dddb55609133f29adf86ec9929dccb52c1c5fd2ff7e21b')
|
|
pubkey = unhex('3ba16da0c6f2cc1f30187740756f5e798d6bc5fc015d7c63cc9510ee3fd44adc24d8e968b6e46e6f94d19b945361726bd75e149ef09817f580')
|
|
message = unhex('64a65f3cdedcdd66811e2915')
|
|
signature = unhex('7eeeab7c4e50fb799b418ee5e3197ff6bf15d43a14c34389b59dd1a7b1b85b4ae90438aca634bea45e3a2695f1270f07fdcdf7c62b8efeaf00b45c2c96ba457eb1a8bf075a3db28e5c24f6b923ed4ad747c3c9e03c7079efb87cb110d3a99861e72003cbae6d6b8b827e4e6c143064ff3c00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('d65df341ad13e008567688baedda8e9dcdc17dc024974ea5b4227b6530e339bff21f99e68ca6968f3cca6dfe0fb9f4fab4fa135d5542ea3f01')
|
|
pubkey = unhex('df9705f58edbab802c7f8363cfe5560ab1c6132c20a9f1dd163483a26f8ac53a39d6808bf4a1dfbd261b099bb03b3fb50906cb28bd8a081f00')
|
|
message = unhex('bd0f6a3747cd561bdddf4640a332461a4a30a12a434cd0bf40d766d9c6d458e5512204a30c17d1f50b5079631f64eb3112182da3005835461113718d1a5ef944')
|
|
signature = unhex('554bc2480860b49eab8532d2a533b7d578ef473eeb58c98bb2d0e1ce488a98b18dfde9b9b90775e67f47d4a1c3482058efc9f40d2ca033a0801b63d45b3b722ef552bad3b4ccb667da350192b61c508cf7b6b5adadc2c8d9a446ef003fb05cba5f30e88e36ec2703b349ca229c2670833900')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('2ec5fe3c17045abdb136a5e6a913e32ab75ae68b53d2fc149b77e504132d37569b7e766ba74a19bd6162343a21c8590aa9cebca9014c636df5')
|
|
pubkey = unhex('79756f014dcfe2079f5dd9e718be4171e2ef2486a08f25186f6bff43a9936b9bfe12402b08ae65798a3d81e22e9ec80e7690862ef3d4ed3a00')
|
|
message = unhex('15777532b0bdd0d1389f636c5f6b9ba734c90af572877e2d272dd078aa1e567cfa80e12928bb542330e8409f3174504107ecd5efac61ae7504dabe2a602ede89e5cca6257a7c77e27a702b3ae39fc769fc54f2395ae6a1178cab4738e543072fc1c177fe71e92e25bf03e4ecb72f47b64d0465aaea4c7fad372536c8ba516a6039c3c2a39f0e4d832be432dfa9a706a6e5c7e19f397964ca4258002f7c0541b590316dbc5622b6b2a6fe7a4abffd96105eca76ea7b98816af0748c10df048ce012d901015a51f189f3888145c03650aa23ce894c3bd889e030d565071c59f409a9981b51878fd6fc110624dcbcde0bf7a69ccce38fabdf86f3bef6044819de11')
|
|
signature = unhex('c650ddbb0601c19ca11439e1640dd931f43c518ea5bea70d3dcde5f4191fe53f00cf966546b72bcc7d58be2b9badef28743954e3a44a23f880e8d4f1cfce2d7a61452d26da05896f0a50da66a239a8a188b6d825b3305ad77b73fbac0836ecc60987fd08527c1a8e80d5823e65cafe2a3d00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
privkey = unhex('872d093780f5d3730df7c212664b37b8a0f24f56810daa8382cd4fa3f77634ec44dc54f1c2ed9bea86fafb7632d8be199ea165f5ad55dd9ce8')
|
|
pubkey = unhex('a81b2e8a70a5ac94ffdbcc9badfc3feb0801f258578bb114ad44ece1ec0e799da08effb81c5d685c0c56f64eecaef8cdf11cc38737838cf400')
|
|
message = unhex('6ddf802e1aae4986935f7f981ba3f0351d6273c0a0c22c9c0e8339168e675412a3debfaf435ed651558007db4384b650fcc07e3b586a27a4f7a00ac8a6fec2cd86ae4bf1570c41e6a40c931db27b2faa15a8cedd52cff7362c4e6e23daec0fbc3a79b6806e316efcc7b68119bf46bc76a26067a53f296dafdbdc11c77f7777e972660cf4b6a9b369a6665f02e0cc9b6edfad136b4fabe723d2813db3136cfde9b6d044322fee2947952e031b73ab5c603349b307bdc27bc6cb8b8bbd7bd323219b8033a581b59eadebb09b3c4f3d2277d4f0343624acc817804728b25ab797172b4c5c21a22f9c7839d64300232eb66e53f31c723fa37fe387c7d3e50bdf9813a30e5bb12cf4cd930c40cfb4e1fc622592a49588794494d56d24ea4b40c89fc0596cc9ebb961c8cb10adde976a5d602b1c3f85b9b9a001ed3c6a4d3b1437f52096cd1956d042a597d561a596ecd3d1735a8d570ea0ec27225a2c4aaff26306d1526c1af3ca6d9cf5a2c98f47e1c46db9a33234cfd4d81f2c98538a09ebe76998d0d8fd25997c7d255c6d66ece6fa56f11144950f027795e653008f4bd7ca2dee85d8e90f3dc315130ce2a00375a318c7c3d97be2c8ce5b6db41a6254ff264fa6155baee3b0773c0f497c573f19bb4f4240281f0b1f4f7be857a4e59d416c06b4c50fa09e1810ddc6b1467baeac5a3668d11b6ecaa901440016f389f80acc4db977025e7f5924388c7e340a732e554440e76570f8dd71b7d640b3450d1fd5f0410a18f9a3494f707c717b79b4bf75c98400b096b21653b5d217cf3565c9597456f70703497a078763829bc01bb1cbc8fa04eadc9a6e3f6699587a9e75c94e5bab0036e0b2e711392cff0047d0d6b05bd2a588bc109718954259f1d86678a579a3120f19cfb2963f177aeb70f2d4844826262e51b80271272068ef5b3856fa8535aa2a88b2d41f2a0e2fda7624c2850272ac4a2f561f8f2f7a318bfd5caf9696149e4ac824ad3460538fdc25421beec2cc6818162d06bbed0c40a387192349db67a118bada6cd5ab0140ee273204f628aad1c135f770279a651e24d8c14d75a6059d76b96a6fd857def5e0b354b27ab937a5815d16b5fae407ff18222c6d1ed263be68c95f32d908bd895cd76207ae726487567f9a67dad79abec316f683b17f2d02bf07e0ac8b5bc6162cf94697b3c27cd1fea49b27f23ba2901871962506520c392da8b6ad0d99f7013fbc06c2c17a569500c8a7696481c1cd33e9b14e40b82e79a5f5db82571ba97bae3ad3e0479515bb0e2b0f3bfcd1fd33034efc6245eddd7ee2086ddae2600d8ca73e214e8c2b0bdb2b047c6a464a562ed77b73d2d841c4b34973551257713b753632efba348169abc90a68f42611a40126d7cb21b58695568186f7e569d2ff0f9e745d0487dd2eb997cafc5abf9dd102e62ff66cba87')
|
|
signature = unhex('e301345a41a39a4d72fff8df69c98075a0cc082b802fc9b2b6bc503f926b65bddf7f4c8f1cb49f6396afc8a70abe6d8aef0db478d4c6b2970076c6a0484fe76d76b3a97625d79f1ce240e7c576750d295528286f719b413de9ada3e8eb78ed573603ce30d8bb761785dc30dbc320869e1a00')
|
|
vector(privkey, pubkey, message, signature)
|
|
|
|
def testMontgomeryKex(self):
|
|
# Unidirectional tests, consisting of an input random number
|
|
# string and peer public value, giving the expected output
|
|
# shared key. Source: RFC 7748 section 5.2.
|
|
rfc7748s5_2 = [
|
|
('curve25519',
|
|
'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4',
|
|
'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c',
|
|
0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552),
|
|
('curve25519',
|
|
'4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d',
|
|
'e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493',
|
|
0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957),
|
|
('curve448',
|
|
'3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3',
|
|
'06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086',
|
|
0xce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239fe14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f),
|
|
('curve448',
|
|
'203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c538345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f',
|
|
'0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db',
|
|
0x884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d),
|
|
]
|
|
|
|
for method, priv, pub, expected in rfc7748s5_2:
|
|
with queued_specific_random_data(unhex(priv)):
|
|
ecdh = ecdh_key_new(method, False)
|
|
key = ecdh_key_getkey(ecdh, unhex(pub))
|
|
self.assertEqual(key, ssh2_mpint(expected))
|
|
|
|
# Bidirectional tests, consisting of the input random number
|
|
# strings for both parties, and the expected public values and
|
|
# shared key. Source: RFC 7748 section 6.
|
|
rfc7748s6 = [
|
|
('curve25519', # section 6.1
|
|
'77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a',
|
|
'8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a',
|
|
'5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb',
|
|
'de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f',
|
|
0x4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742),
|
|
('curve448', # section 6.2
|
|
'9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28dd9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b',
|
|
'9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0',
|
|
'1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d',
|
|
'3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b43027d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609',
|
|
0x07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282bb60c0b56fd2464c335543936521c24403085d59a449a5037514a879d),
|
|
]
|
|
|
|
for method, apriv, apub, bpriv, bpub, expected in rfc7748s6:
|
|
with queued_specific_random_data(unhex(apriv)):
|
|
alice = ecdh_key_new(method, False)
|
|
with queued_specific_random_data(unhex(bpriv)):
|
|
bob = ecdh_key_new(method, False)
|
|
self.assertEqualBin(ecdh_key_getpublic(alice), unhex(apub))
|
|
self.assertEqualBin(ecdh_key_getpublic(bob), unhex(bpub))
|
|
akey = ecdh_key_getkey(alice, unhex(bpub))
|
|
bkey = ecdh_key_getkey(bob, unhex(apub))
|
|
self.assertEqual(akey, ssh2_mpint(expected))
|
|
self.assertEqual(bkey, ssh2_mpint(expected))
|
|
|
|
def testCRC32(self):
|
|
self.assertEqual(crc32_rfc1662("123456789"), 0xCBF43926)
|
|
self.assertEqual(crc32_ssh1("123456789"), 0x2DFD2D88)
|
|
|
|
# Source:
|
|
# http://reveng.sourceforge.net/crc-catalogue/17plus.htm#crc.cat.crc-32-iso-hdlc
|
|
# which collected these from various sources.
|
|
reveng_tests = [
|
|
'000000001CDF4421',
|
|
'F20183779DAB24',
|
|
'0FAA005587B2C9B6',
|
|
'00FF55111262A032',
|
|
'332255AABBCCDDEEFF3D86AEB0',
|
|
'926B559BA2DE9C',
|
|
'FFFFFFFFFFFFFFFF',
|
|
'C008300028CFE9521D3B08EA449900E808EA449900E8300102007E649416',
|
|
'6173640ACEDE2D15',
|
|
]
|
|
for vec in map(unhex, reveng_tests):
|
|
# Each of these test vectors can be read two ways. One
|
|
# interpretation is that the last four bytes are the
|
|
# little-endian encoding of the CRC of the rest. (Because
|
|
# that's how the CRC is attached to a string at the
|
|
# sending end.)
|
|
#
|
|
# The other interpretation is that if you CRC the whole
|
|
# string, _including_ the final four bytes, you expect to
|
|
# get the same value for any correct string (because the
|
|
# little-endian encoding matches the way the rest of the
|
|
# string was interpreted as a polynomial in the first
|
|
# place). That's how a receiver is intended to check
|
|
# things.
|
|
#
|
|
# The expected output value is listed in RFC 1662, and in
|
|
# the reveng.sourceforge.net catalogue, as 0xDEBB20E3. But
|
|
# that's because their checking procedure omits the final
|
|
# complement step that the construction procedure
|
|
# includes. Our crc32_rfc1662 function does do the final
|
|
# complement, so we expect the bitwise NOT of that value,
|
|
# namely 0x2144DF1C.
|
|
expected = struct.unpack("<L", vec[-4:])[0]
|
|
self.assertEqual(crc32_rfc1662(vec[:-4]), expected)
|
|
self.assertEqual(crc32_rfc1662(vec), 0x2144DF1C)
|
|
|
|
def testHttpDigest(self):
|
|
# RFC 7616 section 3.9.1
|
|
params = ["Mufasa", "Circle of Life", "http-auth@example.org",
|
|
"GET", "/dir/index.html", "auth",
|
|
"7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v",
|
|
"FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS", 1,
|
|
"MD5", False]
|
|
cnonce = b64('f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ')
|
|
with queued_specific_random_data(cnonce):
|
|
self.assertEqual(http_digest_response(*params),
|
|
b'username="Mufasa", '
|
|
b'realm="http-auth@example.org", '
|
|
b'uri="/dir/index.html", '
|
|
b'algorithm=MD5, '
|
|
b'nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v", '
|
|
b'nc=00000001, '
|
|
b'cnonce="f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ", '
|
|
b'qop=auth, '
|
|
b'response="8ca523f5e9506fed4657c9700eebdbec", '
|
|
b'opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"')
|
|
|
|
# And again with all the same details except the hash
|
|
params[9] = "SHA-256"
|
|
with queued_specific_random_data(cnonce):
|
|
self.assertEqual(http_digest_response(*params),
|
|
b'username="Mufasa", '
|
|
b'realm="http-auth@example.org", '
|
|
b'uri="/dir/index.html", '
|
|
b'algorithm=SHA-256, '
|
|
b'nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v", '
|
|
b'nc=00000001, '
|
|
b'cnonce="f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ", '
|
|
b'qop=auth, '
|
|
b'response="753927fa0e85d155564e2e272a28d1802ca10daf4496794697cf8db5856cb6c1", '
|
|
b'opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"')
|
|
|
|
# RFC 7616 section 3.9.2, using SHA-512-256 (demonstrating
|
|
# that they think it's just a 256-bit truncation of SHA-512,
|
|
# and not the version defined in FIPS 180-4 which also uses
|
|
# a different initial hash state), and username hashing.
|
|
#
|
|
# We don't actually support SHA-512-256 in the top-level proxy
|
|
# client code (see the comment in proxy/cproxy.h). However,
|
|
# this internal http_digest_response function still provides
|
|
# it, simply so that we can run this test case from the RFC,
|
|
# because it's the only provided test case for username
|
|
# hashing, and this confirms that we've got the preimage right
|
|
# for the username hash.
|
|
params = ["J\u00E4s\u00F8n Doe".encode("UTF-8"),
|
|
"Secret, or not?", "api@example.org",
|
|
"GET", "/doe.json", "auth",
|
|
"5TsQWLVdgBdmrQ0XsxbDODV+57QdFR34I9HAbC/RVvkK",
|
|
"HRPCssKJSGjCrkzDg8OhwpzCiGPChXYjwrI2QmXDnsOS", 1,
|
|
"SHA-512-256", True]
|
|
cnonce = b64('NTg6RKcb9boFIAS3KrFK9BGeh+iDa/sm6jUMp2wds69v')
|
|
with queued_specific_random_data(cnonce):
|
|
self.assertEqual(http_digest_response(*params),
|
|
b'username="488869477bf257147b804c45308cd62ac4e25eb717b12b298c79e62dcea254ec", '
|
|
b'realm="api@example.org", '
|
|
b'uri="/doe.json", '
|
|
b'algorithm=SHA-512-256, '
|
|
b'nonce="5TsQWLVdgBdmrQ0XsxbDODV+57QdFR34I9HAbC/RVvkK", '
|
|
b'nc=00000001, '
|
|
b'cnonce="NTg6RKcb9boFIAS3KrFK9BGeh+iDa/sm6jUMp2wds69v", '
|
|
b'qop=auth, '
|
|
b'response="ae66e67d6b427bd3f120414a82e4acff38e8ecd9101d6c861229025f607a79dd", '
|
|
b'opaque="HRPCssKJSGjCrkzDg8OhwpzCiGPChXYjwrI2QmXDnsOS", '
|
|
b'userhash=true')
|
|
|
|
if __name__ == "__main__":
|
|
# Run the tests, suppressing automatic sys.exit and collecting the
|
|
# unittest.TestProgram instance returned by unittest.main instead.
|
|
testprogram = unittest.main(exit=False)
|
|
|
|
# If any test failed, just exit with failure status.
|
|
if not testprogram.result.wasSuccessful():
|
|
childprocess.wait_for_exit()
|
|
sys.exit(1)
|
|
|
|
# But if no tests failed, we have one last check to do: look at
|
|
# the subprocess's return status, so that if Leak Sanitiser
|
|
# detected any memory leaks, the success return status will turn
|
|
# into a failure at the last minute.
|
|
childprocess.check_return_status()
|