1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00

Refactor generation of candidate integers in primegen.

I've replaced the random number generation and small delta-finding
loop in primegen() with a much more elaborate system in its own source
file, with unit tests and everything.

Immediate benefits:

 - fixes a theoretical possibility of overflowing the target number of
   bits, if the random number was so close to the top of the range
   that the addition of delta * factor pushed it over. However, this
   only happened with negligible probability.

 - fixes a directional bias in delta-finding. The previous code
   incremented the number repeatedly until it found a value coprime to
   all the right things, which meant that a prime preceded by a
   particularly long sequence of numbers with tiny factors was more
   likely to be chosen. Now we select candidate delta values at
   random, that bias should be eliminated.

 - changes the semantics of the outermost primegen() function to make
   them easier to use, because now the caller specifies the 'bits' and
   'firstbits' values for the actual returned prime, rather than
   having to account for the factor you're multiplying it by in DSA.
   DSA client code is correspondingly adjusted.

Future benefits:

 - having the candidate generation in a separate function makes it
   easy to reuse in alternative prime generation strategies

 - the available constraints support applications such as Maurer's
   algorithm for generating provable primes, or strong primes for RSA
   in which both p-1 and p+1 have a large factor. So those become
   things we could experiment with in future.
This commit is contained in:
Simon Tatham 2020-02-23 14:30:03 +00:00
parent dfddd1381b
commit da3bc3d927
8 changed files with 444 additions and 97 deletions

2
Recipe
View File

@ -282,7 +282,7 @@ UXSSH = SSH uxnoise uxagentc uxgss uxshare
SFTP = psftpcommon sftp sftpcommon logging cmdline
# Components of the prime-generation system.
SSHPRIME = sshprime smallprimes mpunsafe
SSHPRIME = sshprime smallprimes primecandidate mpunsafe
# Miscellaneous objects appearing in all the utilities, or all the
# network ones, or the Unix or Windows subsets of those in turn.

297
primecandidate.c Normal file
View File

@ -0,0 +1,297 @@
/*
* primecandidate.c: implementation of the PrimeCandidateSource
* abstraction declared in sshkeygen.h.
*/
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "sshkeygen.h"
struct PrimeCandidateSource {
unsigned bits;
bool ready;
/* We'll start by making up a random number strictly less than this ... */
mp_int *limit;
/* ... then we'll multiply by 'factor', and add 'addend'. */
mp_int *factor, *addend;
/* Then we'll try to add a small multiple of 'factor' to it to
* avoid it being a multiple of any small prime. Also, for RSA, we
* may need to avoid it being _this_ multiple of _this_: */
unsigned avoid_residue, avoid_modulus;
};
PrimeCandidateSource *pcs_new(unsigned bits, unsigned first, unsigned nfirst)
{
PrimeCandidateSource *s = snew(PrimeCandidateSource);
assert(first >> (nfirst-1) == 1);
s->bits = bits;
s->ready = false;
/* Make the number that's the lower limit of our range */
mp_int *firstmp = mp_from_integer(first);
mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
mp_free(firstmp);
/* Set the low bit of that, because all (nontrivial) primes are odd */
mp_set_bit(base, 0, 1);
/* That's our addend. Now initialise factor to 2, to ensure we
* only generate odd numbers */
s->factor = mp_from_integer(2);
s->addend = base;
/* And that means the limit of our random numbers must be one
* factor of two _less_ than the position of the low bit of
* 'first', because we'll be multiplying the random number by
* 2 immediately afterwards. */
s->limit = mp_power_2(bits - nfirst - 1);
/* avoid_modulus == 0 signals that there's no extra residue to avoid */
s->avoid_residue = 1;
s->avoid_modulus = 0;
return s;
}
void pcs_free(PrimeCandidateSource *s)
{
mp_free(s->limit);
mp_free(s->factor);
mp_free(s->addend);
sfree(s);
}
static void pcs_require_residue_inner(PrimeCandidateSource *s,
mp_int *mod, mp_int *res)
{
/*
* We already have a factor and addend. Ensure this one doesn't
* contradict it.
*/
mp_int *gcd = mp_gcd(mod, s->factor);
mp_int *test1 = mp_mod(s->addend, gcd);
mp_int *test2 = mp_mod(res, gcd);
assert(mp_cmp_eq(test1, test2));
mp_free(test1);
mp_free(test2);
/*
* Reduce our input factor and addend, which are constraints on
* the ultimate output number, so that they're constraints on the
* initial cofactor we're going to make up.
*
* If we're generating x and we want to ensure ax+b == r (mod m),
* how does that work? We've already checked that b == r modulo g
* = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
* let's write a=gA, m=gM, (r-b)=gR, and then we can start by
* dividing that off:
*
* ax == r-b (mod m )
* => gAx == gR (mod gM)
* => Ax == R (mod M)
*
* Now the moduli A,M are coprime, which makes things easier.
*
* We're going to need to generate the x in this equation by
* generating a new smaller value y, multiplying it by M, and
* adding some constant K. So we have x = My + K, and we need to
* work out what K will satisfy the above equation. In other
* words, we need A(My+K) == R (mod M), and the AMy term vanishes,
* so we just need AK == R (mod M). So our congruence is solved by
* setting K to be R * A^{-1} mod M.
*/
mp_int *A = mp_div(s->factor, gcd);
mp_int *M = mp_div(mod, gcd);
mp_int *Rpre = mp_modsub(res, s->addend, mod);
mp_int *R = mp_div(Rpre, gcd);
mp_int *Ainv = mp_invert(A, M);
mp_int *K = mp_modmul(R, Ainv, M);
mp_free(gcd);
mp_free(Rpre);
mp_free(Ainv);
mp_free(A);
mp_free(R);
/*
* So we know we have to transform our existing (factor, addend)
* pair into (factor * M, addend * factor * K). Now we just need
* to work out what the limit should be on the random value we're
* generating.
*
* If we need My+K < old_limit, then y < (old_limit-K)/M. But the
* RHS is a fraction, so in integers, we need y < ceil of it.
*/
assert(!mp_cmp_hs(K, s->limit));
mp_int *dividend = mp_add(s->limit, M);
mp_sub_integer_into(dividend, dividend, 1);
mp_sub_into(dividend, dividend, K);
mp_free(s->limit);
s->limit = mp_div(dividend, M);
mp_free(dividend);
/*
* Now just update the real factor and addend, and we're done.
*/
mp_int *addend_old = s->addend;
mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
s->addend = mp_add(s->addend, tmp);
mp_free(tmp);
mp_free(addend_old);
mp_int *factor_old = s->factor;
s->factor = mp_mul(s->factor, M);
mp_free(factor_old);
mp_free(M);
mp_free(K);
s->factor = mp_unsafe_shrink(s->factor);
s->addend = mp_unsafe_shrink(s->addend);
s->limit = mp_unsafe_shrink(s->limit);
}
void pcs_require_residue(PrimeCandidateSource *s,
mp_int *mod, mp_int *res_orig)
{
/*
* Reduce the input residue to its least non-negative value, in
* case it was given as a larger equivalent value.
*/
mp_int *res_reduced = mp_mod(res_orig, mod);
pcs_require_residue_inner(s, mod, res_reduced);
mp_free(res_reduced);
}
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
{
mp_int *res = mp_from_integer(1);
pcs_require_residue(s, mod, res);
mp_free(res);
}
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res)
{
assert(!s->avoid_modulus); /* can't cope with more than one */
s->avoid_modulus = mod;
s->avoid_residue = res;
}
void pcs_ready(PrimeCandidateSource *s)
{
/*
* Reduce the upper limit of the range we're searching, to account
* for the fact that in the generation loop we may add up to 2^16
* product to the random number we pick from that range.
*
* We can't do this until we've finished dividing limit by things,
* of course.
*/
assert(mp_hs_integer(s->limit, 0x10001));
mp_sub_integer_into(s->limit, s->limit, 0x10000);
s->ready = true;
}
mp_int *pcs_generate(PrimeCandidateSource *s)
{
assert(s->ready);
/* List the (modulus, residue) pairs we want to avoid. Mostly this
* will be 'don't be 0 mod any small prime', but we may have one
* to add from our parameters. */
init_smallprimes();
uint64_t avoidmod[NSMALLPRIMES + 1], avoidres[NSMALLPRIMES + 1];
size_t navoid = 0;
for (size_t i = 0; i < NSMALLPRIMES; i++) {
avoidmod[navoid] = smallprimes[i];
avoidres[navoid] = 0;
navoid++;
}
if (s->avoid_modulus) {
avoidmod[navoid] = s->avoid_modulus;
avoidres[navoid] = s->avoid_residue % s->avoid_modulus;
navoid++;
}
while (true) {
mp_int *x = mp_random_upto(s->limit);
uint64_t xres[NSMALLPRIMES + 1], xmul[NSMALLPRIMES + 1];
for (size_t i = 0; i < navoid; i++) {
uint64_t mod = avoidmod[i], res = avoidres[i];
uint64_t factor_m = mp_unsafe_mod_integer(s->factor, mod);
uint64_t addend_m = mp_unsafe_mod_integer(s->addend, mod);
uint64_t x_m = mp_unsafe_mod_integer(x, mod);
xmul[i] = factor_m;
xres[i] = (addend_m + x_m * factor_m - res + mod) % mod;
}
/*
* Try to find a value delta such that x + delta * factor
* avoids all the residues we want to avoid. We select
* candidates at random to avoid a directional bias, and if we
* don't find one quickly enough, give up and try a fresh
* random x.
*/
unsigned delta;
for (unsigned delta_attempts = 0; delta_attempts < 1024 ;) {
unsigned char randbuf[64];
random_read(randbuf, sizeof(randbuf));
for (size_t pos = 0; pos+2 <= sizeof(randbuf);
pos += 2, delta_attempts++) {
delta = GET_16BIT_MSB_FIRST(randbuf + pos);
bool ok = true;
for (size_t i = 0; i < navoid; i++)
if (!((xres[i] + delta * xmul[i]) % avoidmod[i])) {
ok = false;
break;
}
if (ok)
goto found;
}
smemclr(randbuf, sizeof(randbuf));
}
mp_free(x);
continue; /* try a new x */
found:;
/*
* We've found a viable delta. Make the final output value.
*/
mp_int *mpdelta = mp_from_integer(delta);
mp_int *xplus = mp_add(x, mpdelta);
mp_int *toret = mp_new(s->bits);
mp_mul_into(toret, xplus, s->factor);
mp_add_into(toret, toret, s->addend);
mp_free(mpdelta);
mp_free(xplus);
mp_free(x);
return toret;
}
}
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out)
{
*limit_out = mp_copy(pcs->limit);
*factor_out = mp_copy(pcs->factor);
*addend_out = mp_copy(pcs->addend);
}

View File

@ -56,17 +56,15 @@ int dsa_generate(struct dss_key *key, int bits, progfn_t pfn,
pfn(pfnparam, PROGFN_READY, 0, 0);
unsigned pfirst, qfirst;
invent_firstbits(&pfirst, &qfirst, 0);
/*
* Generate q: a prime of length 160.
*/
mp_int *q = primegen(160, 2, 2, NULL, 1, pfn, pfnparam, qfirst);
mp_int *q = primegen(160, 0, 0, NULL, 1, pfn, pfnparam, 1);
/*
* Now generate p: a prime of length `bits', such that p-1 is
* divisible by q.
*/
mp_int *p = primegen(bits-160, 2, 2, q, 2, pfn, pfnparam, pfirst);
mp_int *p = primegen(bits, 0, 0, q, 2, pfn, pfnparam, 1);
/*
* Next we need g. Raise 2 to the power (p-1)/q modulo p, and

View File

@ -2,7 +2,7 @@
* sshkeygen.h: routines used internally to key generation.
*/
/*
/* ----------------------------------------------------------------------
* A table of all the primes that fit in a 16-bit integer. Call
* init_primes_array to make sure it's been initialised.
*/
@ -10,3 +10,54 @@
#define NSMALLPRIMES 6542 /* number of primes < 65536 */
extern const unsigned short *const smallprimes;
void init_smallprimes(void);
/* ----------------------------------------------------------------------
* A system for making up random candidate integers during prime
* generation. This unconditionally ensures that the numbers have the
* right number of bits and are not divisible by any prime in the
* smallprimes[] array above. It can also impose further constraints,
* as documented below.
*/
typedef struct PrimeCandidateSource PrimeCandidateSource;
/*
* pcs_new: you say how many bits you want the prime to have (with the
* usual semantics that an n-bit number is in the range [2^{n-1},2^n))
* and also specify what you want its topmost 'nfirst' bits to be.
*
* (The 'first' system is used for RSA keys, where you need to arrange
* that the product of your two primes is in a more tightly
* constrained range than the factor of 4 you'd get by just generating
* two (n/2)-bit primes and multiplying them. Any application that
* doesn't need that can simply specify first = nfirst = 1.)
*/
PrimeCandidateSource *pcs_new(unsigned bits, unsigned first, unsigned nfirst);
/* Insist that generated numbers must be congruent to 'res' mod 'mod' */
void pcs_require_residue(PrimeCandidateSource *s, mp_int *mod, mp_int *res);
/* Convenience wrapper for the common case where res = 1 */
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod);
/* Insist that generated numbers must _not_ be congruent to 'res' mod
* 'mod'. This is used to avoid being 1 mod the RSA public exponent,
* which is small, so it only needs ordinary integer parameters. */
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res);
/* Prepare a PrimeCandidateSource to actually generate numbers. This
* function does last-minute computation that has to be delayed until
* all constraints have been input. */
void pcs_ready(PrimeCandidateSource *s);
/* Actually generate a candidate integer. You must free the result, of
* course. */
mp_int *pcs_generate(PrimeCandidateSource *s);
/* Free a PrimeCandidateSource. */
void pcs_free(PrimeCandidateSource *s);
/* Return some internal fields of the PCS. Used by testcrypt for
* unit-testing this system. */
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out);

View File

@ -133,107 +133,24 @@ mp_int *primegen(
int bits, int modulus, int residue, mp_int *factor,
int phase, progfn_t pfn, void *pfnparam, unsigned firstbits)
{
init_smallprimes();
int progress = 0;
size_t fbsize = 0;
while (firstbits >> fbsize) /* work out how to align this */
fbsize++;
PrimeCandidateSource *pcs = pcs_new(bits, firstbits, fbsize);
if (factor)
pcs_require_residue_1(pcs, factor);
if (modulus)
pcs_avoid_residue_small(pcs, modulus, residue);
pcs_ready(pcs);
STARTOVER:
pfn(pfnparam, PROGFN_PROGRESS, phase, ++progress);
/*
* Generate a k-bit random number with top and bottom bits set.
* Alternatively, if `factor' is nonzero, generate a k-bit
* random number with the top bit set and the bottom bit clear,
* multiply it by `factor', and add one.
*/
mp_int *p = mp_power_2(bits - 1); /* ensure top bit is 1 */
mp_int *r = mp_random_bits(bits - 1);
mp_or_into(p, p, r);
mp_free(r);
mp_set_bit(p, 0, factor ? 0 : 1); /* set bottom bit appropriately */
for (size_t i = 0; i < fbsize; i++)
mp_set_bit(p, bits-fbsize + i, 1 & (firstbits >> i));
if (factor) {
mp_int *tmp = p;
p = mp_mul(tmp, factor);
mp_free(tmp);
assert(mp_get_bit(p, 0) == 0);
mp_set_bit(p, 0, 1);
}
/*
* We need to ensure this random number is coprime to the first
* few primes, by repeatedly adding either 2 or 2*factor to it
* until it is. To do this we make a list of (modulus, residue)
* pairs to avoid, and we also add to that list the extra pair our
* caller wants to avoid.
*/
/* List the moduli */
unsigned long moduli[NSMALLPRIMES + 1];
for (size_t i = 0; i < NSMALLPRIMES; i++)
moduli[i] = smallprimes[i];
moduli[NSMALLPRIMES] = modulus;
/* Find the residue of our starting number mod each of them. Also
* set up the multipliers array which tells us how each one will
* change when we increment the number (which isn't just 1 if
* we're incrementing by multiples of factor). */
unsigned long residues[NSMALLPRIMES + 1], multipliers[NSMALLPRIMES + 1];
for (size_t i = 0; i < lenof(moduli); i++) {
residues[i] = mp_unsafe_mod_integer(p, moduli[i]);
if (factor)
multipliers[i] = mp_unsafe_mod_integer(factor, moduli[i]);
else
multipliers[i] = 1;
}
/* Adjust the last entry so that it avoids a residue other than zero */
residues[NSMALLPRIMES] = (residues[NSMALLPRIMES] + modulus
- residue) % modulus;
/*
* Now loop until no residue in that list is zero, to find a
* sensible increment. We maintain the increment in an ordinary
* integer, so if it gets too big, we'll have to give up and go
* back to making up a fresh random large integer.
*/
unsigned delta = 0;
while (1) {
for (size_t i = 0; i < lenof(moduli); i++)
if (!((residues[i] + delta * multipliers[i]) % moduli[i]))
goto found_a_zero;
/* If we didn't exit that loop by goto, we've got our candidate. */
break;
found_a_zero:
delta += 2;
if (delta > 65536) {
mp_free(p);
goto STARTOVER;
}
}
/*
* Having found a plausible increment, actually add it on.
*/
if (factor) {
mp_int *d = mp_from_integer(delta);
mp_int *df = mp_mul(d, factor);
mp_add_into(p, p, df);
mp_free(d);
mp_free(df);
} else {
mp_add_integer_into(p, p, delta);
}
mp_int *p = pcs_generate(pcs);
/*
* Now apply the Miller-Rabin primality test a few times. First

View File

@ -130,6 +130,9 @@ def mac_str(alg, key, message, cipher=None):
ssh2_mac_update(m, message)
return ssh2_mac_genresult(m)
def lcm(a, b):
return a * b // gcd(a, b)
class MyTestBase(unittest.TestCase):
"Intermediate class that adds useful helper methods."
def assertEqualBin(self, x, y):
@ -864,6 +867,78 @@ class ecc(MyTestBase):
self.assertEqual(int(x), int(rGi.x))
self.assertEqual(int(y), int(rGi.y))
class keygen(MyTestBase):
def testPrimeCandidateSource(self):
def inspect(pcs):
# Returns (pcs->limit, pcs->factor, pcs->addend) as Python integers
return tuple(map(int, pcs_inspect(pcs)))
# Test accumulating modular congruence requirements, by
# inspecting the internal values computed during
# require_residue. We ensure that the addend satisfies all our
# congruences and the factor is the lcm of all the moduli
# (hence, the arithmetic progression defined by those
# parameters is precisely the set of integers satisfying the
# requirements); we also ensure that the limiting values
# (addend itself at the low end, and addend + (limit-1) *
# factor at the high end) are the maximal subsequence of that
# progression that are within the originally specified range.
def check(pcs, lo, hi, mod_res_pairs):
limit, factor, addend = inspect(pcs)
for mod, res in mod_res_pairs:
self.assertEqual(addend % mod, res % mod)
self.assertEqual(factor, functools.reduce(
lcm, [mod for mod, res in mod_res_pairs]))
self.assertFalse(lo <= addend + (-1) * factor < hi)
self.assertTrue (lo <= addend < hi)
self.assertTrue (lo <= addend + (limit-1) * factor < hi)
self.assertFalse(lo <= addend + limit * factor < hi)
pcs = pcs_new(64, 1, 1)
check(pcs, 2**63, 2**64, [(2, 1)])
pcs_require_residue(pcs, 3, 2)
check(pcs, 2**63, 2**64, [(2, 1), (3, 2)])
pcs_require_residue_1(pcs, 7)
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1)])
pcs_require_residue(pcs, 16, 7)
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7)])
pcs_require_residue(pcs, 49, 8)
check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7), (49, 8)])
# Now test-generate some actual values, and ensure they
# satisfy all the congruences, and also avoid one residue mod
# 5 that we told them to. Also, give a nontrivial range.
pcs = pcs_new(64, 0xAB, 8)
pcs_require_residue(pcs, 0x100, 0xCD)
pcs_require_residue_1(pcs, 65537)
pcs_avoid_residue_small(pcs, 5, 3)
pcs_ready(pcs)
with random_prng("test seed"):
for i in range(100):
n = int(pcs_generate(pcs))
self.assertTrue((0xAB<<56) < n < (0xAC<<56))
self.assertEqual(n % 0x100, 0xCD)
self.assertEqual(n % 65537, 1)
self.assertNotEqual(n % 5, 3)
# I'm not actually testing here that the outputs of
# pcs_generate are non-multiples of _all_ primes up to
# 2^16. But checking this many for 100 turns is enough
# to be pretty sure. (If you take the product of
# (1-1/p) over all p in the list below, you find that
# a given random number has about a 13% chance of
# avoiding being a multiple of any of them. So 100
# trials without a mistake gives you 0.13^100 < 10^-88
# as the probability of it happening by chance. More
# likely the code is actually working :-)
for p in [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]:
self.assertNotEqual(n % p, 0)
class crypt(MyTestBase):
def testSSH1Fingerprint(self):
# Example key and reference fingerprint value generated by

View File

@ -31,6 +31,7 @@
#include "defs.h"
#include "ssh.h"
#include "sshkeygen.h"
#include "misc.h"
#include "mpint.h"
#include "ecc.h"
@ -93,6 +94,7 @@ uint64_t prng_reseed_time_ms(void)
X(rsa, RSAKey *, rsa_free(v)) \
X(prng, prng *, prng_free(v)) \
X(keycomponents, key_components *, key_components_free(v)) \
X(pcs, PrimeCandidateSource *, pcs_free(v)) \
/* end of list */
typedef struct Value Value;

View File

@ -265,6 +265,13 @@ FUNC1(opt_val_key, ecdsa_generate, uint)
FUNC1(opt_val_key, eddsa_generate, uint)
FUNC1(val_rsa, rsa1_generate, uint)
FUNC5(val_mpint, primegen, uint, uint, uint, val_mpint, uint)
FUNC3(val_pcs, pcs_new, uint, uint, uint)
FUNC3(void, pcs_require_residue, val_pcs, val_mpint, val_mpint)
FUNC2(void, pcs_require_residue_1, val_pcs, val_mpint)
FUNC3(void, pcs_avoid_residue_small, val_pcs, uint, uint)
FUNC1(void, pcs_ready, val_pcs)
FUNC4(void, pcs_inspect, val_pcs, out_val_mpint, out_val_mpint, out_val_mpint)
FUNC1(val_mpint, pcs_generate, val_pcs)
/*
* Miscellaneous.