1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/unix/network.c
Simon Tatham 04c1617f20 Formatting: realign labels and case/default statements.
My aim has always been to have those back-dented by 2 spaces (half an
indent level) compared to the statements around them, so that in
particular switch statements have distinct alignment for the
statement, the cases and the interior code without consuming two whole
indent levels.

This patch sweeps up all the violations of that principle found by my
bulk-reindentation exercise.
2022-08-03 20:48:46 +01:00

1756 lines
47 KiB
C

/*
* Unix networking abstraction.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include <sys/un.h>
#include <pwd.h>
#include <grp.h>
#include "putty.h"
#include "network.h"
#include "tree234.h"
/* Solaris needs <sys/sockio.h> for SIOCATMARK. */
#ifndef SIOCATMARK
#include <sys/sockio.h>
#endif
#ifndef X11_UNIX_PATH
# define X11_UNIX_PATH "/tmp/.X11-unix/X"
#endif
/*
* Access to sockaddr types without breaking C strict aliasing rules.
*/
union sockaddr_union {
struct sockaddr_storage storage;
struct sockaddr sa;
struct sockaddr_in sin;
#ifndef NO_IPV6
struct sockaddr_in6 sin6;
#endif
struct sockaddr_un su;
};
/*
* Mutable state that goes with a SockAddr: stores information
* about where in the list of candidate IP(v*) addresses we've
* currently got to.
*/
typedef struct SockAddrStep_tag SockAddrStep;
struct SockAddrStep_tag {
#ifndef NO_IPV6
struct addrinfo *ai; /* steps along addr->ais */
#endif
int curraddr;
};
typedef struct NetSocket NetSocket;
struct NetSocket {
const char *error;
int s;
Plug *plug;
bufchain output_data;
bool connected; /* irrelevant for listening sockets */
bool writable;
bool frozen; /* this causes readability notifications to be ignored */
bool localhost_only; /* for listening sockets */
char oobdata[1];
size_t sending_oob;
bool oobpending; /* is there OOB data available to read? */
bool oobinline;
enum { EOF_NO, EOF_PENDING, EOF_SENT } outgoingeof;
bool incomingeof;
int pending_error; /* in case send() returns error */
bool listener;
bool nodelay, keepalive; /* for connect()-type sockets */
bool privport;
int port; /* and again */
SockAddr *addr;
SockAddrStep step;
/*
* We sometimes need pairs of Socket structures to be linked:
* if we are listening on the same IPv6 and v4 port, for
* example. So here we define `parent' and `child' pointers to
* track this link.
*/
NetSocket *parent, *child;
Socket sock;
};
struct SockAddr {
int refcount;
const char *error;
enum { UNRESOLVED, UNIX, IP } superfamily;
#ifndef NO_IPV6
struct addrinfo *ais; /* Addresses IPv6 style. */
#else
unsigned long *addresses; /* Addresses IPv4 style. */
int naddresses;
#endif
char hostname[512]; /* Store an unresolved host name. */
};
/*
* Which address family this address belongs to. AF_INET for IPv4;
* AF_INET6 for IPv6; AF_UNSPEC indicates that name resolution has
* not been done and a simple host name is held in this SockAddr
* structure.
*/
#ifndef NO_IPV6
#define SOCKADDR_FAMILY(addr, step) \
((addr)->superfamily == UNRESOLVED ? AF_UNSPEC : \
(addr)->superfamily == UNIX ? AF_UNIX : \
(step).ai ? (step).ai->ai_family : AF_INET)
#else
/* Here we gratuitously reference 'step' to avoid gcc warnings about
* 'set but not used' when compiling -DNO_IPV6 */
#define SOCKADDR_FAMILY(addr, step) \
((addr)->superfamily == UNRESOLVED ? AF_UNSPEC : \
(addr)->superfamily == UNIX ? AF_UNIX : \
(step).curraddr ? AF_INET : AF_INET)
#endif
/*
* Start a SockAddrStep structure to step through multiple
* addresses.
*/
#ifndef NO_IPV6
#define START_STEP(addr, step) \
((step).ai = (addr)->ais, (step).curraddr = 0)
#else
#define START_STEP(addr, step) \
((step).curraddr = 0)
#endif
static tree234 *sktree;
static void uxsel_tell(NetSocket *s);
static int cmpfortree(void *av, void *bv)
{
NetSocket *a = (NetSocket *) av, *b = (NetSocket *) bv;
int as = a->s, bs = b->s;
if (as < bs)
return -1;
if (as > bs)
return +1;
if (a < b)
return -1;
if (a > b)
return +1;
return 0;
}
static int cmpforsearch(void *av, void *bv)
{
NetSocket *b = (NetSocket *) bv;
int as = *(int *)av, bs = b->s;
if (as < bs)
return -1;
if (as > bs)
return +1;
return 0;
}
void sk_init(void)
{
sktree = newtree234(cmpfortree);
}
void sk_cleanup(void)
{
NetSocket *s;
int i;
if (sktree) {
for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
close(s->s);
}
}
}
SockAddr *sk_namelookup(const char *host, char **canonicalname,
int address_family)
{
*canonicalname = NULL;
if (host[0] == '/') {
*canonicalname = dupstr(host);
return unix_sock_addr(host);
}
SockAddr *addr = snew(SockAddr);
memset(addr, 0, sizeof(SockAddr));
addr->superfamily = UNRESOLVED;
addr->refcount = 1;
#ifndef NO_IPV6
/*
* Use getaddrinfo, as long as it's available. This should handle
* both IPv4 and IPv6 address literals, and hostnames, in one
* unified API.
*/
{
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
address_family == ADDRTYPE_IPV6 ? AF_INET6 :
AF_UNSPEC);
hints.ai_flags = AI_CANONNAME;
hints.ai_socktype = SOCK_STREAM;
/* strip [] on IPv6 address literals */
char *trimmed_host = host_strduptrim(host);
int err = getaddrinfo(trimmed_host, NULL, &hints, &addr->ais);
sfree(trimmed_host);
if (addr->ais) {
addr->superfamily = IP;
if (addr->ais->ai_canonname)
*canonicalname = dupstr(addr->ais->ai_canonname);
else
*canonicalname = dupstr(host);
} else {
addr->error = gai_strerror(err);
}
return addr;
}
#else
/*
* Failing that (if IPv6 support was not compiled in), try the
* old-fashioned approach, which is to start by manually checking
* for an IPv4 literal and then use gethostbyname.
*/
unsigned long a = inet_addr(host);
if (a != (unsigned long) INADDR_NONE) {
addr->addresses = snew(unsigned long);
addr->naddresses = 1;
addr->addresses[0] = ntohl(a);
addr->superfamily = IP;
*canonicalname = dupstr(host);
return addr;
}
struct hostent *h = gethostbyname(host);
if (h) {
addr->superfamily = IP;
size_t n;
for (n = 0; h->h_addr_list[n]; n++);
addr->addresses = snewn(n, unsigned long);
addr->naddresses = n;
for (n = 0; n < addr->naddresses; n++) {
uint32_t a;
memcpy(&a, h->h_addr_list[n], sizeof(a));
addr->addresses[n] = ntohl(a);
}
*canonicalname = dupstr(h->h_name);
} else {
addr->error = hstrerror(h_errno);
}
return addr;
#endif
}
SockAddr *sk_nonamelookup(const char *host)
{
SockAddr *ret = snew(SockAddr);
ret->error = NULL;
ret->superfamily = UNRESOLVED;
strncpy(ret->hostname, host, lenof(ret->hostname));
ret->hostname[lenof(ret->hostname)-1] = '\0';
#ifndef NO_IPV6
ret->ais = NULL;
#else
ret->addresses = NULL;
#endif
ret->refcount = 1;
return ret;
}
static bool sk_nextaddr(SockAddr *addr, SockAddrStep *step)
{
#ifndef NO_IPV6
if (step->ai && step->ai->ai_next) {
step->ai = step->ai->ai_next;
return true;
} else
return false;
#else
if (step->curraddr+1 < addr->naddresses) {
step->curraddr++;
return true;
} else {
return false;
}
#endif
}
void sk_getaddr(SockAddr *addr, char *buf, int buflen)
{
if (addr->superfamily == UNRESOLVED || addr->superfamily == UNIX) {
strncpy(buf, addr->hostname, buflen);
buf[buflen-1] = '\0';
} else {
#ifndef NO_IPV6
if (getnameinfo(addr->ais->ai_addr, addr->ais->ai_addrlen, buf, buflen,
NULL, 0, NI_NUMERICHOST) != 0) {
buf[0] = '\0';
strncat(buf, "<unknown>", buflen - 1);
}
#else
struct in_addr a;
SockAddrStep step;
START_STEP(addr, step);
assert(SOCKADDR_FAMILY(addr, step) == AF_INET);
a.s_addr = htonl(addr->addresses[0]);
strncpy(buf, inet_ntoa(a), buflen);
buf[buflen-1] = '\0';
#endif
}
}
/*
* This constructs a SockAddr that points at one specific sub-address
* of a parent SockAddr. The returned SockAddr does not own all its
* own memory: it points into the old one's data structures, so it
* MUST NOT be used after the old one is freed, and it MUST NOT be
* passed to sk_addr_free. (The latter is why it's returned by value
* rather than dynamically allocated - that should clue in anyone
* writing a call to it that something is weird about it.)
*/
static SockAddr sk_extractaddr_tmp(
SockAddr *addr, const SockAddrStep *step)
{
SockAddr toret;
toret = *addr; /* structure copy */
toret.refcount = 1;
if (addr->superfamily == IP) {
#ifndef NO_IPV6
toret.ais = step->ai;
#else
assert(SOCKADDR_FAMILY(addr, *step) == AF_INET);
toret.addresses += step->curraddr;
#endif
}
return toret;
}
bool sk_addr_needs_port(SockAddr *addr)
{
if (addr->superfamily == UNRESOLVED || addr->superfamily == UNIX) {
return false;
} else {
return true;
}
}
bool sk_hostname_is_local(const char *name)
{
return !strcmp(name, "localhost") ||
!strcmp(name, "::1") ||
!strncmp(name, "127.", 4);
}
#define ipv4_is_loopback(addr) \
(((addr).s_addr & htonl(0xff000000)) == htonl(0x7f000000))
static bool sockaddr_is_loopback(struct sockaddr *sa)
{
union sockaddr_union *u = (union sockaddr_union *)sa;
switch (u->sa.sa_family) {
case AF_INET:
return ipv4_is_loopback(u->sin.sin_addr);
#ifndef NO_IPV6
case AF_INET6:
return IN6_IS_ADDR_LOOPBACK(&u->sin6.sin6_addr);
#endif
case AF_UNIX:
return true;
default:
return false;
}
}
bool sk_address_is_local(SockAddr *addr)
{
if (addr->superfamily == UNRESOLVED)
return false; /* we don't know; assume not */
else if (addr->superfamily == UNIX)
return true;
else {
#ifndef NO_IPV6
return sockaddr_is_loopback(addr->ais->ai_addr);
#else
struct in_addr a;
SockAddrStep step;
START_STEP(addr, step);
assert(SOCKADDR_FAMILY(addr, step) == AF_INET);
a.s_addr = htonl(addr->addresses[0]);
return ipv4_is_loopback(a);
#endif
}
}
bool sk_address_is_special_local(SockAddr *addr)
{
return addr->superfamily == UNIX;
}
int sk_addrtype(SockAddr *addr)
{
SockAddrStep step;
int family;
START_STEP(addr, step);
family = SOCKADDR_FAMILY(addr, step);
return (family == AF_INET ? ADDRTYPE_IPV4 :
#ifndef NO_IPV6
family == AF_INET6 ? ADDRTYPE_IPV6 :
#endif
ADDRTYPE_NAME);
}
void sk_addrcopy(SockAddr *addr, char *buf)
{
SockAddrStep step;
int family;
START_STEP(addr, step);
family = SOCKADDR_FAMILY(addr, step);
#ifndef NO_IPV6
if (family == AF_INET)
memcpy(buf, &((struct sockaddr_in *)step.ai->ai_addr)->sin_addr,
sizeof(struct in_addr));
else if (family == AF_INET6)
memcpy(buf, &((struct sockaddr_in6 *)step.ai->ai_addr)->sin6_addr,
sizeof(struct in6_addr));
else
unreachable("bad address family in sk_addrcopy");
#else
struct in_addr a;
assert(family == AF_INET);
a.s_addr = htonl(addr->addresses[step.curraddr]);
memcpy(buf, (char*) &a.s_addr, 4);
#endif
}
void sk_addr_free(SockAddr *addr)
{
if (--addr->refcount > 0)
return;
#ifndef NO_IPV6
if (addr->ais != NULL)
freeaddrinfo(addr->ais);
#else
sfree(addr->addresses);
#endif
sfree(addr);
}
SockAddr *sk_addr_dup(SockAddr *addr)
{
addr->refcount++;
return addr;
}
static Plug *sk_net_plug(Socket *sock, Plug *p)
{
NetSocket *s = container_of(sock, NetSocket, sock);
Plug *ret = s->plug;
if (p)
s->plug = p;
return ret;
}
static void sk_net_close(Socket *s);
static size_t sk_net_write(Socket *s, const void *data, size_t len);
static size_t sk_net_write_oob(Socket *s, const void *data, size_t len);
static void sk_net_write_eof(Socket *s);
static void sk_net_set_frozen(Socket *s, bool is_frozen);
static SocketPeerInfo *sk_net_peer_info(Socket *s);
static const char *sk_net_socket_error(Socket *s);
static const SocketVtable NetSocket_sockvt = {
.plug = sk_net_plug,
.close = sk_net_close,
.write = sk_net_write,
.write_oob = sk_net_write_oob,
.write_eof = sk_net_write_eof,
.set_frozen = sk_net_set_frozen,
.socket_error = sk_net_socket_error,
.peer_info = sk_net_peer_info,
};
static Socket *sk_net_accept(accept_ctx_t ctx, Plug *plug)
{
int sockfd = ctx.i;
NetSocket *ret;
/*
* Create NetSocket structure.
*/
ret = snew(NetSocket);
ret->sock.vt = &NetSocket_sockvt;
ret->error = NULL;
ret->plug = plug;
bufchain_init(&ret->output_data);
ret->writable = true; /* to start with */
ret->sending_oob = 0;
ret->frozen = true;
ret->localhost_only = false; /* unused, but best init anyway */
ret->pending_error = 0;
ret->oobpending = false;
ret->outgoingeof = EOF_NO;
ret->incomingeof = false;
ret->listener = false;
ret->parent = ret->child = NULL;
ret->addr = NULL;
ret->connected = true;
ret->s = sockfd;
if (ret->s < 0) {
ret->error = strerror(errno);
return &ret->sock;
}
ret->oobinline = false;
uxsel_tell(ret);
add234(sktree, ret);
return &ret->sock;
}
static int try_connect(NetSocket *sock)
{
int s;
union sockaddr_union u;
const union sockaddr_union *sa;
int err = 0;
short localport;
int salen, family;
/*
* Remove the socket from the tree before we overwrite its
* internal socket id, because that forms part of the tree's
* sorting criterion. We'll add it back before exiting this
* function, whether we changed anything or not.
*/
del234(sktree, sock);
if (sock->s >= 0)
close(sock->s);
{
SockAddr thisaddr = sk_extractaddr_tmp(
sock->addr, &sock->step);
plug_log(sock->plug, PLUGLOG_CONNECT_TRYING,
&thisaddr, sock->port, NULL, 0);
}
/*
* Open socket.
*/
family = SOCKADDR_FAMILY(sock->addr, sock->step);
assert(family != AF_UNSPEC);
s = socket(family, SOCK_STREAM, 0);
sock->s = s;
if (s < 0) {
err = errno;
goto ret;
}
cloexec(s);
if (sock->oobinline) {
int b = 1;
if (setsockopt(s, SOL_SOCKET, SO_OOBINLINE,
(void *) &b, sizeof(b)) < 0) {
err = errno;
close(s);
goto ret;
}
}
if (sock->nodelay && family != AF_UNIX) {
int b = 1;
if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY,
(void *) &b, sizeof(b)) < 0) {
err = errno;
close(s);
goto ret;
}
}
if (sock->keepalive) {
int b = 1;
if (setsockopt(s, SOL_SOCKET, SO_KEEPALIVE,
(void *) &b, sizeof(b)) < 0) {
err = errno;
close(s);
goto ret;
}
}
/*
* Bind to local address.
*/
if (sock->privport)
localport = 1023; /* count from 1023 downwards */
else
localport = 0; /* just use port 0 (ie kernel picks) */
/* BSD IP stacks need sockaddr_in zeroed before filling in */
memset(&u,'\0',sizeof(u));
/* We don't try to bind to a local address for UNIX domain sockets. (Why
* do we bother doing the bind when localport == 0 anyway?) */
if (family != AF_UNIX) {
/* Loop round trying to bind */
while (1) {
int retcode;
#ifndef NO_IPV6
if (family == AF_INET6) {
/* XXX use getaddrinfo to get a local address? */
u.sin6.sin6_family = AF_INET6;
u.sin6.sin6_addr = in6addr_any;
u.sin6.sin6_port = htons(localport);
retcode = bind(s, &u.sa, sizeof(u.sin6));
} else
#endif
{
assert(family == AF_INET);
u.sin.sin_family = AF_INET;
u.sin.sin_addr.s_addr = htonl(INADDR_ANY);
u.sin.sin_port = htons(localport);
retcode = bind(s, &u.sa, sizeof(u.sin));
}
if (retcode >= 0) {
err = 0;
break; /* done */
} else {
err = errno;
if (err != EADDRINUSE) /* failed, for a bad reason */
break;
}
if (localport == 0)
break; /* we're only looping once */
localport--;
if (localport == 0)
break; /* we might have got to the end */
}
if (err)
goto ret;
}
/*
* Connect to remote address.
*/
switch(family) {
#ifndef NO_IPV6
case AF_INET:
/* XXX would be better to have got getaddrinfo() to fill in the port. */
((struct sockaddr_in *)sock->step.ai->ai_addr)->sin_port =
htons(sock->port);
sa = (const union sockaddr_union *)sock->step.ai->ai_addr;
salen = sock->step.ai->ai_addrlen;
break;
case AF_INET6:
((struct sockaddr_in *)sock->step.ai->ai_addr)->sin_port =
htons(sock->port);
sa = (const union sockaddr_union *)sock->step.ai->ai_addr;
salen = sock->step.ai->ai_addrlen;
break;
#else
case AF_INET:
u.sin.sin_family = AF_INET;
u.sin.sin_addr.s_addr = htonl(sock->addr->addresses[sock->step.curraddr]);
u.sin.sin_port = htons((short) sock->port);
sa = &u;
salen = sizeof u.sin;
break;
#endif
case AF_UNIX:
assert(strlen(sock->addr->hostname) < sizeof u.su.sun_path);
u.su.sun_family = AF_UNIX;
strcpy(u.su.sun_path, sock->addr->hostname);
sa = &u;
salen = sizeof u.su;
break;
default:
unreachable("unknown address family");
exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
}
nonblock(s);
if ((connect(s, &(sa->sa), salen)) < 0) {
if ( errno != EINPROGRESS ) {
err = errno;
goto ret;
}
} else {
/*
* If we _don't_ get EWOULDBLOCK, the connect has completed
* and we should set the socket as connected and writable.
*/
sock->connected = true;
sock->writable = true;
SockAddr thisaddr = sk_extractaddr_tmp(sock->addr, &sock->step);
plug_log(sock->plug, PLUGLOG_CONNECT_SUCCESS,
&thisaddr, sock->port, NULL, 0);
}
uxsel_tell(sock);
ret:
/*
* No matter what happened, put the socket back in the tree.
*/
add234(sktree, sock);
if (err) {
SockAddr thisaddr = sk_extractaddr_tmp(
sock->addr, &sock->step);
plug_log(sock->plug, PLUGLOG_CONNECT_FAILED,
&thisaddr, sock->port, strerror(err), err);
}
return err;
}
Socket *sk_new(SockAddr *addr, int port, bool privport, bool oobinline,
bool nodelay, bool keepalive, Plug *plug)
{
NetSocket *ret;
int err;
/*
* Create NetSocket structure.
*/
ret = snew(NetSocket);
ret->sock.vt = &NetSocket_sockvt;
ret->error = NULL;
ret->plug = plug;
bufchain_init(&ret->output_data);
ret->connected = false; /* to start with */
ret->writable = false; /* to start with */
ret->sending_oob = 0;
ret->frozen = false;
ret->localhost_only = false; /* unused, but best init anyway */
ret->pending_error = 0;
ret->parent = ret->child = NULL;
ret->oobpending = false;
ret->outgoingeof = EOF_NO;
ret->incomingeof = false;
ret->listener = false;
ret->addr = addr;
START_STEP(ret->addr, ret->step);
ret->s = -1;
ret->oobinline = oobinline;
ret->nodelay = nodelay;
ret->keepalive = keepalive;
ret->privport = privport;
ret->port = port;
do {
err = try_connect(ret);
} while (err && sk_nextaddr(ret->addr, &ret->step));
if (err)
ret->error = strerror(err);
return &ret->sock;
}
Socket *sk_newlistener(const char *srcaddr, int port, Plug *plug,
bool local_host_only, int orig_address_family)
{
int s;
#ifndef NO_IPV6
struct addrinfo hints, *ai = NULL;
char portstr[6];
#endif
union sockaddr_union u;
union sockaddr_union *addr;
int addrlen;
NetSocket *ret;
int retcode;
int address_family;
int on = 1;
/*
* Create NetSocket structure.
*/
ret = snew(NetSocket);
ret->sock.vt = &NetSocket_sockvt;
ret->error = NULL;
ret->plug = plug;
bufchain_init(&ret->output_data);
ret->writable = false; /* to start with */
ret->sending_oob = 0;
ret->frozen = false;
ret->localhost_only = local_host_only;
ret->pending_error = 0;
ret->parent = ret->child = NULL;
ret->oobpending = false;
ret->outgoingeof = EOF_NO;
ret->incomingeof = false;
ret->listener = true;
ret->addr = NULL;
ret->s = -1;
/*
* Translate address_family from platform-independent constants
* into local reality.
*/
address_family = (orig_address_family == ADDRTYPE_IPV4 ? AF_INET :
#ifndef NO_IPV6
orig_address_family == ADDRTYPE_IPV6 ? AF_INET6 :
#endif
AF_UNSPEC);
#ifndef NO_IPV6
/* Let's default to IPv6.
* If the stack doesn't support IPv6, we will fall back to IPv4. */
if (address_family == AF_UNSPEC) address_family = AF_INET6;
#else
/* No other choice, default to IPv4 */
if (address_family == AF_UNSPEC) address_family = AF_INET;
#endif
/*
* Open socket.
*/
s = socket(address_family, SOCK_STREAM, 0);
#ifndef NO_IPV6
/* If the host doesn't support IPv6 try fallback to IPv4. */
if (s < 0 && address_family == AF_INET6) {
address_family = AF_INET;
s = socket(address_family, SOCK_STREAM, 0);
}
#endif
if (s < 0) {
ret->error = strerror(errno);
return &ret->sock;
}
cloexec(s);
ret->oobinline = false;
if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR,
(const char *)&on, sizeof(on)) < 0) {
ret->error = strerror(errno);
close(s);
return &ret->sock;
}
retcode = -1;
addr = NULL; addrlen = -1; /* placate optimiser */
if (srcaddr != NULL) {
#ifndef NO_IPV6
hints.ai_flags = AI_NUMERICHOST;
hints.ai_family = address_family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
hints.ai_addrlen = 0;
hints.ai_addr = NULL;
hints.ai_canonname = NULL;
hints.ai_next = NULL;
assert(port >= 0 && port <= 99999);
sprintf(portstr, "%d", port);
{
char *trimmed_addr = host_strduptrim(srcaddr);
retcode = getaddrinfo(trimmed_addr, portstr, &hints, &ai);
sfree(trimmed_addr);
}
if (retcode == 0) {
addr = (union sockaddr_union *)ai->ai_addr;
addrlen = ai->ai_addrlen;
}
#else
memset(&u,'\0',sizeof u);
u.sin.sin_family = AF_INET;
u.sin.sin_port = htons(port);
u.sin.sin_addr.s_addr = inet_addr(srcaddr);
if (u.sin.sin_addr.s_addr != (in_addr_t)(-1)) {
/* Override localhost_only with specified listen addr. */
ret->localhost_only = ipv4_is_loopback(u.sin.sin_addr);
}
addr = &u;
addrlen = sizeof(u.sin);
retcode = 0;
#endif
}
if (retcode != 0) {
memset(&u,'\0',sizeof u);
#ifndef NO_IPV6
if (address_family == AF_INET6) {
u.sin6.sin6_family = AF_INET6;
u.sin6.sin6_port = htons(port);
if (local_host_only)
u.sin6.sin6_addr = in6addr_loopback;
else
u.sin6.sin6_addr = in6addr_any;
addr = &u;
addrlen = sizeof(u.sin6);
} else
#endif
{
u.sin.sin_family = AF_INET;
u.sin.sin_port = htons(port);
if (local_host_only)
u.sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
else
u.sin.sin_addr.s_addr = htonl(INADDR_ANY);
addr = &u;
addrlen = sizeof(u.sin);
}
}
retcode = bind(s, &addr->sa, addrlen);
#ifndef NO_IPV6
if (ai)
freeaddrinfo(ai);
#endif
if (retcode < 0) {
close(s);
ret->error = strerror(errno);
return &ret->sock;
}
if (listen(s, SOMAXCONN) < 0) {
close(s);
ret->error = strerror(errno);
return &ret->sock;
}
#ifndef NO_IPV6
/*
* If we were given ADDRTYPE_UNSPEC, we must also create an
* IPv4 listening socket and link it to this one.
*/
if (address_family == AF_INET6 && orig_address_family == ADDRTYPE_UNSPEC) {
NetSocket *other;
other = container_of(
sk_newlistener(srcaddr, port, plug,
local_host_only, ADDRTYPE_IPV4),
NetSocket, sock);
if (other) {
if (!other->error) {
other->parent = ret;
ret->child = other;
} else {
/* If we couldn't create a listening socket on IPv4 as well
* as IPv6, we must return an error overall. */
close(s);
sfree(ret);
return &other->sock;
}
}
}
#endif
ret->s = s;
uxsel_tell(ret);
add234(sktree, ret);
return &ret->sock;
}
static void sk_net_close(Socket *sock)
{
NetSocket *s = container_of(sock, NetSocket, sock);
if (s->child)
sk_net_close(&s->child->sock);
bufchain_clear(&s->output_data);
del234(sktree, s);
if (s->s >= 0) {
uxsel_del(s->s);
close(s->s);
}
if (s->addr)
sk_addr_free(s->addr);
delete_callbacks_for_context(s);
sfree(s);
}
void *sk_getxdmdata(Socket *sock, int *lenp)
{
NetSocket *s;
union sockaddr_union u;
socklen_t addrlen;
char *buf;
static unsigned int unix_addr = 0xFFFFFFFF;
/*
* We must check that this socket really _is_ a NetSocket before
* downcasting it.
*/
if (sock->vt != &NetSocket_sockvt)
return NULL; /* failure */
s = container_of(sock, NetSocket, sock);
addrlen = sizeof(u);
if (getsockname(s->s, &u.sa, &addrlen) < 0)
return NULL;
switch(u.sa.sa_family) {
case AF_INET:
*lenp = 6;
buf = snewn(*lenp, char);
PUT_32BIT_MSB_FIRST(buf, ntohl(u.sin.sin_addr.s_addr));
PUT_16BIT_MSB_FIRST(buf+4, ntohs(u.sin.sin_port));
break;
#ifndef NO_IPV6
case AF_INET6:
*lenp = 6;
buf = snewn(*lenp, char);
if (IN6_IS_ADDR_V4MAPPED(&u.sin6.sin6_addr)) {
memcpy(buf, u.sin6.sin6_addr.s6_addr + 12, 4);
PUT_16BIT_MSB_FIRST(buf+4, ntohs(u.sin6.sin6_port));
} else
/* This is stupid, but it's what XLib does. */
memset(buf, 0, 6);
break;
#endif
case AF_UNIX:
*lenp = 6;
buf = snewn(*lenp, char);
PUT_32BIT_MSB_FIRST(buf, unix_addr--);
PUT_16BIT_MSB_FIRST(buf+4, getpid());
break;
/* XXX IPV6 */
default:
return NULL;
}
return buf;
}
void plug_closing_errno(Plug *plug, int error)
{
PlugCloseType type = PLUGCLOSE_ERROR;
if (error == EPIPE)
type = PLUGCLOSE_BROKEN_PIPE;
plug_closing(plug, type, strerror(error));
}
/*
* Deal with socket errors detected in try_send().
*/
static void socket_error_callback(void *vs)
{
NetSocket *s = (NetSocket *)vs;
/*
* Just in case other socket work has caused this socket to vanish
* or become somehow non-erroneous before this callback arrived...
*/
if (!find234(sktree, s, NULL) || !s->pending_error)
return;
/*
* An error has occurred on this socket. Pass it to the plug.
*/
plug_closing_errno(s->plug, s->pending_error);
}
/*
* The function which tries to send on a socket once it's deemed
* writable.
*/
void try_send(NetSocket *s)
{
while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
int nsent;
int err;
const void *data;
size_t len;
int urgentflag;
if (s->sending_oob) {
urgentflag = MSG_OOB;
len = s->sending_oob;
data = &s->oobdata;
} else {
urgentflag = 0;
ptrlen bufdata = bufchain_prefix(&s->output_data);
data = bufdata.ptr;
len = bufdata.len;
}
nsent = send(s->s, data, len, urgentflag);
noise_ultralight(NOISE_SOURCE_IOLEN, nsent);
if (nsent <= 0) {
err = (nsent < 0 ? errno : 0);
if (err == EWOULDBLOCK) {
/*
* Perfectly normal: we've sent all we can for the moment.
*/
s->writable = false;
return;
} else {
/*
* We unfortunately can't just call plug_closing(),
* because it's quite likely that we're currently
* _in_ a call from the code we'd be calling back
* to, so we'd have to make half the SSH code
* reentrant. Instead we flag a pending error on
* the socket, to be dealt with (by calling
* plug_closing()) at some suitable future moment.
*/
s->pending_error = err;
/*
* Immediately cease selecting on this socket, so that
* we don't tight-loop repeatedly trying to do
* whatever it was that went wrong.
*/
uxsel_tell(s);
/*
* Arrange to be called back from the top level to
* deal with the error condition on this socket.
*/
queue_toplevel_callback(socket_error_callback, s);
return;
}
} else {
if (s->sending_oob) {
if (nsent < len) {
memmove(s->oobdata, s->oobdata+nsent, len-nsent);
s->sending_oob = len - nsent;
} else {
s->sending_oob = 0;
}
} else {
bufchain_consume(&s->output_data, nsent);
}
}
}
/*
* If we reach here, we've finished sending everything we might
* have needed to send. Send EOF, if we need to.
*/
if (s->outgoingeof == EOF_PENDING) {
shutdown(s->s, SHUT_WR);
s->outgoingeof = EOF_SENT;
}
/*
* Also update the select status, because we don't need to select
* for writing any more.
*/
uxsel_tell(s);
}
static size_t sk_net_write(Socket *sock, const void *buf, size_t len)
{
NetSocket *s = container_of(sock, NetSocket, sock);
assert(s->outgoingeof == EOF_NO);
/*
* Add the data to the buffer list on the socket.
*/
bufchain_add(&s->output_data, buf, len);
/*
* Now try sending from the start of the buffer list.
*/
if (s->writable)
try_send(s);
/*
* Update the select() status to correctly reflect whether or
* not we should be selecting for write.
*/
uxsel_tell(s);
return bufchain_size(&s->output_data);
}
static size_t sk_net_write_oob(Socket *sock, const void *buf, size_t len)
{
NetSocket *s = container_of(sock, NetSocket, sock);
assert(s->outgoingeof == EOF_NO);
/*
* Replace the buffer list on the socket with the data.
*/
bufchain_clear(&s->output_data);
assert(len <= sizeof(s->oobdata));
memcpy(s->oobdata, buf, len);
s->sending_oob = len;
/*
* Now try sending from the start of the buffer list.
*/
if (s->writable)
try_send(s);
/*
* Update the select() status to correctly reflect whether or
* not we should be selecting for write.
*/
uxsel_tell(s);
return s->sending_oob;
}
static void sk_net_write_eof(Socket *sock)
{
NetSocket *s = container_of(sock, NetSocket, sock);
assert(s->outgoingeof == EOF_NO);
/*
* Mark the socket as pending outgoing EOF.
*/
s->outgoingeof = EOF_PENDING;
/*
* Now try sending from the start of the buffer list.
*/
if (s->writable)
try_send(s);
/*
* Update the select() status to correctly reflect whether or
* not we should be selecting for write.
*/
uxsel_tell(s);
}
static void net_select_result(int fd, int event)
{
int ret;
char buf[20480]; /* nice big buffer for plenty of speed */
NetSocket *s;
bool atmark = true;
/* Find the Socket structure */
s = find234(sktree, &fd, cmpforsearch);
if (!s)
return; /* boggle */
noise_ultralight(NOISE_SOURCE_IOID, fd);
switch (event) {
case SELECT_X: /* exceptional */
if (!s->oobinline) {
/*
* On a non-oobinline socket, this indicates that we
* can immediately perform an OOB read and get back OOB
* data, which we will send to the back end with
* type==2 (urgent data).
*/
ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
noise_ultralight(NOISE_SOURCE_IOLEN, ret);
if (ret == 0) {
plug_closing_error(s->plug, "Internal networking trouble");
} else if (ret < 0) {
plug_closing_errno(s->plug, errno);
} else {
/*
* Receiving actual data on a socket means we can
* stop falling back through the candidate
* addresses to connect to.
*/
if (s->addr) {
sk_addr_free(s->addr);
s->addr = NULL;
}
plug_receive(s->plug, 2, buf, ret);
}
break;
}
/*
* If we reach here, this is an oobinline socket, which
* means we should set s->oobpending and then deal with it
* when we get called for the readability event (which
* should also occur).
*/
s->oobpending = true;
break;
case SELECT_R: /* readable; also acceptance */
if (s->listener) {
/*
* On a listening socket, the readability event means a
* connection is ready to be accepted.
*/
union sockaddr_union su;
socklen_t addrlen = sizeof(su);
accept_ctx_t actx;
int t; /* socket of connection */
memset(&su, 0, addrlen);
t = accept(s->s, &su.sa, &addrlen);
if (t < 0) {
break;
}
nonblock(t);
actx.i = t;
if ((!s->addr || s->addr->superfamily != UNIX) &&
s->localhost_only && !sockaddr_is_loopback(&su.sa)) {
close(t); /* someone let nonlocal through?! */
} else if (plug_accepting(s->plug, sk_net_accept, actx)) {
close(t); /* denied or error */
}
break;
}
/*
* If we reach here, this is not a listening socket, so
* readability really means readability.
*/
/* In the case the socket is still frozen, we don't even bother */
if (s->frozen)
break;
/*
* We have received data on the socket. For an oobinline
* socket, this might be data _before_ an urgent pointer,
* in which case we send it to the back end with type==1
* (data prior to urgent).
*/
if (s->oobinline && s->oobpending) {
int atmark_from_ioctl;
if (ioctl(s->s, SIOCATMARK, &atmark_from_ioctl) == 0) {
atmark = atmark_from_ioctl;
if (atmark)
s->oobpending = false; /* clear this indicator */
}
} else
atmark = true;
ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
noise_ultralight(NOISE_SOURCE_IOLEN, ret);
if (ret < 0) {
if (errno == EWOULDBLOCK) {
break;
}
}
if (ret < 0) {
plug_closing_errno(s->plug, errno);
} else if (0 == ret) {
s->incomingeof = true; /* stop trying to read now */
uxsel_tell(s);
plug_closing_normal(s->plug);
} else {
/*
* Receiving actual data on a socket means we can
* stop falling back through the candidate
* addresses to connect to.
*/
if (s->addr) {
sk_addr_free(s->addr);
s->addr = NULL;
}
plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
}
break;
case SELECT_W: /* writable */
if (!s->connected) {
/*
* select/poll reports a socket as _writable_ when an
* asynchronous connect() attempt either completes or
* fails. So first we must find out which.
*/
{
int err;
socklen_t errlen = sizeof(err);
char *errmsg = NULL;
if (getsockopt(s->s, SOL_SOCKET, SO_ERROR, &err, &errlen)<0) {
errmsg = dupprintf("getsockopt(SO_ERROR): %s",
strerror(errno));
err = errno; /* got to put something in here */
} else if (err != 0) {
errmsg = dupstr(strerror(err));
}
if (errmsg) {
/*
* The asynchronous connection attempt failed.
* Report the problem via plug_log, and try again
* with the next candidate address, if we have
* more than one.
*/
SockAddr thisaddr;
assert(s->addr);
thisaddr = sk_extractaddr_tmp(s->addr, &s->step);
plug_log(s->plug, PLUGLOG_CONNECT_FAILED,
&thisaddr, s->port, errmsg, err);
while (err && s->addr && sk_nextaddr(s->addr, &s->step)) {
err = try_connect(s);
}
if (err) {
plug_closing_errno(s->plug, err);
return; /* socket is now presumably defunct */
}
if (!s->connected)
return; /* another async attempt in progress */
} else {
/*
* The connection attempt succeeded.
*/
SockAddr thisaddr = sk_extractaddr_tmp(s->addr, &s->step);
plug_log(s->plug, PLUGLOG_CONNECT_SUCCESS,
&thisaddr, s->port, NULL, 0);
}
}
/*
* If we get here, we've managed to make a connection.
*/
if (s->addr) {
sk_addr_free(s->addr);
s->addr = NULL;
}
s->connected = true;
s->writable = true;
uxsel_tell(s);
} else {
size_t bufsize_before, bufsize_after;
s->writable = true;
bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
try_send(s);
bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
if (bufsize_after < bufsize_before)
plug_sent(s->plug, bufsize_after);
}
break;
}
}
/*
* Special error values are returned from sk_namelookup and sk_new
* if there's a problem. These functions extract an error message,
* or return NULL if there's no problem.
*/
const char *sk_addr_error(SockAddr *addr)
{
return addr->error;
}
static const char *sk_net_socket_error(Socket *sock)
{
NetSocket *s = container_of(sock, NetSocket, sock);
return s->error;
}
static void sk_net_set_frozen(Socket *sock, bool is_frozen)
{
NetSocket *s = container_of(sock, NetSocket, sock);
if (s->frozen == is_frozen)
return;
s->frozen = is_frozen;
uxsel_tell(s);
}
static SocketPeerInfo *sk_net_peer_info(Socket *sock)
{
NetSocket *s = container_of(sock, NetSocket, sock);
union sockaddr_union addr;
socklen_t addrlen = sizeof(addr);
#ifndef NO_IPV6
char buf[INET6_ADDRSTRLEN];
#endif
SocketPeerInfo *pi;
if (getpeername(s->s, &addr.sa, &addrlen) < 0)
return NULL;
pi = snew(SocketPeerInfo);
pi->addressfamily = ADDRTYPE_UNSPEC;
pi->addr_text = NULL;
pi->port = -1;
pi->log_text = NULL;
if (addr.storage.ss_family == AF_INET) {
pi->addressfamily = ADDRTYPE_IPV4;
memcpy(pi->addr_bin.ipv4, &addr.sin.sin_addr, 4);
pi->port = ntohs(addr.sin.sin_port);
pi->addr_text = dupstr(inet_ntoa(addr.sin.sin_addr));
pi->log_text = dupprintf("%s:%d", pi->addr_text, pi->port);
#ifndef NO_IPV6
} else if (addr.storage.ss_family == AF_INET6) {
pi->addressfamily = ADDRTYPE_IPV6;
memcpy(pi->addr_bin.ipv6, &addr.sin6.sin6_addr, 16);
pi->port = ntohs(addr.sin6.sin6_port);
pi->addr_text = dupstr(
inet_ntop(AF_INET6, &addr.sin6.sin6_addr, buf, sizeof(buf)));
pi->log_text = dupprintf("[%s]:%d", pi->addr_text, pi->port);
#endif
} else if (addr.storage.ss_family == AF_UNIX) {
pi->addressfamily = ADDRTYPE_LOCAL;
/*
* For Unix sockets, the source address is unlikely to be
* helpful, so we leave addr_txt NULL (and we certainly can't
* fill in port, obviously). Instead, we try SO_PEERCRED and
* try to get the source pid, and put that in the log text.
*/
int pid, uid, gid;
if (so_peercred(s->s, &pid, &uid, &gid)) {
char uidbuf[64], gidbuf[64];
sprintf(uidbuf, "%d", uid);
sprintf(gidbuf, "%d", gid);
struct passwd *pw = getpwuid(uid);
struct group *gr = getgrgid(gid);
pi->log_text = dupprintf("pid %d (%s:%s)", pid,
pw ? pw->pw_name : uidbuf,
gr ? gr->gr_name : gidbuf);
}
} else {
sfree(pi);
return NULL;
}
return pi;
}
int sk_net_get_fd(Socket *sock)
{
/* This function is not fully general: it only works on NetSocket */
if (sock->vt != &NetSocket_sockvt)
return -1; /* failure */
NetSocket *s = container_of(sock, NetSocket, sock);
return s->s;
}
static void uxsel_tell(NetSocket *s)
{
int rwx = 0;
if (!s->pending_error) {
if (s->listener) {
rwx |= SELECT_R; /* read == accept */
} else {
if (!s->connected)
rwx |= SELECT_W; /* write == connect */
if (s->connected && !s->frozen && !s->incomingeof)
rwx |= SELECT_R | SELECT_X;
if (bufchain_size(&s->output_data))
rwx |= SELECT_W;
}
}
uxsel_set(s->s, rwx, net_select_result);
}
int net_service_lookup(const char *service)
{
struct servent *se;
se = getservbyname(service, NULL);
if (se != NULL)
return ntohs(se->s_port);
else
return 0;
}
char *get_hostname(void)
{
size_t size = 0;
char *hostname = NULL;
do {
sgrowarray(hostname, size, size);
if ((gethostname(hostname, size) < 0) && (errno != ENAMETOOLONG)) {
sfree(hostname);
hostname = NULL;
break;
}
} while (strlen(hostname) >= size-1);
return hostname;
}
SockAddr *platform_get_x11_unix_address(const char *sockpath, int displaynum)
{
SockAddr *ret = snew(SockAddr);
int n;
memset(ret, 0, sizeof *ret);
ret->superfamily = UNIX;
/*
* In special circumstances (notably Mac OS X Leopard), we'll
* have been passed an explicit Unix socket path.
*/
if (sockpath) {
n = snprintf(ret->hostname, sizeof ret->hostname,
"%s", sockpath);
} else {
n = snprintf(ret->hostname, sizeof ret->hostname,
"%s%d", X11_UNIX_PATH, displaynum);
}
if (n < 0)
ret->error = "snprintf failed";
else if (n >= sizeof ret->hostname)
ret->error = "X11 UNIX name too long";
#ifndef NO_IPV6
ret->ais = NULL;
#else
ret->addresses = NULL;
ret->naddresses = 0;
#endif
ret->refcount = 1;
return ret;
}
SockAddr *unix_sock_addr(const char *path)
{
SockAddr *ret = snew(SockAddr);
int n;
memset(ret, 0, sizeof *ret);
ret->superfamily = UNIX;
n = snprintf(ret->hostname, sizeof ret->hostname, "%s", path);
if (n < 0)
ret->error = "snprintf failed";
else if (n >= sizeof ret->hostname ||
n >= sizeof(((struct sockaddr_un *)0)->sun_path))
ret->error = "socket pathname too long";
#ifndef NO_IPV6
ret->ais = NULL;
#else
ret->addresses = NULL;
ret->naddresses = 0;
#endif
ret->refcount = 1;
return ret;
}
Socket *new_unix_listener(SockAddr *listenaddr, Plug *plug)
{
int s;
union sockaddr_union u;
union sockaddr_union *addr;
int addrlen;
NetSocket *ret;
int retcode;
/*
* Create NetSocket structure.
*/
ret = snew(NetSocket);
ret->sock.vt = &NetSocket_sockvt;
ret->error = NULL;
ret->plug = plug;
bufchain_init(&ret->output_data);
ret->writable = false; /* to start with */
ret->sending_oob = 0;
ret->frozen = false;
ret->localhost_only = true;
ret->pending_error = 0;
ret->parent = ret->child = NULL;
ret->oobpending = false;
ret->outgoingeof = EOF_NO;
ret->incomingeof = false;
ret->listener = true;
ret->addr = listenaddr;
ret->s = -1;
assert(listenaddr->superfamily == UNIX);
/*
* Open socket.
*/
s = socket(AF_UNIX, SOCK_STREAM, 0);
if (s < 0) {
ret->error = strerror(errno);
return &ret->sock;
}
cloexec(s);
ret->oobinline = false;
memset(&u, '\0', sizeof(u));
u.su.sun_family = AF_UNIX;
#if __GNUC__ >= 8
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wstringop-truncation"
#endif // __GNUC__ >= 8
strncpy(u.su.sun_path, listenaddr->hostname, sizeof(u.su.sun_path)-1);
#if __GNUC__ >= 8
# pragma GCC diagnostic pop
#endif // __GNUC__ >= 8
addr = &u;
addrlen = sizeof(u.su);
if (unlink(u.su.sun_path) < 0 && errno != ENOENT) {
close(s);
ret->error = strerror(errno);
return &ret->sock;
}
retcode = bind(s, &addr->sa, addrlen);
if (retcode < 0) {
close(s);
ret->error = strerror(errno);
return &ret->sock;
}
if (listen(s, SOMAXCONN) < 0) {
close(s);
ret->error = strerror(errno);
return &ret->sock;
}
ret->s = s;
uxsel_tell(ret);
add234(sktree, ret);
return &ret->sock;
}