1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshsha.c
Simon Tatham febef916a5 Make ssh2_mac_setkey take the key as a ptrlen.
This makes the API more flexible, so that it's not restricted to
taking a key of precisely the length specified in the ssh2_macalg
structure. Instead, ssh2bpp looks up that length to construct the
MAC's key.

Some MACs (e.g. Poly1305) will only _work_ with a single key length.
But this way, I can run standard test vectors against MACs that can
take a variable length (e.g. everything in the HMAC family).
2019-01-03 14:29:06 +00:00

692 lines
18 KiB
C

/*
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
* also used as a `stirring' function for the PuTTY random number
* pool. Implemented directly from the specification by Simon
* Tatham.
*/
#include "ssh.h"
#include <assert.h>
/* ----------------------------------------------------------------------
* Core SHA algorithm: processes 16-word blocks into a message digest.
*/
#define rol(x,y) ( ((x) << (y)) | (((uint32_t)x) >> (32-y)) )
static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
static void SHA_Core_Init(uint32_t h[5])
{
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
}
void SHATransform(uint32_t * digest, uint32_t * block)
{
uint32_t w[80];
uint32_t a, b, c, d, e;
int t;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf("SHATransform:");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf(" +");
for (i = 0; i < 16; i++)
printf(" %08x", block[i]);
}
}
#endif
for (t = 0; t < 16; t++)
w[t] = block[t];
for (t = 16; t < 80; t++) {
uint32_t tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = rol(tmp, 1);
}
a = digest[0];
b = digest[1];
c = digest[2];
d = digest[3];
e = digest[4];
for (t = 0; t < 20; t++) {
uint32_t tmp =
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 20; t < 40; t++) {
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 40; t < 60; t++) {
uint32_t tmp = rol(a,
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
0x8f1bbcdc;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 60; t < 80; t++) {
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf(" =");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf("\n");
}
}
#endif
}
/* ----------------------------------------------------------------------
* Outer SHA algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA algorithm.
*/
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
void SHA_Init(SHA_State * s)
{
SHA_Core_Init(s->h);
s->blkused = 0;
s->len = 0;
if (supports_sha_ni())
s->sha1 = &sha1_ni;
else
s->sha1 = &sha1_sw;
BinarySink_INIT(s, SHA_BinarySink_write);
}
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
{
struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
const unsigned char *q = (const unsigned char *) p;
/*
* Update the length field.
*/
s->len += len;
(*(s->sha1))(s, q, len);
}
static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
{
uint32_t wordblock[16];
int i;
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64) {
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32_t) s->block[i * 4 + 0]) << 24) |
(((uint32_t) s->block[i * 4 + 1]) << 16) |
(((uint32_t) s->block[i * 4 + 2]) << 8) |
(((uint32_t) s->block[i * 4 + 3]) << 0);
}
SHATransform(s->h, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void SHA_Final(SHA_State * s, unsigned char *output)
{
int i;
int pad;
unsigned char c[64];
uint64_t len;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
len = (s->len << 3);
memset(c, 0, pad);
c[0] = 0x80;
put_data(s, &c, pad);
put_uint64(s, len);
for (i = 0; i < 5; i++) {
output[i * 4] = (s->h[i] >> 24) & 0xFF;
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
output[i * 4 + 3] = (s->h[i]) & 0xFF;
}
}
void SHA_Simple(const void *p, int len, unsigned char *output)
{
SHA_State s;
SHA_Init(&s);
put_data(&s, p, len);
SHA_Final(&s, output);
smemclr(&s, sizeof(s));
}
/*
* Thin abstraction for things where hashes are pluggable.
*/
struct sha1_hash {
SHA_State state;
ssh_hash hash;
};
static ssh_hash *sha1_new(const struct ssh_hashalg *alg)
{
struct sha1_hash *h = snew(struct sha1_hash);
SHA_Init(&h->state);
h->hash.vt = alg;
BinarySink_DELEGATE_INIT(&h->hash, &h->state);
return &h->hash;
}
static ssh_hash *sha1_copy(ssh_hash *hashold)
{
struct sha1_hash *hold, *hnew;
ssh_hash *hashnew = sha1_new(hashold->vt);
hold = container_of(hashold, struct sha1_hash, hash);
hnew = container_of(hashnew, struct sha1_hash, hash);
hnew->state = hold->state;
BinarySink_COPIED(&hnew->state);
return hashnew;
}
static void sha1_free(ssh_hash *hash)
{
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
smemclr(h, sizeof(*h));
sfree(h);
}
static void sha1_final(ssh_hash *hash, unsigned char *output)
{
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
SHA_Final(&h->state, output);
sha1_free(hash);
}
const struct ssh_hashalg ssh_sha1 = {
sha1_new, sha1_copy, sha1_final, sha1_free, 20, "SHA-1"
};
/* ----------------------------------------------------------------------
* The above is the SHA-1 algorithm itself. Now we implement the
* HMAC wrapper on it.
*/
struct hmacsha1 {
SHA_State sha[3];
ssh2_mac mac;
};
static ssh2_mac *hmacsha1_new(
const struct ssh2_macalg *alg, ssh2_cipher *cipher)
{
struct hmacsha1 *ctx = snew(struct hmacsha1);
ctx->mac.vt = alg;
BinarySink_DELEGATE_INIT(&ctx->mac, &ctx->sha[2]);
return &ctx->mac;
}
static void hmacsha1_free(ssh2_mac *mac)
{
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
smemclr(ctx, sizeof(*ctx));
sfree(ctx);
}
static void sha1_key_internal(SHA_State *keys,
const unsigned char *key, int len)
{
unsigned char foo[64];
int i;
memset(foo, 0x36, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[0]);
put_data(&keys[0], foo, 64);
memset(foo, 0x5C, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
SHA_Init(&keys[1]);
put_data(&keys[1], foo, 64);
smemclr(foo, 64); /* burn the evidence */
}
static void hmacsha1_key(ssh2_mac *mac, ptrlen key)
{
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
sha1_key_internal(ctx->sha, key.ptr, key.len);
}
static void hmacsha1_start(ssh2_mac *mac)
{
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
ctx->sha[2] = ctx->sha[0]; /* structure copy */
BinarySink_COPIED(&ctx->sha[2]);
}
static void hmacsha1_genresult(ssh2_mac *mac, unsigned char *hmac)
{
struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
SHA_State s;
unsigned char intermediate[20];
s = ctx->sha[2]; /* structure copy */
BinarySink_COPIED(&s);
SHA_Final(&s, intermediate);
s = ctx->sha[1]; /* structure copy */
BinarySink_COPIED(&s);
put_data(&s, intermediate, 20);
SHA_Final(&s, intermediate);
memcpy(hmac, intermediate, ctx->mac.vt->len);
smemclr(intermediate, sizeof(intermediate));
}
void hmac_sha1_simple(const void *key, int keylen,
const void *data, int datalen,
unsigned char *output) {
SHA_State states[2];
unsigned char intermediate[20];
sha1_key_internal(states, key, keylen);
put_data(&states[0], data, datalen);
SHA_Final(&states[0], intermediate);
put_data(&states[1], intermediate, 20);
SHA_Final(&states[1], output);
}
const struct ssh2_macalg ssh_hmac_sha1 = {
hmacsha1_new, hmacsha1_free, hmacsha1_key,
hmacsha1_start, hmacsha1_genresult,
"hmac-sha1", "hmac-sha1-etm@openssh.com",
20, 20,
"HMAC-SHA1"
};
const struct ssh2_macalg ssh_hmac_sha1_96 = {
hmacsha1_new, hmacsha1_free, hmacsha1_key,
hmacsha1_start, hmacsha1_genresult,
"hmac-sha1-96", "hmac-sha1-96-etm@openssh.com",
12, 20,
"HMAC-SHA1-96"
};
const struct ssh2_macalg ssh_hmac_sha1_buggy = {
hmacsha1_new, hmacsha1_free, hmacsha1_key,
hmacsha1_start, hmacsha1_genresult,
"hmac-sha1", NULL,
20, 16,
"bug-compatible HMAC-SHA1"
};
const struct ssh2_macalg ssh_hmac_sha1_96_buggy = {
hmacsha1_new, hmacsha1_free, hmacsha1_key,
hmacsha1_start, hmacsha1_genresult,
"hmac-sha1-96", NULL,
12, 16,
"bug-compatible HMAC-SHA1-96"
};
#ifdef COMPILER_SUPPORTS_SHA_NI
#if defined _MSC_VER && defined _M_AMD64
# include <intrin.h>
#endif
/*
* Set target architecture for Clang and GCC
*/
#if !defined(__clang__) && defined(__GNUC__)
# pragma GCC target("sha")
# pragma GCC target("sse4.1")
#endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else
# define FUNC_ISA
#endif
#include <wmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h>
#endif
/*
* Determinators of CPU type
*/
#if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h>
bool supports_sha_ni(void)
{
unsigned int CPUInfo[4];
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
if (CPUInfo[0] < 7)
return false;
__cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
return CPUInfo[1] & (1 << 29); /* SHA */
}
#else /* defined(__clang__) || defined(__GNUC__) */
bool supports_sha_ni(void)
{
unsigned int CPUInfo[4];
__cpuid(CPUInfo, 0);
if (CPUInfo[0] < 7)
return false;
__cpuidex(CPUInfo, 7, 0);
return CPUInfo[1] & (1 << 29); /* Check SHA */
}
#endif /* defined(__clang__) || defined(__GNUC__) */
/* SHA1 implementation using new instructions
The code is based on Jeffrey Walton's SHA1 implementation:
https://github.com/noloader/SHA-Intrinsics
*/
FUNC_ISA
static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
{
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
ABCD = _mm_loadu_si128((const __m128i*) s->h);
E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64)
{
__m128i MSG0, MSG1, MSG2, MSG3;
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Save current state */
ABCD_SAVE = ABCD;
E0_SAVE = E0;
/* Rounds 0-3 */
MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 16-19 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 20-23 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 24-27 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 28-31 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 32-35 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 36-39 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 40-43 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 44-47 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 48-51 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 52-55 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 56-59 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 60-63 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 64-67 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 68-71 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 72-75 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
/* Rounds 76-79 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
/* Combine state */
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
s->blkused = 0;
}
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/* Save state */
_mm_storeu_si128((__m128i*) s->h, ABCD);
s->h[4] = _mm_extract_epi32(E0, 3);
memcpy(s->block, q, len);
s->blkused = len;
}
}
/*
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
*/
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
{
sha1_ni_(s, q, len);
}
#else /* COMPILER_SUPPORTS_AES_NI */
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
{
unreachable("sha1_ni not compiled in");
}
bool supports_sha_ni(void)
{
return false;
}
#endif /* COMPILER_SUPPORTS_AES_NI */