mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
298 lines
9.1 KiB
C
298 lines
9.1 KiB
C
|
/*
|
||
|
* primecandidate.c: implementation of the PrimeCandidateSource
|
||
|
* abstraction declared in sshkeygen.h.
|
||
|
*/
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include "ssh.h"
|
||
|
#include "mpint.h"
|
||
|
#include "mpunsafe.h"
|
||
|
#include "sshkeygen.h"
|
||
|
|
||
|
struct PrimeCandidateSource {
|
||
|
unsigned bits;
|
||
|
bool ready;
|
||
|
|
||
|
/* We'll start by making up a random number strictly less than this ... */
|
||
|
mp_int *limit;
|
||
|
|
||
|
/* ... then we'll multiply by 'factor', and add 'addend'. */
|
||
|
mp_int *factor, *addend;
|
||
|
|
||
|
/* Then we'll try to add a small multiple of 'factor' to it to
|
||
|
* avoid it being a multiple of any small prime. Also, for RSA, we
|
||
|
* may need to avoid it being _this_ multiple of _this_: */
|
||
|
unsigned avoid_residue, avoid_modulus;
|
||
|
};
|
||
|
|
||
|
PrimeCandidateSource *pcs_new(unsigned bits, unsigned first, unsigned nfirst)
|
||
|
{
|
||
|
PrimeCandidateSource *s = snew(PrimeCandidateSource);
|
||
|
|
||
|
assert(first >> (nfirst-1) == 1);
|
||
|
|
||
|
s->bits = bits;
|
||
|
s->ready = false;
|
||
|
|
||
|
/* Make the number that's the lower limit of our range */
|
||
|
mp_int *firstmp = mp_from_integer(first);
|
||
|
mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
|
||
|
mp_free(firstmp);
|
||
|
|
||
|
/* Set the low bit of that, because all (nontrivial) primes are odd */
|
||
|
mp_set_bit(base, 0, 1);
|
||
|
|
||
|
/* That's our addend. Now initialise factor to 2, to ensure we
|
||
|
* only generate odd numbers */
|
||
|
s->factor = mp_from_integer(2);
|
||
|
s->addend = base;
|
||
|
|
||
|
/* And that means the limit of our random numbers must be one
|
||
|
* factor of two _less_ than the position of the low bit of
|
||
|
* 'first', because we'll be multiplying the random number by
|
||
|
* 2 immediately afterwards. */
|
||
|
s->limit = mp_power_2(bits - nfirst - 1);
|
||
|
|
||
|
/* avoid_modulus == 0 signals that there's no extra residue to avoid */
|
||
|
s->avoid_residue = 1;
|
||
|
s->avoid_modulus = 0;
|
||
|
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
void pcs_free(PrimeCandidateSource *s)
|
||
|
{
|
||
|
mp_free(s->limit);
|
||
|
mp_free(s->factor);
|
||
|
mp_free(s->addend);
|
||
|
sfree(s);
|
||
|
}
|
||
|
|
||
|
static void pcs_require_residue_inner(PrimeCandidateSource *s,
|
||
|
mp_int *mod, mp_int *res)
|
||
|
{
|
||
|
/*
|
||
|
* We already have a factor and addend. Ensure this one doesn't
|
||
|
* contradict it.
|
||
|
*/
|
||
|
mp_int *gcd = mp_gcd(mod, s->factor);
|
||
|
mp_int *test1 = mp_mod(s->addend, gcd);
|
||
|
mp_int *test2 = mp_mod(res, gcd);
|
||
|
assert(mp_cmp_eq(test1, test2));
|
||
|
mp_free(test1);
|
||
|
mp_free(test2);
|
||
|
|
||
|
/*
|
||
|
* Reduce our input factor and addend, which are constraints on
|
||
|
* the ultimate output number, so that they're constraints on the
|
||
|
* initial cofactor we're going to make up.
|
||
|
*
|
||
|
* If we're generating x and we want to ensure ax+b == r (mod m),
|
||
|
* how does that work? We've already checked that b == r modulo g
|
||
|
* = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
|
||
|
* let's write a=gA, m=gM, (r-b)=gR, and then we can start by
|
||
|
* dividing that off:
|
||
|
*
|
||
|
* ax == r-b (mod m )
|
||
|
* => gAx == gR (mod gM)
|
||
|
* => Ax == R (mod M)
|
||
|
*
|
||
|
* Now the moduli A,M are coprime, which makes things easier.
|
||
|
*
|
||
|
* We're going to need to generate the x in this equation by
|
||
|
* generating a new smaller value y, multiplying it by M, and
|
||
|
* adding some constant K. So we have x = My + K, and we need to
|
||
|
* work out what K will satisfy the above equation. In other
|
||
|
* words, we need A(My+K) == R (mod M), and the AMy term vanishes,
|
||
|
* so we just need AK == R (mod M). So our congruence is solved by
|
||
|
* setting K to be R * A^{-1} mod M.
|
||
|
*/
|
||
|
mp_int *A = mp_div(s->factor, gcd);
|
||
|
mp_int *M = mp_div(mod, gcd);
|
||
|
mp_int *Rpre = mp_modsub(res, s->addend, mod);
|
||
|
mp_int *R = mp_div(Rpre, gcd);
|
||
|
mp_int *Ainv = mp_invert(A, M);
|
||
|
mp_int *K = mp_modmul(R, Ainv, M);
|
||
|
|
||
|
mp_free(gcd);
|
||
|
mp_free(Rpre);
|
||
|
mp_free(Ainv);
|
||
|
mp_free(A);
|
||
|
mp_free(R);
|
||
|
|
||
|
/*
|
||
|
* So we know we have to transform our existing (factor, addend)
|
||
|
* pair into (factor * M, addend * factor * K). Now we just need
|
||
|
* to work out what the limit should be on the random value we're
|
||
|
* generating.
|
||
|
*
|
||
|
* If we need My+K < old_limit, then y < (old_limit-K)/M. But the
|
||
|
* RHS is a fraction, so in integers, we need y < ceil of it.
|
||
|
*/
|
||
|
assert(!mp_cmp_hs(K, s->limit));
|
||
|
mp_int *dividend = mp_add(s->limit, M);
|
||
|
mp_sub_integer_into(dividend, dividend, 1);
|
||
|
mp_sub_into(dividend, dividend, K);
|
||
|
mp_free(s->limit);
|
||
|
s->limit = mp_div(dividend, M);
|
||
|
mp_free(dividend);
|
||
|
|
||
|
/*
|
||
|
* Now just update the real factor and addend, and we're done.
|
||
|
*/
|
||
|
|
||
|
mp_int *addend_old = s->addend;
|
||
|
mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
|
||
|
s->addend = mp_add(s->addend, tmp);
|
||
|
mp_free(tmp);
|
||
|
mp_free(addend_old);
|
||
|
|
||
|
mp_int *factor_old = s->factor;
|
||
|
s->factor = mp_mul(s->factor, M);
|
||
|
mp_free(factor_old);
|
||
|
|
||
|
mp_free(M);
|
||
|
mp_free(K);
|
||
|
s->factor = mp_unsafe_shrink(s->factor);
|
||
|
s->addend = mp_unsafe_shrink(s->addend);
|
||
|
s->limit = mp_unsafe_shrink(s->limit);
|
||
|
}
|
||
|
|
||
|
void pcs_require_residue(PrimeCandidateSource *s,
|
||
|
mp_int *mod, mp_int *res_orig)
|
||
|
{
|
||
|
/*
|
||
|
* Reduce the input residue to its least non-negative value, in
|
||
|
* case it was given as a larger equivalent value.
|
||
|
*/
|
||
|
mp_int *res_reduced = mp_mod(res_orig, mod);
|
||
|
pcs_require_residue_inner(s, mod, res_reduced);
|
||
|
mp_free(res_reduced);
|
||
|
}
|
||
|
|
||
|
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
|
||
|
{
|
||
|
mp_int *res = mp_from_integer(1);
|
||
|
pcs_require_residue(s, mod, res);
|
||
|
mp_free(res);
|
||
|
}
|
||
|
|
||
|
void pcs_avoid_residue_small(PrimeCandidateSource *s,
|
||
|
unsigned mod, unsigned res)
|
||
|
{
|
||
|
assert(!s->avoid_modulus); /* can't cope with more than one */
|
||
|
s->avoid_modulus = mod;
|
||
|
s->avoid_residue = res;
|
||
|
}
|
||
|
|
||
|
void pcs_ready(PrimeCandidateSource *s)
|
||
|
{
|
||
|
/*
|
||
|
* Reduce the upper limit of the range we're searching, to account
|
||
|
* for the fact that in the generation loop we may add up to 2^16
|
||
|
* product to the random number we pick from that range.
|
||
|
*
|
||
|
* We can't do this until we've finished dividing limit by things,
|
||
|
* of course.
|
||
|
*/
|
||
|
|
||
|
assert(mp_hs_integer(s->limit, 0x10001));
|
||
|
mp_sub_integer_into(s->limit, s->limit, 0x10000);
|
||
|
|
||
|
s->ready = true;
|
||
|
}
|
||
|
|
||
|
mp_int *pcs_generate(PrimeCandidateSource *s)
|
||
|
{
|
||
|
assert(s->ready);
|
||
|
|
||
|
/* List the (modulus, residue) pairs we want to avoid. Mostly this
|
||
|
* will be 'don't be 0 mod any small prime', but we may have one
|
||
|
* to add from our parameters. */
|
||
|
init_smallprimes();
|
||
|
uint64_t avoidmod[NSMALLPRIMES + 1], avoidres[NSMALLPRIMES + 1];
|
||
|
size_t navoid = 0;
|
||
|
for (size_t i = 0; i < NSMALLPRIMES; i++) {
|
||
|
avoidmod[navoid] = smallprimes[i];
|
||
|
avoidres[navoid] = 0;
|
||
|
navoid++;
|
||
|
}
|
||
|
if (s->avoid_modulus) {
|
||
|
avoidmod[navoid] = s->avoid_modulus;
|
||
|
avoidres[navoid] = s->avoid_residue % s->avoid_modulus;
|
||
|
navoid++;
|
||
|
}
|
||
|
|
||
|
while (true) {
|
||
|
mp_int *x = mp_random_upto(s->limit);
|
||
|
|
||
|
uint64_t xres[NSMALLPRIMES + 1], xmul[NSMALLPRIMES + 1];
|
||
|
for (size_t i = 0; i < navoid; i++) {
|
||
|
uint64_t mod = avoidmod[i], res = avoidres[i];
|
||
|
|
||
|
uint64_t factor_m = mp_unsafe_mod_integer(s->factor, mod);
|
||
|
uint64_t addend_m = mp_unsafe_mod_integer(s->addend, mod);
|
||
|
uint64_t x_m = mp_unsafe_mod_integer(x, mod);
|
||
|
|
||
|
xmul[i] = factor_m;
|
||
|
xres[i] = (addend_m + x_m * factor_m - res + mod) % mod;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to find a value delta such that x + delta * factor
|
||
|
* avoids all the residues we want to avoid. We select
|
||
|
* candidates at random to avoid a directional bias, and if we
|
||
|
* don't find one quickly enough, give up and try a fresh
|
||
|
* random x.
|
||
|
*/
|
||
|
unsigned delta;
|
||
|
for (unsigned delta_attempts = 0; delta_attempts < 1024 ;) {
|
||
|
unsigned char randbuf[64];
|
||
|
random_read(randbuf, sizeof(randbuf));
|
||
|
|
||
|
for (size_t pos = 0; pos+2 <= sizeof(randbuf);
|
||
|
pos += 2, delta_attempts++) {
|
||
|
|
||
|
delta = GET_16BIT_MSB_FIRST(randbuf + pos);
|
||
|
|
||
|
bool ok = true;
|
||
|
for (size_t i = 0; i < navoid; i++)
|
||
|
if (!((xres[i] + delta * xmul[i]) % avoidmod[i])) {
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (ok)
|
||
|
goto found;
|
||
|
}
|
||
|
|
||
|
smemclr(randbuf, sizeof(randbuf));
|
||
|
}
|
||
|
|
||
|
mp_free(x);
|
||
|
continue; /* try a new x */
|
||
|
|
||
|
found:;
|
||
|
/*
|
||
|
* We've found a viable delta. Make the final output value.
|
||
|
*/
|
||
|
mp_int *mpdelta = mp_from_integer(delta);
|
||
|
mp_int *xplus = mp_add(x, mpdelta);
|
||
|
mp_int *toret = mp_new(s->bits);
|
||
|
mp_mul_into(toret, xplus, s->factor);
|
||
|
mp_add_into(toret, toret, s->addend);
|
||
|
mp_free(mpdelta);
|
||
|
mp_free(xplus);
|
||
|
mp_free(x);
|
||
|
return toret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
|
||
|
mp_int **factor_out, mp_int **addend_out)
|
||
|
{
|
||
|
*limit_out = mp_copy(pcs->limit);
|
||
|
*factor_out = mp_copy(pcs->factor);
|
||
|
*addend_out = mp_copy(pcs->addend);
|
||
|
}
|