1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/pscp.c

2353 lines
61 KiB
C
Raw Normal View History

/*
* scp.c - Scp (Secure Copy) client for PuTTY.
* Joris van Rantwijk, Simon Tatham
*
* This is mainly based on ssh-1.2.26/scp.c by Timo Rinne & Tatu Ylonen.
* They, in turn, used stuff from BSD rcp.
*
* (SGT, 2001-09-10: Joris van Rantwijk assures me that although
* this file as originally submitted was inspired by, and
* _structurally_ based on, ssh-1.2.26's scp.c, there wasn't any
* actual code duplicated, so the above comment shouldn't give rise
* to licensing issues.)
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <time.h>
#include <assert.h>
#define PUTTY_DO_GLOBALS
#include "putty.h"
#include "psftp.h"
#include "ssh.h"
#include "sftp.h"
#include "storage.h"
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool list = false;
static bool verbose = false;
static bool recursive = false;
static bool preserve = false;
static bool targetshouldbedirectory = false;
static bool statistics = true;
static int prev_stats_len = 0;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool scp_unsafe_mode = false;
static int errs = 0;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool try_scp = true;
static bool try_sftp = true;
static bool main_cmd_is_sftp = false;
static bool fallback_cmd_is_sftp = false;
static bool using_sftp = false;
static bool uploading = false;
static Backend *backend;
Conf *conf;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool sent_eof = false;
static void source(const char *src);
static void rsource(const char *src);
static void sink(const char *targ, const char *src);
const char *const appname = "PSCP";
/*
* The maximum amount of queued data we accept before we stop and
* wait for the server to process some.
*/
#define MAX_SCP_BUFSIZE 16384
void ldisc_echoedit_update(Ldisc *ldisc) { }
static size_t pscp_output(Seat *, bool is_stderr, const void *, size_t);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool pscp_eof(Seat *);
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
static const SeatVtable pscp_seat_vt = {
pscp_output,
pscp_eof,
filexfer_get_userpass_input,
nullseat_notify_remote_exit,
console_connection_fatal,
nullseat_update_specials_menu,
nullseat_get_ttymode,
nullseat_set_busy_status,
console_verify_ssh_host_key,
console_confirm_weak_crypto_primitive,
console_confirm_weak_cached_hostkey,
nullseat_is_never_utf8,
nullseat_echoedit_update,
nullseat_get_x_display,
nullseat_get_windowid,
nullseat_get_window_pixel_size,
console_stripctrl_new,
nullseat_set_trust_status_vacuously,
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
};
static Seat pscp_seat[1] = {{ &pscp_seat_vt }};
static void tell_char(FILE *stream, char c)
{
fputc(c, stream);
}
static void tell_str(FILE *stream, const char *str)
{
unsigned int i;
for (i = 0; i < strlen(str); ++i)
tell_char(stream, str[i]);
}
static void abandon_stats(void)
{
/*
* Output a \n to stdout (which is where we've been sending
* transfer statistics) so that the cursor will move to the next
* line. We should do this before displaying any other kind of
* output like an error message.
*/
if (prev_stats_len) {
putchar('\n');
fflush(stdout);
prev_stats_len = 0;
}
}
static void tell_user(FILE *stream, const char *fmt, ...)
{
char *str, *str2;
va_list ap;
va_start(ap, fmt);
str = dupvprintf(fmt, ap);
va_end(ap);
str2 = dupcat(str, "\n", NULL);
sfree(str);
abandon_stats();
tell_str(stream, str2);
sfree(str2);
}
/*
* In pscp, all agent requests should be synchronous, so this is a
* never-called stub.
*/
void agent_schedule_callback(void (*callback)(void *, void *, int),
void *callback_ctx, void *data, int len)
{
assert(!"We shouldn't be here");
}
/*
* Receive a block of data from the SSH link. Block until all data
* is available.
*
* To do this, we repeatedly call the SSH protocol module, with our
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
* own pscp_output() function to catch the data that comes back. We do
* this until we have enough data.
*/
static bufchain received_data;
static BinarySink *stderr_bs;
static size_t pscp_output(
Seat *seat, bool is_stderr, const void *data, size_t len)
{
/*
* stderr data is just spouted to local stderr (optionally via a
* sanitiser) and otherwise ignored.
*/
if (is_stderr) {
put_data(stderr_bs, data, len);
return 0;
}
bufchain_add(&received_data, data, len);
return 0;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool pscp_eof(Seat *seat)
{
/*
* We usually expect to be the party deciding when to close the
* connection, so if we see EOF before we sent it ourselves, we
* should panic. The exception is if we're using old-style scp and
* downloading rather than uploading.
*/
if ((using_sftp || uploading) && !sent_eof) {
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
seat_connection_fatal(
pscp_seat, "Received unexpected end-of-file from server");
}
return false;
}
static bool ssh_scp_recv(void *vbuf, size_t len)
{
char *buf = (char *)vbuf;
while (len > 0) {
while (bufchain_size(&received_data) == 0) {
if (backend_exitcode(backend) >= 0 ||
ssh_sftp_loop_iteration() < 0)
return false; /* doom */
}
size_t got = bufchain_fetch_consume_up_to(&received_data, buf, len);
buf += got;
len -= got;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
return true;
}
/*
* Loop through the ssh connection and authentication process.
*/
static void ssh_scp_init(void)
{
while (!backend_sendok(backend)) {
if (backend_exitcode(backend) >= 0) {
errs++;
return;
}
if (ssh_sftp_loop_iteration() < 0) {
errs++;
return; /* doom */
}
}
/* Work out which backend we ended up using. */
if (!ssh_fallback_cmd(backend))
using_sftp = main_cmd_is_sftp;
else
using_sftp = fallback_cmd_is_sftp;
if (verbose) {
if (using_sftp)
tell_user(stderr, "Using SFTP");
else
tell_user(stderr, "Using SCP1");
}
}
/*
* Print an error message and exit after closing the SSH link.
*/
static NORETURN void bump(const char *fmt, ...)
{
char *str, *str2;
va_list ap;
va_start(ap, fmt);
str = dupvprintf(fmt, ap);
va_end(ap);
str2 = dupcat(str, "\n", NULL);
sfree(str);
abandon_stats();
tell_str(stderr, str2);
sfree(str2);
errs++;
if (backend && backend_connected(backend)) {
char ch;
backend_special(backend, SS_EOF, 0);
sent_eof = true;
ssh_scp_recv(&ch, 1);
}
cleanup_exit(1);
}
/*
* A nasty loop macro that lets me get an escape-sequence sanitised
* version of a string for display, and free it automatically
* afterwards.
*/
static StripCtrlChars *string_scc;
#define with_stripctrl(varname, input) \
for (char *varname = stripctrl_string(string_scc, input); varname; \
sfree(varname), varname = NULL)
/*
* Wait for the reply to a single SFTP request. Parallels the same
* function in psftp.c (but isn't centralised into sftp.c because the
* latter module handles SFTP only and shouldn't assume that SFTP is
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
* the only thing going on by calling seat_connection_fatal).
*/
struct sftp_packet *sftp_wait_for_reply(struct sftp_request *req)
{
struct sftp_packet *pktin;
struct sftp_request *rreq;
sftp_register(req);
pktin = sftp_recv();
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
if (pktin == NULL) {
seat_connection_fatal(
pscp_seat, "did not receive SFTP response packet from server");
}
rreq = sftp_find_request(pktin);
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
if (rreq != req) {
seat_connection_fatal(
pscp_seat,
"unable to understand SFTP response packet from server: %s",
fxp_error());
}
return pktin;
}
/*
* Open an SSH connection to user@host and execute cmd.
*/
static void do_cmd(char *host, char *user, char *cmd)
{
const char *err;
char *realhost;
LogContext *logctx;
if (host == NULL || host[0] == '\0')
bump("Empty host name");
/*
* Remove a colon suffix.
*/
host[host_strcspn(host, ":")] = '\0';
/*
* If we haven't loaded session details already (e.g., from -load),
* try looking for a session called "host".
*/
if (!loaded_session) {
/* Try to load settings for `host' into a temporary config */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
Conf *conf2 = conf_new();
conf_set_str(conf2, CONF_host, "");
do_defaults(host, conf2);
if (conf_get_str(conf2, CONF_host)[0] != '\0') {
/* Settings present and include hostname */
/* Re-load data into the real config. */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
do_defaults(host, conf);
} else {
/* Session doesn't exist or mention a hostname. */
/* Use `host' as a bare hostname. */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_host, host);
}
conf_free(conf2);
} else {
/* Patch in hostname `host' to session details. */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_host, host);
}
/*
* Force use of SSH. (If they got the protocol wrong we assume the
* port is useless too.)
*/
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
if (conf_get_int(conf, CONF_protocol) != PROT_SSH) {
conf_set_int(conf, CONF_protocol, PROT_SSH);
conf_set_int(conf, CONF_port, 22);
}
/*
* Enact command-line overrides.
*/
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
cmdline_run_saved(conf);
/*
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
* Muck about with the hostname in various ways.
*/
{
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
char *hostbuf = dupstr(conf_get_str(conf, CONF_host));
char *host = hostbuf;
char *p, *q;
/*
* Trim leading whitespace.
*/
host += strspn(host, " \t");
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
/*
* See if host is of the form user@host, and separate out
* the username if so.
*/
if (host[0] != '\0') {
char *atsign = strrchr(host, '@');
if (atsign) {
*atsign = '\0';
conf_set_str(conf, CONF_username, host);
host = atsign + 1;
}
}
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
/*
* Remove any remaining whitespace.
*/
p = hostbuf;
q = host;
while (*q) {
if (*q != ' ' && *q != '\t')
*p++ = *q;
q++;
}
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
*p = '\0';
conf_set_str(conf, CONF_host, hostbuf);
sfree(hostbuf);
}
/* Set username */
if (user != NULL && user[0] != '\0') {
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_username, user);
} else if (conf_get_str(conf, CONF_username)[0] == '\0') {
user = get_username();
if (!user)
bump("Empty user name");
else {
if (verbose)
tell_user(stderr, "Guessing user name: %s", user);
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_username, user);
sfree(user);
}
}
/*
* Disable scary things which shouldn't be enabled for simple
* things like SCP and SFTP: agent forwarding, port forwarding,
* X forwarding.
*/
conf_set_bool(conf, CONF_x11_forward, false);
conf_set_bool(conf, CONF_agentfwd, false);
conf_set_bool(conf, CONF_ssh_simple, true);
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
{
char *key;
while ((key = conf_get_str_nthstrkey(conf, CONF_portfwd, 0)) != NULL)
conf_del_str_str(conf, CONF_portfwd, key);
}
/*
* Set up main and possibly fallback command depending on
* options specified by user.
* Attempt to start the SFTP subsystem as a first choice,
* falling back to the provided scp command if that fails.
*/
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_remote_cmd2, "");
if (try_sftp) {
/* First choice is SFTP subsystem. */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
main_cmd_is_sftp = true;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_remote_cmd, "sftp");
conf_set_bool(conf, CONF_ssh_subsys, true);
if (try_scp) {
/* Fallback is to use the provided scp command. */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
fallback_cmd_is_sftp = false;
conf_set_str(conf, CONF_remote_cmd2, cmd);
conf_set_bool(conf, CONF_ssh_subsys2, false);
} else {
/* Since we're not going to try SCP, we may as well try
* harder to find an SFTP server, since in the current
* implementation we have a spare slot. */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
fallback_cmd_is_sftp = true;
/* see psftp.c for full explanation of this kludge */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_remote_cmd2,
"test -x /usr/lib/sftp-server &&"
" exec /usr/lib/sftp-server\n"
"test -x /usr/local/lib/sftp-server &&"
" exec /usr/local/lib/sftp-server\n"
"exec sftp-server");
conf_set_bool(conf, CONF_ssh_subsys2, false);
}
} else {
/* Don't try SFTP at all; just try the scp command. */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
main_cmd_is_sftp = false;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf_set_str(conf, CONF_remote_cmd, cmd);
conf_set_bool(conf, CONF_ssh_subsys, false);
}
conf_set_bool(conf, CONF_nopty, true);
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
logctx = log_init(default_logpolicy, conf);
platform_psftp_pre_conn_setup();
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
err = backend_init(&ssh_backend, pscp_seat, &backend, logctx, conf,
conf_get_str(conf, CONF_host),
conf_get_int(conf, CONF_port),
&realhost, 0,
conf_get_bool(conf, CONF_tcp_keepalives));
if (err != NULL)
bump("ssh_init: %s", err);
ssh_scp_init();
if (verbose && realhost != NULL && errs == 0)
tell_user(stderr, "Connected to %s", realhost);
sfree(realhost);
}
/*
* Update statistic information about current file.
*/
static void print_stats(const char *name, uint64_t size, uint64_t done,
time_t start, time_t now)
{
float ratebs;
unsigned long eta;
char *etastr;
int pct;
int len;
int elap;
elap = (unsigned long) difftime(now, start);
if (now > start)
ratebs = (float)done / elap;
else
ratebs = (float)done;
if (ratebs < 1.0)
eta = size - done;
else
eta = (unsigned long)((size - done) / ratebs);
etastr = dupprintf("%02ld:%02ld:%02ld",
eta / 3600, (eta % 3600) / 60, eta % 60);
pct = (int) (100.0 * done / size);
{
/* divide by 1024 to provide kB */
len = printf("\r%-25.25s | %"PRIu64" kB | %5.1f kB/s | "
"ETA: %8s | %3d%%", name, done >> 10,
ratebs / 1024.0, etastr, pct);
if (len < prev_stats_len)
printf("%*s", prev_stats_len - len, "");
prev_stats_len = len;
if (done == size)
abandon_stats();
fflush(stdout);
}
free(etastr);
}
/*
* Find a colon in str and return a pointer to the colon.
* This is used to separate hostname from filename.
*/
static char *colon(char *str)
{
/* We ignore a leading colon, since the hostname cannot be
empty. We also ignore a colon as second character because
of filenames like f:myfile.txt. */
if (str[0] == '\0' || str[0] == ':' ||
(str[0] != '[' && str[1] == ':'))
return (NULL);
str += host_strcspn(str, ":/\\");
if (*str == ':')
return (str);
else
return (NULL);
}
/*
* Determine whether a string is entirely composed of dots.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool is_dots(char *str)
{
return str[strspn(str, ".")] == '\0';
}
/*
* Wait for a response from the other side.
* Return 0 if ok, -1 if error.
*/
static int response(void)
{
char ch, resp, rbuf[2048];
int p;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
if (!ssh_scp_recv(&resp, 1))
bump("Lost connection");
p = 0;
switch (resp) {
case 0: /* ok */
return (0);
default:
rbuf[p++] = resp;
/* fallthrough */
case 1: /* error */
case 2: /* fatal error */
do {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
if (!ssh_scp_recv(&ch, 1))
bump("Protocol error: Lost connection");
rbuf[p++] = ch;
} while (p < sizeof(rbuf) && ch != '\n');
rbuf[p - 1] = '\0';
if (resp == 1)
tell_user(stderr, "%s", rbuf);
else
bump("%s", rbuf);
errs++;
return (-1);
}
}
bool sftp_recvdata(char *buf, size_t len)
{
return ssh_scp_recv(buf, len);
}
bool sftp_senddata(const char *buf, size_t len)
{
backend_send(backend, buf, len);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
return true;
}
size_t sftp_sendbuffer(void)
{
return backend_sendbuffer(backend);
}
/* ----------------------------------------------------------------------
* sftp-based replacement for the hacky `pscp -ls'.
*/
void list_directory_from_sftp_warn_unsorted(void)
{
fprintf(stderr,
"Directory is too large to sort; writing file names unsorted\n");
}
void list_directory_from_sftp_print(struct fxp_name *name)
{
with_stripctrl(san, name->longname)
printf("%s\n", san);
}
void scp_sftp_listdir(const char *dirname)
{
struct fxp_handle *dirh;
struct fxp_names *names;
struct sftp_packet *pktin;
struct sftp_request *req;
if (!fxp_init()) {
tell_user(stderr, "unable to initialise SFTP: %s", fxp_error());
errs++;
return;
}
printf("Listing directory %s\n", dirname);
req = fxp_opendir_send(dirname);
pktin = sftp_wait_for_reply(req);
dirh = fxp_opendir_recv(pktin, req);
if (dirh == NULL) {
tell_user(stderr, "Unable to open %s: %s\n", dirname, fxp_error());
errs++;
} else {
struct list_directory_from_sftp_ctx *ctx =
list_directory_from_sftp_new();
while (1) {
req = fxp_readdir_send(dirh);
pktin = sftp_wait_for_reply(req);
names = fxp_readdir_recv(pktin, req);
if (names == NULL) {
if (fxp_error_type() == SSH_FX_EOF)
break;
printf("Reading directory %s: %s\n", dirname, fxp_error());
break;
}
if (names->nnames == 0) {
fxp_free_names(names);
break;
}
for (size_t i = 0; i < names->nnames; i++)
list_directory_from_sftp_feed(ctx, &names->names[i]);
fxp_free_names(names);
}
req = fxp_close_send(dirh);
pktin = sftp_wait_for_reply(req);
fxp_close_recv(pktin, req);
list_directory_from_sftp_finish(ctx);
list_directory_from_sftp_free(ctx);
}
}
/* ----------------------------------------------------------------------
* Helper routines that contain the actual SCP protocol elements,
* implemented both as SCP1 and SFTP.
*/
static struct scp_sftp_dirstack {
struct scp_sftp_dirstack *next;
struct fxp_name *names;
int namepos, namelen;
char *dirpath;
char *wildcard;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool matched_something; /* wildcard match set was non-empty */
} *scp_sftp_dirstack_head;
static char *scp_sftp_remotepath, *scp_sftp_currentname;
static char *scp_sftp_wildcard;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool scp_sftp_targetisdir, scp_sftp_donethistarget;
static bool scp_sftp_preserve, scp_sftp_recursive;
static unsigned long scp_sftp_mtime, scp_sftp_atime;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool scp_has_times;
static struct fxp_handle *scp_sftp_filehandle;
static struct fxp_xfer *scp_sftp_xfer;
static uint64_t scp_sftp_fileoffset;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
int scp_source_setup(const char *target, bool shouldbedir)
{
if (using_sftp) {
/*
* Find out whether the target filespec is in fact a
* directory.
*/
struct sftp_packet *pktin;
struct sftp_request *req;
struct fxp_attrs attrs;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ret;
if (!fxp_init()) {
tell_user(stderr, "unable to initialise SFTP: %s", fxp_error());
errs++;
return 1;
}
req = fxp_stat_send(target);
pktin = sftp_wait_for_reply(req);
ret = fxp_stat_recv(pktin, req, &attrs);
if (!ret || !(attrs.flags & SSH_FILEXFER_ATTR_PERMISSIONS))
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_sftp_targetisdir = false;
else
scp_sftp_targetisdir = (attrs.permissions & 0040000) != 0;
if (shouldbedir && !scp_sftp_targetisdir) {
bump("pscp: remote filespec %s: not a directory\n", target);
}
scp_sftp_remotepath = dupstr(target);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_has_times = false;
} else {
(void) response();
}
return 0;
}
int scp_send_errmsg(char *str)
{
if (using_sftp) {
/* do nothing; we never need to send our errors to the server */
} else {
backend_send(backend, "\001", 1);/* scp protocol error prefix */
backend_send(backend, str, strlen(str));
}
return 0; /* can't fail */
}
int scp_send_filetimes(unsigned long mtime, unsigned long atime)
{
if (using_sftp) {
scp_sftp_mtime = mtime;
scp_sftp_atime = atime;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_has_times = true;
return 0;
} else {
char buf[80];
sprintf(buf, "T%lu 0 %lu 0\n", mtime, atime);
backend_send(backend, buf, strlen(buf));
return response();
}
}
int scp_send_filename(const char *name, uint64_t size, int permissions)
{
if (using_sftp) {
char *fullname;
struct sftp_packet *pktin;
struct sftp_request *req;
struct fxp_attrs attrs;
if (scp_sftp_targetisdir) {
fullname = dupcat(scp_sftp_remotepath, "/", name, NULL);
} else {
fullname = dupstr(scp_sftp_remotepath);
}
attrs.flags = 0;
PUT_PERMISSIONS(attrs, permissions);
req = fxp_open_send(fullname,
SSH_FXF_WRITE | SSH_FXF_CREAT | SSH_FXF_TRUNC,
&attrs);
pktin = sftp_wait_for_reply(req);
scp_sftp_filehandle = fxp_open_recv(pktin, req);
if (!scp_sftp_filehandle) {
tell_user(stderr, "pscp: unable to open %s: %s",
fullname, fxp_error());
sfree(fullname);
errs++;
return 1;
}
scp_sftp_fileoffset = 0;
scp_sftp_xfer = xfer_upload_init(scp_sftp_filehandle,
scp_sftp_fileoffset);
sfree(fullname);
return 0;
} else {
char *buf;
if (permissions < 0)
permissions = 0644;
buf = dupprintf("C%04o %"PRIu64" ", (int)(permissions & 07777), size);
backend_send(backend, buf, strlen(buf));
sfree(buf);
backend_send(backend, name, strlen(name));
backend_send(backend, "\n", 1);
return response();
}
}
int scp_send_filedata(char *data, int len)
{
if (using_sftp) {
int ret;
struct sftp_packet *pktin;
if (!scp_sftp_filehandle) {
return 1;
}
while (!xfer_upload_ready(scp_sftp_xfer)) {
pktin = sftp_recv();
ret = xfer_upload_gotpkt(scp_sftp_xfer, pktin);
if (ret <= 0) {
tell_user(stderr, "error while writing: %s", fxp_error());
if (ret == INT_MIN) /* pktin not even freed */
sfree(pktin);
errs++;
return 1;
}
}
xfer_upload_data(scp_sftp_xfer, data, len);
scp_sftp_fileoffset += len;
return 0;
} else {
int bufsize = backend_send(backend, data, len);
/*
* If the network transfer is backing up - that is, the
* remote site is not accepting data as fast as we can
* produce it - then we must loop on network events until
* we have space in the buffer again.
*/
while (bufsize > MAX_SCP_BUFSIZE) {
if (ssh_sftp_loop_iteration() < 0)
return 1;
bufsize = backend_sendbuffer(backend);
}
return 0;
}
}
int scp_send_finish(void)
{
if (using_sftp) {
struct fxp_attrs attrs;
struct sftp_packet *pktin;
struct sftp_request *req;
while (!xfer_done(scp_sftp_xfer)) {
pktin = sftp_recv();
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
int ret = xfer_upload_gotpkt(scp_sftp_xfer, pktin);
if (ret <= 0) {
tell_user(stderr, "error while writing: %s", fxp_error());
if (ret == INT_MIN) /* pktin not even freed */
sfree(pktin);
errs++;
return 1;
}
}
xfer_cleanup(scp_sftp_xfer);
if (!scp_sftp_filehandle) {
return 1;
}
if (scp_has_times) {
attrs.flags = SSH_FILEXFER_ATTR_ACMODTIME;
attrs.atime = scp_sftp_atime;
attrs.mtime = scp_sftp_mtime;
req = fxp_fsetstat_send(scp_sftp_filehandle, attrs);
pktin = sftp_wait_for_reply(req);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ret = fxp_fsetstat_recv(pktin, req);
if (!ret) {
tell_user(stderr, "unable to set file times: %s", fxp_error());
errs++;
}
}
req = fxp_close_send(scp_sftp_filehandle);
pktin = sftp_wait_for_reply(req);
fxp_close_recv(pktin, req);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_has_times = false;
return 0;
} else {
backend_send(backend, "", 1);
return response();
}
}
char *scp_save_remotepath(void)
{
if (using_sftp)
return scp_sftp_remotepath;
else
return NULL;
}
void scp_restore_remotepath(char *data)
{
if (using_sftp)
scp_sftp_remotepath = data;
}
int scp_send_dirname(const char *name, int modes)
{
if (using_sftp) {
char *fullname;
char const *err;
struct fxp_attrs attrs;
struct sftp_packet *pktin;
struct sftp_request *req;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ret;
if (scp_sftp_targetisdir) {
fullname = dupcat(scp_sftp_remotepath, "/", name, NULL);
} else {
fullname = dupstr(scp_sftp_remotepath);
}
/*
* We don't worry about whether we managed to create the
* directory, because if it exists already it's OK just to
* use it. Instead, we will stat it afterwards, and if it
* exists and is a directory we will assume we were either
* successful or it didn't matter.
*/
req = fxp_mkdir_send(fullname, NULL);
pktin = sftp_wait_for_reply(req);
ret = fxp_mkdir_recv(pktin, req);
if (!ret)
err = fxp_error();
else
err = "server reported no error";
req = fxp_stat_send(fullname);
pktin = sftp_wait_for_reply(req);
ret = fxp_stat_recv(pktin, req, &attrs);
if (!ret || !(attrs.flags & SSH_FILEXFER_ATTR_PERMISSIONS) ||
!(attrs.permissions & 0040000)) {
tell_user(stderr, "unable to create directory %s: %s",
fullname, err);
sfree(fullname);
errs++;
return 1;
}
scp_sftp_remotepath = fullname;
return 0;
} else {
char buf[40];
sprintf(buf, "D%04o 0 ", modes);
backend_send(backend, buf, strlen(buf));
backend_send(backend, name, strlen(name));
backend_send(backend, "\n", 1);
return response();
}
}
int scp_send_enddir(void)
{
if (using_sftp) {
sfree(scp_sftp_remotepath);
return 0;
} else {
backend_send(backend, "E\n", 2);
return response();
}
}
/*
* Yes, I know; I have an scp_sink_setup _and_ an scp_sink_init.
* That's bad. The difference is that scp_sink_setup is called once
* right at the start, whereas scp_sink_init is called to
* initialise every level of recursion in the protocol.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
int scp_sink_setup(const char *source, bool preserve, bool recursive)
{
if (using_sftp) {
char *newsource;
if (!fxp_init()) {
tell_user(stderr, "unable to initialise SFTP: %s", fxp_error());
errs++;
return 1;
}
/*
* It's possible that the source string we've been given
* contains a wildcard. If so, we must split the directory
* away from the wildcard itself (throwing an error if any
* wildcardness comes before the final slash) and arrange
* things so that a dirstack entry will be set up.
*/
newsource = snewn(1+strlen(source), char);
if (!wc_unescape(newsource, source)) {
/* Yes, here we go; it's a wildcard. Bah. */
char *dupsource, *lastpart, *dirpart, *wildcard;
sfree(newsource);
dupsource = dupstr(source);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
lastpart = stripslashes(dupsource, false);
wildcard = dupstr(lastpart);
*lastpart = '\0';
if (*dupsource && dupsource[1]) {
/*
* The remains of dupsource are at least two
* characters long, meaning the pathname wasn't
* empty or just `/'. Hence, we remove the trailing
* slash.
*/
lastpart[-1] = '\0';
} else if (!*dupsource) {
/*
* The remains of dupsource are _empty_ - the whole
* pathname was a wildcard. Hence we need to
* replace it with ".".
*/
sfree(dupsource);
dupsource = dupstr(".");
}
/*
* Now we have separated our string into dupsource (the
* directory part) and wildcard. Both of these will
* need freeing at some point. Next step is to remove
* wildcard escapes from the directory part, throwing
* an error if it contains a real wildcard.
*/
dirpart = snewn(1+strlen(dupsource), char);
if (!wc_unescape(dirpart, dupsource)) {
tell_user(stderr, "%s: multiple-level wildcards unsupported",
source);
errs++;
sfree(dirpart);
sfree(wildcard);
sfree(dupsource);
return 1;
}
/*
* Now we have dirpart (unescaped, ie a valid remote
* path), and wildcard (a wildcard). This will be
* sufficient to arrange a dirstack entry.
*/
scp_sftp_remotepath = dirpart;
scp_sftp_wildcard = wildcard;
sfree(dupsource);
} else {
scp_sftp_remotepath = newsource;
scp_sftp_wildcard = NULL;
}
scp_sftp_preserve = preserve;
scp_sftp_recursive = recursive;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_sftp_donethistarget = false;
scp_sftp_dirstack_head = NULL;
}
return 0;
}
int scp_sink_init(void)
{
if (!using_sftp) {
backend_send(backend, "", 1);
}
return 0;
}
#define SCP_SINK_FILE 1
#define SCP_SINK_DIR 2
#define SCP_SINK_ENDDIR 3
#define SCP_SINK_RETRY 4 /* not an action; just try again */
struct scp_sink_action {
int action; /* FILE, DIR, ENDDIR */
strbuf *buf; /* will need freeing after use */
char *name; /* filename or dirname (not ENDDIR) */
long permissions; /* access permissions (not ENDDIR) */
uint64_t size; /* file size (not ENDDIR) */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool settime; /* true if atime and mtime are filled */
unsigned long atime, mtime; /* access times for the file */
};
int scp_get_sink_action(struct scp_sink_action *act)
{
if (using_sftp) {
char *fname;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool must_free_fname;
struct fxp_attrs attrs;
struct sftp_packet *pktin;
struct sftp_request *req;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ret;
if (!scp_sftp_dirstack_head) {
if (!scp_sftp_donethistarget) {
/*
* Simple case: we are only dealing with one file.
*/
fname = scp_sftp_remotepath;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
must_free_fname = false;
scp_sftp_donethistarget = true;
} else {
/*
* Even simpler case: one file _which we've done_.
* Return 1 (finished).
*/
return 1;
}
} else {
/*
* We're now in the middle of stepping through a list
* of names returned from fxp_readdir(); so let's carry
* on.
*/
struct scp_sftp_dirstack *head = scp_sftp_dirstack_head;
while (head->namepos < head->namelen &&
(is_dots(head->names[head->namepos].filename) ||
(head->wildcard &&
!wc_match(head->wildcard,
head->names[head->namepos].filename))))
head->namepos++; /* skip . and .. */
if (head->namepos < head->namelen) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
head->matched_something = true;
fname = dupcat(head->dirpath, "/",
head->names[head->namepos++].filename,
NULL);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
must_free_fname = true;
} else {
/*
* We've come to the end of the list; pop it off
* the stack and return an ENDDIR action (or RETRY
* if this was a wildcard match).
*/
if (head->wildcard) {
act->action = SCP_SINK_RETRY;
if (!head->matched_something) {
tell_user(stderr, "pscp: wildcard '%s' matched "
"no files", head->wildcard);
errs++;
}
sfree(head->wildcard);
} else {
act->action = SCP_SINK_ENDDIR;
}
sfree(head->dirpath);
sfree(head->names);
scp_sftp_dirstack_head = head->next;
sfree(head);
return 0;
}
}
/*
* Now we have a filename. Stat it, and see if it's a file
* or a directory.
*/
req = fxp_stat_send(fname);
pktin = sftp_wait_for_reply(req);
ret = fxp_stat_recv(pktin, req, &attrs);
if (!ret || !(attrs.flags & SSH_FILEXFER_ATTR_PERMISSIONS)) {
with_stripctrl(san, fname)
tell_user(stderr, "unable to identify %s: %s", san,
ret ? "file type not supplied" : fxp_error());
if (must_free_fname) sfree(fname);
errs++;
return 1;
}
if (attrs.permissions & 0040000) {
struct scp_sftp_dirstack *newitem;
struct fxp_handle *dirhandle;
size_t nnames, namesize;
struct fxp_name *ournames;
struct fxp_names *names;
/*
* It's a directory. If we're not in recursive mode,
* this merits a complaint (which is fatal if the name
* was specified directly, but not if it was matched by
* a wildcard).
*
* We skip this complaint completely if
* scp_sftp_wildcard is set, because that's an
* indication that we're not actually supposed to
* _recursively_ transfer the dir, just scan it for
* things matching the wildcard.
*/
if (!scp_sftp_recursive && !scp_sftp_wildcard) {
with_stripctrl(san, fname)
tell_user(stderr, "pscp: %s: is a directory", san);
errs++;
if (must_free_fname) sfree(fname);
if (scp_sftp_dirstack_head) {
act->action = SCP_SINK_RETRY;
return 0;
} else {
return 1;
}
}
/*
* Otherwise, the fun begins. We must fxp_opendir() the
* directory, slurp the filenames into memory, return
* SCP_SINK_DIR (unless this is a wildcard match), and
* set targetisdir. The next time we're called, we will
* run through the list of filenames one by one,
* matching them against a wildcard if present.
*
* If targetisdir is _already_ set (meaning we're
* already in the middle of going through another such
* list), we must push the other (target,namelist) pair
* on a stack.
*/
req = fxp_opendir_send(fname);
pktin = sftp_wait_for_reply(req);
dirhandle = fxp_opendir_recv(pktin, req);
if (!dirhandle) {
with_stripctrl(san, fname)
tell_user(stderr, "pscp: unable to open directory %s: %s",
san, fxp_error());
if (must_free_fname) sfree(fname);
errs++;
return 1;
}
nnames = namesize = 0;
ournames = NULL;
while (1) {
int i;
req = fxp_readdir_send(dirhandle);
pktin = sftp_wait_for_reply(req);
names = fxp_readdir_recv(pktin, req);
if (names == NULL) {
if (fxp_error_type() == SSH_FX_EOF)
break;
with_stripctrl(san, fname)
tell_user(stderr, "pscp: reading directory %s: %s",
san, fxp_error());
req = fxp_close_send(dirhandle);
pktin = sftp_wait_for_reply(req);
fxp_close_recv(pktin, req);
if (must_free_fname) sfree(fname);
sfree(ournames);
errs++;
return 1;
}
if (names->nnames == 0) {
fxp_free_names(names);
break;
}
sgrowarrayn(ournames, namesize, nnames, names->nnames);
for (i = 0; i < names->nnames; i++) {
if (!strcmp(names->names[i].filename, ".") ||
!strcmp(names->names[i].filename, "..")) {
/*
* . and .. are normal consequences of
* reading a directory, and aren't worth
* complaining about.
*/
} else if (!vet_filename(names->names[i].filename)) {
with_stripctrl(san, names->names[i].filename)
tell_user(stderr, "ignoring potentially dangerous "
"server-supplied filename '%s'", san);
} else
ournames[nnames++] = names->names[i];
}
names->nnames = 0; /* prevent free_names */
fxp_free_names(names);
}
req = fxp_close_send(dirhandle);
pktin = sftp_wait_for_reply(req);
fxp_close_recv(pktin, req);
newitem = snew(struct scp_sftp_dirstack);
newitem->next = scp_sftp_dirstack_head;
newitem->names = ournames;
newitem->namepos = 0;
newitem->namelen = nnames;
if (must_free_fname)
newitem->dirpath = fname;
else
newitem->dirpath = dupstr(fname);
if (scp_sftp_wildcard) {
newitem->wildcard = scp_sftp_wildcard;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
newitem->matched_something = false;
scp_sftp_wildcard = NULL;
} else {
newitem->wildcard = NULL;
}
scp_sftp_dirstack_head = newitem;
if (newitem->wildcard) {
act->action = SCP_SINK_RETRY;
} else {
act->action = SCP_SINK_DIR;
act->buf->len = 0;
put_asciz(act->buf, stripslashes(fname, false));
act->name = act->buf->s;
act->size = 0; /* duhh, it's a directory */
act->permissions = 07777 & attrs.permissions;
if (scp_sftp_preserve &&
(attrs.flags & SSH_FILEXFER_ATTR_ACMODTIME)) {
act->atime = attrs.atime;
act->mtime = attrs.mtime;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = true;
} else
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = false;
}
return 0;
} else {
/*
* It's a file. Return SCP_SINK_FILE.
*/
act->action = SCP_SINK_FILE;
act->buf->len = 0;
put_asciz(act->buf, stripslashes(fname, false));
act->name = act->buf->s;
if (attrs.flags & SSH_FILEXFER_ATTR_SIZE) {
act->size = attrs.size;
} else
act->size = UINT64_MAX; /* no idea */
act->permissions = 07777 & attrs.permissions;
if (scp_sftp_preserve &&
(attrs.flags & SSH_FILEXFER_ATTR_ACMODTIME)) {
act->atime = attrs.atime;
act->mtime = attrs.mtime;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = true;
} else
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = false;
if (must_free_fname)
scp_sftp_currentname = fname;
else
scp_sftp_currentname = dupstr(fname);
return 0;
}
} else {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool done = false;
int action;
char ch;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = false;
act->buf->len = 0;
while (!done) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
if (!ssh_scp_recv(&ch, 1))
return 1;
if (ch == '\n')
bump("Protocol error: Unexpected newline");
action = ch;
while (1) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
if (!ssh_scp_recv(&ch, 1))
bump("Lost connection");
if (ch == '\n')
break;
put_byte(act->buf, ch);
}
switch (action) {
case '\01': /* error */
with_stripctrl(san, act->buf->s)
tell_user(stderr, "%s", san);
errs++;
continue; /* go round again */
case '\02': /* fatal error */
with_stripctrl(san, act->buf->s)
bump("%s", san);
case 'E':
backend_send(backend, "", 1);
act->action = SCP_SINK_ENDDIR;
return 0;
case 'T':
if (sscanf(act->buf->s, "%lu %*d %lu %*d",
&act->mtime, &act->atime) == 2) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
act->settime = true;
backend_send(backend, "", 1);
act->buf->len = 0;
continue; /* go round again */
}
bump("Protocol error: Illegal time format");
case 'C':
case 'D':
act->action = (action == 'C' ? SCP_SINK_FILE : SCP_SINK_DIR);
if (act->action == SCP_SINK_DIR && !recursive) {
bump("security violation: remote host attempted to create "
"a subdirectory in a non-recursive copy!");
}
break;
default:
bump("Protocol error: Expected control record");
}
/*
* We will go round this loop only once, unless we hit
* `continue' above.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
done = true;
}
/*
* If we get here, we must have seen SCP_SINK_FILE or
* SCP_SINK_DIR.
*/
{
int i;
if (sscanf(act->buf->s, "%lo %"SCNu64" %n", &act->permissions,
&act->size, &i) != 2)
bump("Protocol error: Illegal file descriptor format");
act->name = act->buf->s + i;
return 0;
}
}
}
int scp_accept_filexfer(void)
{
if (using_sftp) {
struct sftp_packet *pktin;
struct sftp_request *req;
req = fxp_open_send(scp_sftp_currentname, SSH_FXF_READ, NULL);
pktin = sftp_wait_for_reply(req);
scp_sftp_filehandle = fxp_open_recv(pktin, req);
if (!scp_sftp_filehandle) {
with_stripctrl(san, scp_sftp_currentname)
tell_user(stderr, "pscp: unable to open %s: %s",
san, fxp_error());
errs++;
return 1;
}
scp_sftp_fileoffset = 0;
scp_sftp_xfer = xfer_download_init(scp_sftp_filehandle,
scp_sftp_fileoffset);
sfree(scp_sftp_currentname);
return 0;
} else {
backend_send(backend, "", 1);
return 0; /* can't fail */
}
}
int scp_recv_filedata(char *data, int len)
{
if (using_sftp) {
struct sftp_packet *pktin;
int ret, actuallen;
void *vbuf;
xfer_download_queue(scp_sftp_xfer);
pktin = sftp_recv();
ret = xfer_download_gotpkt(scp_sftp_xfer, pktin);
if (ret <= 0) {
tell_user(stderr, "pscp: error while reading: %s", fxp_error());
if (ret == INT_MIN) /* pktin not even freed */
sfree(pktin);
errs++;
return -1;
}
if (xfer_download_data(scp_sftp_xfer, &vbuf, &actuallen)) {
if (actuallen <= 0) {
tell_user(stderr, "pscp: end of file while reading");
errs++;
sfree(vbuf);
return -1;
}
/*
* This assertion relies on the fact that the natural
* block size used in the xfer manager is at most that
* used in this module. I don't like crossing layers in
* this way, but it'll do for now.
*/
assert(actuallen <= len);
memcpy(data, vbuf, actuallen);
sfree(vbuf);
} else
actuallen = 0;
scp_sftp_fileoffset += actuallen;
return actuallen;
} else {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
return ssh_scp_recv(data, len) ? len : 0;
}
}
int scp_finish_filerecv(void)
{
if (using_sftp) {
struct sftp_packet *pktin;
struct sftp_request *req;
/*
* Ensure that xfer_done() will work correctly, so we can
* clean up any outstanding requests from the file
* transfer.
*/
xfer_set_error(scp_sftp_xfer);
while (!xfer_done(scp_sftp_xfer)) {
void *vbuf;
int ret, len;
pktin = sftp_recv();
ret = xfer_download_gotpkt(scp_sftp_xfer, pktin);
if (ret <= 0) {
tell_user(stderr, "pscp: error while reading: %s", fxp_error());
if (ret == INT_MIN) /* pktin not even freed */
sfree(pktin);
errs++;
return -1;
}
if (xfer_download_data(scp_sftp_xfer, &vbuf, &len))
sfree(vbuf);
}
xfer_cleanup(scp_sftp_xfer);
req = fxp_close_send(scp_sftp_filehandle);
pktin = sftp_wait_for_reply(req);
fxp_close_recv(pktin, req);
return 0;
} else {
backend_send(backend, "", 1);
return response();
}
}
/* ----------------------------------------------------------------------
* Send an error message to the other side and to the screen.
* Increment error counter.
*/
static void run_err(const char *fmt, ...)
{
char *str, *str2;
va_list ap;
va_start(ap, fmt);
errs++;
str = dupvprintf(fmt, ap);
str2 = dupcat("pscp: ", str, "\n", NULL);
sfree(str);
scp_send_errmsg(str2);
abandon_stats();
tell_user(stderr, "%s", str2);
va_end(ap);
sfree(str2);
}
/*
* Execute the source part of the SCP protocol.
*/
static void source(const char *src)
{
uint64_t size;
unsigned long mtime, atime;
long permissions;
const char *last;
RFile *f;
int attr;
uint64_t i;
uint64_t stat_bytes;
time_t stat_starttime, stat_lasttime;
attr = file_type(src);
if (attr == FILE_TYPE_NONEXISTENT ||
attr == FILE_TYPE_WEIRD) {
run_err("%s: %s file or directory", src,
(attr == FILE_TYPE_WEIRD ? "Not a" : "No such"));
return;
}
if (attr == FILE_TYPE_DIRECTORY) {
if (recursive) {
/*
* Avoid . and .. directories.
*/
const char *p;
p = strrchr(src, '/');
if (!p)
p = strrchr(src, '\\');
if (!p)
p = src;
else
p++;
if (!strcmp(p, ".") || !strcmp(p, ".."))
/* skip . and .. */ ;
else
rsource(src);
} else {
run_err("%s: not a regular file", src);
}
return;
}
if ((last = strrchr(src, '/')) == NULL)
last = src;
else
last++;
if (strrchr(last, '\\') != NULL)
last = strrchr(last, '\\') + 1;
if (last == src && strchr(src, ':') != NULL)
last = strchr(src, ':') + 1;
f = open_existing_file(src, &size, &mtime, &atime, &permissions);
if (f == NULL) {
run_err("%s: Cannot open file", src);
return;
}
if (preserve) {
if (scp_send_filetimes(mtime, atime)) {
close_rfile(f);
return;
}
}
if (verbose) {
tell_user(stderr, "Sending file %s, size=%"PRIu64, last, size);
}
if (scp_send_filename(last, size, permissions)) {
close_rfile(f);
return;
}
stat_bytes = 0;
stat_starttime = time(NULL);
stat_lasttime = 0;
#define PSCP_SEND_BLOCK 4096
for (i = 0; i < size; i += PSCP_SEND_BLOCK) {
char transbuf[PSCP_SEND_BLOCK];
int j, k = PSCP_SEND_BLOCK;
if (i + k > size)
k = size - i;
if ((j = read_from_file(f, transbuf, k)) != k) {
bump("%s: Read error", src);
}
if (scp_send_filedata(transbuf, k))
bump("%s: Network error occurred", src);
if (statistics) {
stat_bytes += k;
if (time(NULL) != stat_lasttime || i + k == size) {
stat_lasttime = time(NULL);
print_stats(last, size, stat_bytes,
stat_starttime, stat_lasttime);
}
}
}
close_rfile(f);
(void) scp_send_finish();
}
/*
* Recursively send the contents of a directory.
*/
static void rsource(const char *src)
{
const char *last;
char *save_target;
DirHandle *dir;
if ((last = strrchr(src, '/')) == NULL)
last = src;
else
last++;
if (strrchr(last, '\\') != NULL)
last = strrchr(last, '\\') + 1;
if (last == src && strchr(src, ':') != NULL)
last = strchr(src, ':') + 1;
/* maybe send filetime */
save_target = scp_save_remotepath();
if (verbose)
tell_user(stderr, "Entering directory: %s", last);
if (scp_send_dirname(last, 0755))
return;
const char *opendir_err;
dir = open_directory(src, &opendir_err);
if (dir != NULL) {
char *filename;
while ((filename = read_filename(dir)) != NULL) {
char *foundfile = dupcat(src, "/", filename, NULL);
source(foundfile);
sfree(foundfile);
sfree(filename);
}
close_directory(dir);
} else {
tell_user(stderr, "Error opening directory %s: %s", src, opendir_err);
}
(void) scp_send_enddir();
scp_restore_remotepath(save_target);
}
/*
* Execute the sink part of the SCP protocol.
*/
static void sink(const char *targ, const char *src)
{
char *destfname;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool targisdir = false;
bool exists;
int attr;
WFile *f;
uint64_t received;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool wrerror = false;
uint64_t stat_bytes;
time_t stat_starttime, stat_lasttime;
char *stat_name;
attr = file_type(targ);
if (attr == FILE_TYPE_DIRECTORY)
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
targisdir = true;
if (targetshouldbedirectory && !targisdir)
bump("%s: Not a directory", targ);
scp_sink_init();
struct scp_sink_action act;
act.buf = strbuf_new();
while (1) {
if (scp_get_sink_action(&act))
goto out;
if (act.action == SCP_SINK_ENDDIR)
goto out;
if (act.action == SCP_SINK_RETRY)
continue;
if (targisdir) {
/*
* Prevent the remote side from maliciously writing to
* files outside the target area by sending a filename
* containing `../'. In fact, it shouldn't be sending
* filenames with any slashes or colons in at all; so
* we'll find the last slash, backslash or colon in the
* filename and use only the part after that. (And
* warn!)
*
* In addition, we also ensure here that if we're
* copying a single file and the target is a directory
* (common usage: `pscp host:filename .') the remote
* can't send us a _different_ file name. We can
* distinguish this case because `src' will be non-NULL
* and the last component of that will fail to match
* (the last component of) the name sent.
*
* Well, not always; if `src' is a wildcard, we do
* expect to get back filenames that don't correspond
* exactly to it. Ideally in this case, we would like
* to ensure that the returned filename actually
* matches the wildcard pattern - but one of SCP's
* protocol infelicities is that wildcard matching is
* done at the server end _by the server's rules_ and
* so in general this is infeasible. Hence, we only
* accept filenames that don't correspond to `src' if
* unsafe mode is enabled or we are using SFTP (which
* resolves remote wildcards on the client side and can
* be trusted).
*/
char *striptarget, *stripsrc;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
striptarget = stripslashes(act.name, true);
if (striptarget != act.name) {
with_stripctrl(sanname, act.name) {
with_stripctrl(santarg, act.name) {
tell_user(stderr, "warning: remote host sent a"
" compound pathname '%s'", sanname);
tell_user(stderr, " renaming local",
" file to '%s'", santarg);
}
}
}
/*
* Also check to see if the target filename is '.' or
* '..', or indeed '...' and so on because Windows
* appears to interpret those like '..'.
*/
if (is_dots(striptarget)) {
bump("security violation: remote host attempted to write to"
" a '.' or '..' path!");
}
if (src) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
stripsrc = stripslashes(src, true);
if (strcmp(striptarget, stripsrc) &&
!using_sftp && !scp_unsafe_mode) {
with_stripctrl(san, striptarget)
tell_user(stderr, "warning: remote host tried to "
2019-03-23 08:32:13 +00:00
"write to a file called '%s'", san);
tell_user(stderr, " when we requested a file "
"called '%s'.", stripsrc);
tell_user(stderr, " If this is a wildcard, "
"consider upgrading to SSH-2 or using");
tell_user(stderr, " the '-unsafe' option. Renaming"
" of this file has been disallowed.");
/* Override the name the server provided with our own. */
striptarget = stripsrc;
}
}
if (targ[0] != '\0')
destfname = dir_file_cat(targ, striptarget);
else
destfname = dupstr(striptarget);
} else {
/*
* In this branch of the if, the target area is a
* single file with an explicitly specified name in any
* case, so there's no danger.
*/
destfname = dupstr(targ);
}
attr = file_type(destfname);
exists = (attr != FILE_TYPE_NONEXISTENT);
if (act.action == SCP_SINK_DIR) {
if (exists && attr != FILE_TYPE_DIRECTORY) {
with_stripctrl(san, destfname)
run_err("%s: Not a directory", san);
sfree(destfname);
continue;
}
if (!exists) {
if (!create_directory(destfname)) {
with_stripctrl(san, destfname)
run_err("%s: Cannot create directory", san);
sfree(destfname);
continue;
}
}
sink(destfname, NULL);
/* can we set the timestamp for directories ? */
sfree(destfname);
continue;
}
f = open_new_file(destfname, act.permissions);
if (f == NULL) {
with_stripctrl(san, destfname)
run_err("%s: Cannot create file", san);
sfree(destfname);
continue;
}
if (scp_accept_filexfer()) {
sfree(destfname);
close_wfile(f);
goto out;
}
stat_bytes = 0;
stat_starttime = time(NULL);
stat_lasttime = 0;
stat_name = stripctrl_string(
string_scc, stripslashes(destfname, true));
received = 0;
while (received < act.size) {
char transbuf[32768];
uint64_t blksize;
int read;
blksize = 32768;
if (blksize > act.size - received)
blksize = act.size - received;
read = scp_recv_filedata(transbuf, (int)blksize);
if (read <= 0)
bump("Lost connection");
if (wrerror) {
received += read;
continue;
}
if (write_to_file(f, transbuf, read) != (int)read) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
wrerror = true;
/* FIXME: in sftp we can actually abort the transfer */
if (statistics)
printf("\r%-25.25s | %50s\n",
stat_name,
"Write error.. waiting for end of file");
received += read;
continue;
}
if (statistics) {
stat_bytes += read;
if (time(NULL) > stat_lasttime ||
received + read == act.size) {
stat_lasttime = time(NULL);
print_stats(stat_name, act.size, stat_bytes,
stat_starttime, stat_lasttime);
}
}
received += read;
}
if (act.settime) {
set_file_times(f, act.mtime, act.atime);
}
close_wfile(f);
if (wrerror) {
with_stripctrl(san, destfname)
run_err("%s: Write error", san);
sfree(destfname);
continue;
}
(void) scp_finish_filerecv();
sfree(stat_name);
sfree(destfname);
}
out:
strbuf_free(act.buf);
}
/*
* We will copy local files to a remote server.
*/
static void toremote(int argc, char *argv[])
{
char *src, *wtarg, *host, *user;
const char *targ;
char *cmd;
int i, wc_type;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
uploading = true;
wtarg = argv[argc - 1];
/* Separate host from filename */
host = wtarg;
wtarg = colon(wtarg);
if (wtarg == NULL)
bump("wtarg == NULL in toremote()");
*wtarg++ = '\0';
/* Substitute "." for empty target */
if (*wtarg == '\0')
targ = ".";
else
targ = wtarg;
/* Separate host and username */
user = host;
host = strrchr(host, '@');
if (host == NULL) {
host = user;
user = NULL;
} else {
*host++ = '\0';
if (*user == '\0')
user = NULL;
}
if (argc == 2) {
if (colon(argv[0]) != NULL)
bump("%s: Remote to remote not supported", argv[0]);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
wc_type = test_wildcard(argv[0], true);
if (wc_type == WCTYPE_NONEXISTENT)
bump("%s: No such file or directory\n", argv[0]);
else if (wc_type == WCTYPE_WILDCARD)
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
targetshouldbedirectory = true;
}
cmd = dupprintf("scp%s%s%s%s -t %s",
verbose ? " -v" : "",
recursive ? " -r" : "",
preserve ? " -p" : "",
targetshouldbedirectory ? " -d" : "", targ);
do_cmd(host, user, cmd);
sfree(cmd);
if (scp_source_setup(targ, targetshouldbedirectory))
return;
for (i = 0; i < argc - 1; i++) {
src = argv[i];
if (colon(src) != NULL) {
tell_user(stderr, "%s: Remote to remote not supported\n", src);
errs++;
continue;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
wc_type = test_wildcard(src, true);
if (wc_type == WCTYPE_NONEXISTENT) {
run_err("%s: No such file or directory", src);
continue;
} else if (wc_type == WCTYPE_FILENAME) {
source(src);
continue;
} else {
WildcardMatcher *wc;
char *filename;
wc = begin_wildcard_matching(src);
if (wc == NULL) {
run_err("%s: No such file or directory", src);
continue;
}
while ((filename = wildcard_get_filename(wc)) != NULL) {
source(filename);
sfree(filename);
}
finish_wildcard_matching(wc);
}
}
}
/*
* We will copy files from a remote server to the local machine.
*/
static void tolocal(int argc, char *argv[])
{
char *wsrc, *host, *user;
const char *src, *targ;
char *cmd;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
uploading = false;
if (argc != 2)
bump("More than one remote source not supported");
wsrc = argv[0];
targ = argv[1];
/* Separate host from filename */
host = wsrc;
wsrc = colon(wsrc);
if (wsrc == NULL)
bump("Local to local copy not supported");
*wsrc++ = '\0';
/* Substitute "." for empty filename */
if (*wsrc == '\0')
src = ".";
else
src = wsrc;
/* Separate username and hostname */
user = host;
host = strrchr(host, '@');
if (host == NULL) {
host = user;
user = NULL;
} else {
*host++ = '\0';
if (*user == '\0')
user = NULL;
}
cmd = dupprintf("scp%s%s%s%s -f %s",
verbose ? " -v" : "",
recursive ? " -r" : "",
preserve ? " -p" : "",
targetshouldbedirectory ? " -d" : "", src);
do_cmd(host, user, cmd);
sfree(cmd);
if (scp_sink_setup(src, preserve, recursive))
return;
sink(targ, src);
}
/*
* We will issue a list command to get a remote directory.
*/
static void get_dir_list(int argc, char *argv[])
{
char *wsrc, *host, *user;
const char *src;
char *cmd, *p;
const char *q;
char c;
wsrc = argv[0];
/* Separate host from filename */
host = wsrc;
wsrc = colon(wsrc);
if (wsrc == NULL)
bump("Local file listing not supported");
*wsrc++ = '\0';
/* Substitute "." for empty filename */
if (*wsrc == '\0')
src = ".";
else
src = wsrc;
/* Separate username and hostname */
user = host;
host = strrchr(host, '@');
if (host == NULL) {
host = user;
user = NULL;
} else {
*host++ = '\0';
if (*user == '\0')
user = NULL;
}
cmd = snewn(4 * strlen(src) + 100, char);
strcpy(cmd, "ls -la '");
p = cmd + strlen(cmd);
for (q = src; *q; q++) {
if (*q == '\'') {
*p++ = '\'';
*p++ = '\\';
*p++ = '\'';
*p++ = '\'';
} else {
*p++ = *q;
}
}
*p++ = '\'';
*p = '\0';
do_cmd(host, user, cmd);
sfree(cmd);
if (using_sftp) {
scp_sftp_listdir(src);
} else {
stdio_sink ss;
stdio_sink_init(&ss, stdout);
StripCtrlChars *scc = stripctrl_new(
BinarySink_UPCAST(&ss), false, L'\0');
while (ssh_scp_recv(&c, 1))
put_byte(scc, c);
stripctrl_free(scc);
}
}
/*
* Short description of parameters.
*/
static void usage(void)
{
printf("PuTTY Secure Copy client\n");
printf("%s\n", ver);
printf("Usage: pscp [options] [user@]host:source target\n");
printf
(" pscp [options] source [source...] [user@]host:target\n");
printf(" pscp [options] -ls [user@]host:filespec\n");
printf("Options:\n");
printf(" -V print version information and exit\n");
printf(" -pgpfp print PGP key fingerprints and exit\n");
printf(" -p preserve file attributes\n");
printf(" -q quiet, don't show statistics\n");
printf(" -r copy directories recursively\n");
printf(" -v show verbose messages\n");
printf(" -load sessname Load settings from saved session\n");
printf(" -P port connect to specified port\n");
printf(" -l user connect with specified username\n");
printf(" -pw passw login with specified password\n");
printf(" -1 -2 force use of particular SSH protocol version\n");
printf(" -4 -6 force use of IPv4 or IPv6\n");
printf(" -C enable compression\n");
printf(" -i key private key file for user authentication\n");
printf(" -noagent disable use of Pageant\n");
printf(" -agent enable use of Pageant\n");
printf(" -hostkey aa:bb:cc:...\n");
printf(" manually specify a host key (may be repeated)\n");
printf(" -batch disable all interactive prompts\n");
printf(" -no-sanitise-stderr don't strip control chars from"
" standard error\n");
printf(" -proxycmd command\n");
printf(" use 'command' as local proxy\n");
printf(" -unsafe allow server-side wildcards (DANGEROUS)\n");
printf(" -sftp force use of SFTP protocol\n");
printf(" -scp force use of SCP protocol\n");
printf(" -sshlog file\n");
printf(" -sshrawlog file\n");
printf(" log protocol details to a file\n");
cleanup_exit(1);
}
void version(void)
{
char *buildinfo_text = buildinfo("\n");
printf("pscp: %s\n%s\n", ver, buildinfo_text);
sfree(buildinfo_text);
exit(0);
}
void cmdline_error(const char *p, ...)
{
va_list ap;
fprintf(stderr, "pscp: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fprintf(stderr, "\n try typing just \"pscp\" for help\n");
exit(1);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
const bool share_can_be_downstream = true;
const bool share_can_be_upstream = false;
static stdio_sink stderr_ss;
static StripCtrlChars *stderr_scc;
/*
* Main program. (Called `psftp_main' because it gets called from
* *sftp.c; bit silly, I know, but it had to be called _something_.)
*/
int psftp_main(int argc, char *argv[])
{
int i;
bool sanitise_stderr = true;
default_protocol = PROT_TELNET;
Remove FLAG_STDERR completely. Originally, it controlled whether ssh.c should send terminal messages (such as login and password prompts) to terminal.c or to stderr. But we've had the from_backend() abstraction for ages now, which even has an existing flag to indicate that the data is stderr rather than stdout data; applications which set FLAG_STDERR are precisely those that link against uxcons or wincons, so from_backend will do the expected thing anyway with data sent to it with that flag set. So there's no reason ssh.c can't just unconditionally pass everything through that, and remove the special case. FLAG_STDERR was also used by winproxy and uxproxy to decide whether to capture standard error from a local proxy command, or whether to let the proxy command send its diagnostics directly to the usual standard error. On reflection, I think it's better to unconditionally capture the proxy's stderr, for three reasons. Firstly, it means proxy diagnostics are prefixed with 'proxy:' so that you can tell them apart from any other stderr spew (which used to be particularly confusing if both the main application and the proxy command were instances of Plink); secondly, proxy diagnostics are now reliably copied to packet log files along with all the other Event Log entries, even by command-line tools; and thirdly, this means the option to suppress proxy command diagnostics after the main session starts will actually _work_ in the command-line tools, which it previously couldn't. A more minor structure change is that copying of Event Log messages to stderr in verbose mode is now done by wincons/uxcons, instead of centrally in logging.c (since logging.c can now no longer check FLAG_STDERR to decide whether to do it). The total amount of code to do this is considerably smaller than the defensive-sounding comment in logevent.c explaining why I did it the other way instead :-)
2018-09-21 15:15:49 +00:00
flags = 0
#ifdef FLAG_SYNCAGENT
| FLAG_SYNCAGENT
#endif
;
cmdline_tooltype = TOOLTYPE_FILETRANSFER;
sk_init();
/* Load Default Settings before doing anything else. */
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
conf = conf_new();
do_defaults(NULL, conf);
loaded_session = false;
for (i = 1; i < argc; i++) {
int ret;
if (argv[i][0] != '-')
break;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
ret = cmdline_process_param(argv[i], i+1<argc?argv[i+1]:NULL, 1, conf);
if (ret == -2) {
cmdline_error("option \"%s\" requires an argument", argv[i]);
} else if (ret == 2) {
i++; /* skip next argument */
} else if (ret == 1) {
/* We have our own verbosity in addition to `flags'. */
if (flags & FLAG_VERBOSE)
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
verbose = true;
} else if (strcmp(argv[i], "-pgpfp") == 0) {
pgp_fingerprints();
return 1;
} else if (strcmp(argv[i], "-r") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
recursive = true;
} else if (strcmp(argv[i], "-p") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
preserve = true;
} else if (strcmp(argv[i], "-q") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
statistics = false;
} else if (strcmp(argv[i], "-h") == 0 ||
strcmp(argv[i], "-?") == 0 ||
strcmp(argv[i], "--help") == 0) {
usage();
} else if (strcmp(argv[i], "-V") == 0 ||
strcmp(argv[i], "--version") == 0) {
version();
} else if (strcmp(argv[i], "-ls") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
list = true;
} else if (strcmp(argv[i], "-batch") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
console_batch_mode = true;
} else if (strcmp(argv[i], "-unsafe") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
scp_unsafe_mode = true;
} else if (strcmp(argv[i], "-sftp") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
try_scp = false; try_sftp = true;
} else if (strcmp(argv[i], "-scp") == 0) {
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
try_scp = true; try_sftp = false;
} else if (strcmp(argv[i], "-sanitise-stderr") == 0) {
sanitise_stderr = true;
} else if (strcmp(argv[i], "-no-sanitise-stderr") == 0) {
sanitise_stderr = false;
} else if (strcmp(argv[i], "--") == 0) {
i++;
break;
} else {
cmdline_error("unknown option \"%s\"", argv[i]);
}
}
argc -= i;
argv += i;
backend = NULL;
stdio_sink_init(&stderr_ss, stderr);
stderr_bs = BinarySink_UPCAST(&stderr_ss);
if (sanitise_stderr) {
stderr_scc = stripctrl_new(stderr_bs, false, L'\0');
stderr_bs = BinarySink_UPCAST(stderr_scc);
}
string_scc = stripctrl_new(NULL, false, L'\0');
if (list) {
if (argc != 1)
usage();
get_dir_list(argc, argv);
} else {
if (argc < 2)
usage();
if (argc > 2)
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
targetshouldbedirectory = true;
if (colon(argv[argc - 1]) != NULL)
toremote(argc, argv);
else
tolocal(argc, argv);
}
if (backend && backend_connected(backend)) {
char ch;
backend_special(backend, SS_EOF, 0);
sent_eof = true;
ssh_scp_recv(&ch, 1);
}
random_save_seed();
cmdline_cleanup();
if (backend) {
backend_free(backend);
backend = NULL;
}
sk_cleanup();
return (errs == 0 ? 0 : 1);
}
/* end */