1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/keygen/primecandidate.c

448 lines
13 KiB
C
Raw Normal View History

Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
/*
* primecandidate.c: implementation of the PrimeCandidateSource
* abstraction declared in sshkeygen.h.
*/
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "sshkeygen.h"
struct avoid {
unsigned mod, res;
};
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
struct PrimeCandidateSource {
unsigned bits;
bool ready, try_sophie_germain;
PrimeCandidateSource: add one-shot mode. If you want to generate a Sophie Germain / safe prime pair with this code, then after you've made p, you need to test the primality of 2p+1. The easiest way to do that is to make a PrimeCandidateSource that is so constrained as to only be able to deliver 2p+1 as a candidate, and then run the ordinary prime generation system. The problem is that the prime generation loops forever, so if 2p+1 _isn't_ prime, it will just keep testing the same number over and over again and failing the test. To solve this, I add a 'one-shot mode' to the PrimeCandidateSource itself, which will cause it to return NULL if asked to generate a second candidate. Then the prime-generation loops all detect that and return NULL in turn. However, for clients that _don't_ set a pcs into one-shot mode, the API remains unchanged: pcs_generate will not return until it's found a prime (by its own criteria). This feels like a bit of a bodge, API-wise. But the other two obvious approaches turn out more awkward. One option is to extract the Pockle from the PrimeGenerationContext and use that to directly test primality of 2p+1 based on p - but that way you don't get to _probabilistically_ generate safe primes, because that kind of PGC has no Pockle in the first place. (And you can't make one separately, because you can't convince it that an only probabilistically generated p is prime!) Another option is to add a test() method to PrimeGenerationPolicy, that sits alongside generate(). Then, having generated p, you just _test_ 2p+1. But then in the provable case you have to explain to it that it should use p as part of the proof, so that API would get awkward in its own way. So this is actually the least disruptive way to do it!
2020-02-29 06:47:12 +00:00
bool one_shot, thrown_away_my_shot;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
/* We'll start by making up a random number strictly less than this ... */
mp_int *limit;
/* ... then we'll multiply by 'factor', and add 'addend'. */
mp_int *factor, *addend;
/* Then we'll try to add a small multiple of 'factor' to it to
* avoid it being a multiple of any small prime. Also, for RSA, we
* may need to avoid it being _this_ multiple of _this_: */
unsigned avoid_residue, avoid_modulus;
/* Once we're actually running, this will be the complete list of
* (modulus, residue) pairs we want to avoid. */
struct avoid *avoids;
size_t navoids, avoidsize;
/* List of known primes that our number will be congruent to 1 modulo */
mp_int **kps;
size_t nkps, kpsize;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
};
PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
unsigned first, unsigned nfirst)
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
{
PrimeCandidateSource *s = snew(PrimeCandidateSource);
assert(first >> (nfirst-1) == 1);
s->bits = bits;
s->ready = false;
s->try_sophie_germain = false;
PrimeCandidateSource: add one-shot mode. If you want to generate a Sophie Germain / safe prime pair with this code, then after you've made p, you need to test the primality of 2p+1. The easiest way to do that is to make a PrimeCandidateSource that is so constrained as to only be able to deliver 2p+1 as a candidate, and then run the ordinary prime generation system. The problem is that the prime generation loops forever, so if 2p+1 _isn't_ prime, it will just keep testing the same number over and over again and failing the test. To solve this, I add a 'one-shot mode' to the PrimeCandidateSource itself, which will cause it to return NULL if asked to generate a second candidate. Then the prime-generation loops all detect that and return NULL in turn. However, for clients that _don't_ set a pcs into one-shot mode, the API remains unchanged: pcs_generate will not return until it's found a prime (by its own criteria). This feels like a bit of a bodge, API-wise. But the other two obvious approaches turn out more awkward. One option is to extract the Pockle from the PrimeGenerationContext and use that to directly test primality of 2p+1 based on p - but that way you don't get to _probabilistically_ generate safe primes, because that kind of PGC has no Pockle in the first place. (And you can't make one separately, because you can't convince it that an only probabilistically generated p is prime!) Another option is to add a test() method to PrimeGenerationPolicy, that sits alongside generate(). Then, having generated p, you just _test_ 2p+1. But then in the provable case you have to explain to it that it should use p as part of the proof, so that API would get awkward in its own way. So this is actually the least disruptive way to do it!
2020-02-29 06:47:12 +00:00
s->one_shot = false;
s->thrown_away_my_shot = false;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
s->kps = NULL;
s->nkps = s->kpsize = 0;
s->avoids = NULL;
s->navoids = s->avoidsize = 0;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
/* Make the number that's the lower limit of our range */
mp_int *firstmp = mp_from_integer(first);
mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
mp_free(firstmp);
/* Set the low bit of that, because all (nontrivial) primes are odd */
mp_set_bit(base, 0, 1);
/* That's our addend. Now initialise factor to 2, to ensure we
* only generate odd numbers */
s->factor = mp_from_integer(2);
s->addend = base;
/* And that means the limit of our random numbers must be one
* factor of two _less_ than the position of the low bit of
* 'first', because we'll be multiplying the random number by
* 2 immediately afterwards. */
s->limit = mp_power_2(bits - nfirst - 1);
/* avoid_modulus == 0 signals that there's no extra residue to avoid */
s->avoid_residue = 1;
s->avoid_modulus = 0;
return s;
}
PrimeCandidateSource *pcs_new(unsigned bits)
{
return pcs_new_with_firstbits(bits, 1, 1);
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
void pcs_free(PrimeCandidateSource *s)
{
mp_free(s->limit);
mp_free(s->factor);
mp_free(s->addend);
for (size_t i = 0; i < s->nkps; i++)
mp_free(s->kps[i]);
sfree(s->avoids);
sfree(s->kps);
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
sfree(s);
}
void pcs_try_sophie_germain(PrimeCandidateSource *s)
{
s->try_sophie_germain = true;
}
PrimeCandidateSource: add one-shot mode. If you want to generate a Sophie Germain / safe prime pair with this code, then after you've made p, you need to test the primality of 2p+1. The easiest way to do that is to make a PrimeCandidateSource that is so constrained as to only be able to deliver 2p+1 as a candidate, and then run the ordinary prime generation system. The problem is that the prime generation loops forever, so if 2p+1 _isn't_ prime, it will just keep testing the same number over and over again and failing the test. To solve this, I add a 'one-shot mode' to the PrimeCandidateSource itself, which will cause it to return NULL if asked to generate a second candidate. Then the prime-generation loops all detect that and return NULL in turn. However, for clients that _don't_ set a pcs into one-shot mode, the API remains unchanged: pcs_generate will not return until it's found a prime (by its own criteria). This feels like a bit of a bodge, API-wise. But the other two obvious approaches turn out more awkward. One option is to extract the Pockle from the PrimeGenerationContext and use that to directly test primality of 2p+1 based on p - but that way you don't get to _probabilistically_ generate safe primes, because that kind of PGC has no Pockle in the first place. (And you can't make one separately, because you can't convince it that an only probabilistically generated p is prime!) Another option is to add a test() method to PrimeGenerationPolicy, that sits alongside generate(). Then, having generated p, you just _test_ 2p+1. But then in the provable case you have to explain to it that it should use p as part of the proof, so that API would get awkward in its own way. So this is actually the least disruptive way to do it!
2020-02-29 06:47:12 +00:00
void pcs_set_oneshot(PrimeCandidateSource *s)
{
s->one_shot = true;
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
static void pcs_require_residue_inner(PrimeCandidateSource *s,
mp_int *mod, mp_int *res)
{
/*
* We already have a factor and addend. Ensure this one doesn't
* contradict it.
*/
mp_int *gcd = mp_gcd(mod, s->factor);
mp_int *test1 = mp_mod(s->addend, gcd);
mp_int *test2 = mp_mod(res, gcd);
assert(mp_cmp_eq(test1, test2));
mp_free(test1);
mp_free(test2);
/*
* Reduce our input factor and addend, which are constraints on
* the ultimate output number, so that they're constraints on the
* initial cofactor we're going to make up.
*
* If we're generating x and we want to ensure ax+b == r (mod m),
* how does that work? We've already checked that b == r modulo g
* = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
* let's write a=gA, m=gM, (r-b)=gR, and then we can start by
* dividing that off:
*
* ax == r-b (mod m )
* => gAx == gR (mod gM)
* => Ax == R (mod M)
*
* Now the moduli A,M are coprime, which makes things easier.
*
* We're going to need to generate the x in this equation by
* generating a new smaller value y, multiplying it by M, and
* adding some constant K. So we have x = My + K, and we need to
* work out what K will satisfy the above equation. In other
* words, we need A(My+K) == R (mod M), and the AMy term vanishes,
* so we just need AK == R (mod M). So our congruence is solved by
* setting K to be R * A^{-1} mod M.
*/
mp_int *A = mp_div(s->factor, gcd);
mp_int *M = mp_div(mod, gcd);
mp_int *Rpre = mp_modsub(res, s->addend, mod);
mp_int *R = mp_div(Rpre, gcd);
mp_int *Ainv = mp_invert(A, M);
mp_int *K = mp_modmul(R, Ainv, M);
mp_free(gcd);
mp_free(Rpre);
mp_free(Ainv);
mp_free(A);
mp_free(R);
/*
* So we know we have to transform our existing (factor, addend)
* pair into (factor * M, addend * factor * K). Now we just need
* to work out what the limit should be on the random value we're
* generating.
*
* If we need My+K < old_limit, then y < (old_limit-K)/M. But the
* RHS is a fraction, so in integers, we need y < ceil of it.
*/
assert(!mp_cmp_hs(K, s->limit));
mp_int *dividend = mp_add(s->limit, M);
mp_sub_integer_into(dividend, dividend, 1);
mp_sub_into(dividend, dividend, K);
mp_free(s->limit);
s->limit = mp_div(dividend, M);
mp_free(dividend);
/*
* Now just update the real factor and addend, and we're done.
*/
mp_int *addend_old = s->addend;
mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
s->addend = mp_add(s->addend, tmp);
mp_free(tmp);
mp_free(addend_old);
mp_int *factor_old = s->factor;
s->factor = mp_mul(s->factor, M);
mp_free(factor_old);
mp_free(M);
mp_free(K);
s->factor = mp_unsafe_shrink(s->factor);
s->addend = mp_unsafe_shrink(s->addend);
s->limit = mp_unsafe_shrink(s->limit);
}
void pcs_require_residue(PrimeCandidateSource *s,
mp_int *mod, mp_int *res_orig)
{
/*
* Reduce the input residue to its least non-negative value, in
* case it was given as a larger equivalent value.
*/
mp_int *res_reduced = mp_mod(res_orig, mod);
pcs_require_residue_inner(s, mod, res_reduced);
mp_free(res_reduced);
}
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
{
mp_int *res = mp_from_integer(1);
pcs_require_residue(s, mod, res);
mp_free(res);
}
void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod)
{
pcs_require_residue_1(s, mod);
sgrowarray(s->kps, s->kpsize, s->nkps);
s->kps[s->nkps++] = mp_copy(mod);
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res)
{
assert(!s->avoid_modulus); /* can't cope with more than one */
s->avoid_modulus = mod;
s->avoid_residue = res % mod; /* reduce, just in case */
}
static int avoid_cmp(const void *av, const void *bv)
{
const struct avoid *a = (const struct avoid *)av;
const struct avoid *b = (const struct avoid *)bv;
return a->mod < b->mod ? -1 : a->mod > b->mod ? +1 : 0;
}
static uint64_t invert(uint64_t a, uint64_t m)
{
int64_t v0 = a, i0 = 1;
int64_t v1 = m, i1 = 0;
while (v0) {
int64_t tmp, q = v1 / v0;
tmp = v0; v0 = v1 - q*v0; v1 = tmp;
tmp = i0; i0 = i1 - q*i0; i1 = tmp;
}
assert(v1 == 1 || v1 == -1);
return i1 * v1;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
}
void pcs_ready(PrimeCandidateSource *s)
{
/*
* List all the small (modulus, residue) pairs we want to avoid.
*/
init_smallprimes();
#define ADD_AVOID(newmod, newres) do { \
sgrowarray(s->avoids, s->avoidsize, s->navoids); \
s->avoids[s->navoids].mod = (newmod); \
s->avoids[s->navoids].res = (newres); \
s->navoids++; \
} while (0)
unsigned limit = (mp_hs_integer(s->addend, 65536) ? 65536 :
mp_get_integer(s->addend));
/*
* Don't be divisible by any small prime, or at least, any prime
* smaller than our output number might actually manage to be. (If
* asked to generate a really small prime, it would be
* embarrassing to rule out legitimate answers on the grounds that
* they were divisible by themselves.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
ADD_AVOID(smallprimes[i], 0);
if (s->try_sophie_germain) {
/*
* If we're aiming to generate a Sophie Germain prime (i.e. p
* such that 2p+1 is also prime), then we also want to ensure
* 2p+1 is not congruent to 0 mod any small prime, because if
* it is, we'll waste a lot of time generating a p for which
* 2p+1 can't possibly work. So we have to avoid an extra
* residue mod each odd q.
*
* We can simplify: 2p+1 == 0 (mod q)
* => 2p == -1 (mod q)
* => p == -2^{-1} (mod q)
*
* There's no need to do Euclid's algorithm to compute those
* inverses, because for any odd q, the modular inverse of -2
* mod q is just (q-1)/2. (Proof: multiplying it by -2 gives
* 1-q, which is congruent to 1 mod q.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
if (smallprimes[i] != 2)
ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2);
}
/*
* Finally, if there's a particular modulus and residue we've been
* told to avoid, put it on the list.
*/
if (s->avoid_modulus)
ADD_AVOID(s->avoid_modulus, s->avoid_residue);
#undef ADD_AVOID
/*
* Sort our to-avoid list by modulus. Partly this is so that we'll
* check the smaller moduli first during the live runs, which lets
* us spot most failing cases earlier rather than later. Also, it
* brings equal moduli together, so that we can reuse the residue
* we computed from a previous one.
*/
qsort(s->avoids, s->navoids, sizeof(*s->avoids), avoid_cmp);
/*
* Next, adjust each of these moduli to take account of our factor
* and addend. If we want factor*x+addend to avoid being congruent
* to 'res' modulo 'mod', then x itself must avoid being congruent
* to (res - addend) * factor^{-1}.
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
*
* If factor == 0 modulo mod, then the answer will have a fixed
* residue anyway, so we can discard it from our list to test.
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
*/
int64_t factor_m = 0, addend_m = 0, last_mod = 0;
size_t out = 0;
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, res = s->avoids[i].res;
if (mod != last_mod) {
last_mod = mod;
addend_m = mp_mod_known_integer(s->addend, mod);
factor_m = mp_mod_known_integer(s->factor, mod);
}
if (factor_m == 0) {
assert(res != addend_m);
continue;
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
res = (res - addend_m) * invert(factor_m, mod);
res %= mod;
if (res < 0)
res += mod;
s->avoids[out].mod = mod;
s->avoids[out].res = res;
out++;
}
s->navoids = out;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
s->ready = true;
}
mp_int *pcs_generate(PrimeCandidateSource *s)
{
assert(s->ready);
PrimeCandidateSource: add one-shot mode. If you want to generate a Sophie Germain / safe prime pair with this code, then after you've made p, you need to test the primality of 2p+1. The easiest way to do that is to make a PrimeCandidateSource that is so constrained as to only be able to deliver 2p+1 as a candidate, and then run the ordinary prime generation system. The problem is that the prime generation loops forever, so if 2p+1 _isn't_ prime, it will just keep testing the same number over and over again and failing the test. To solve this, I add a 'one-shot mode' to the PrimeCandidateSource itself, which will cause it to return NULL if asked to generate a second candidate. Then the prime-generation loops all detect that and return NULL in turn. However, for clients that _don't_ set a pcs into one-shot mode, the API remains unchanged: pcs_generate will not return until it's found a prime (by its own criteria). This feels like a bit of a bodge, API-wise. But the other two obvious approaches turn out more awkward. One option is to extract the Pockle from the PrimeGenerationContext and use that to directly test primality of 2p+1 based on p - but that way you don't get to _probabilistically_ generate safe primes, because that kind of PGC has no Pockle in the first place. (And you can't make one separately, because you can't convince it that an only probabilistically generated p is prime!) Another option is to add a test() method to PrimeGenerationPolicy, that sits alongside generate(). Then, having generated p, you just _test_ 2p+1. But then in the provable case you have to explain to it that it should use p as part of the proof, so that API would get awkward in its own way. So this is actually the least disruptive way to do it!
2020-02-29 06:47:12 +00:00
if (s->one_shot) {
if (s->thrown_away_my_shot)
return NULL;
s->thrown_away_my_shot = true;
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
while (true) {
mp_int *x = mp_random_upto(s->limit);
int64_t x_res = 0, last_mod = 0;
bool ok = true;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, avoid_res = s->avoids[i].res;
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
if (mod != last_mod) {
last_mod = mod;
x_res = mp_mod_known_integer(x, mod);
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
}
if (x_res == avoid_res) {
ok = false;
break;
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
}
if (!ok) {
mp_free(x);
if (s->one_shot)
return NULL;
continue; /* try a new x */
}
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
/*
* We've found a viable x. Make the final output value.
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
*/
mp_int *toret = mp_new(s->bits);
mp_mul_into(toret, x, s->factor);
Refactor generation of candidate integers in primegen. I've replaced the random number generation and small delta-finding loop in primegen() with a much more elaborate system in its own source file, with unit tests and everything. Immediate benefits: - fixes a theoretical possibility of overflowing the target number of bits, if the random number was so close to the top of the range that the addition of delta * factor pushed it over. However, this only happened with negligible probability. - fixes a directional bias in delta-finding. The previous code incremented the number repeatedly until it found a value coprime to all the right things, which meant that a prime preceded by a particularly long sequence of numbers with tiny factors was more likely to be chosen. Now we select candidate delta values at random, that bias should be eliminated. - changes the semantics of the outermost primegen() function to make them easier to use, because now the caller specifies the 'bits' and 'firstbits' values for the actual returned prime, rather than having to account for the factor you're multiplying it by in DSA. DSA client code is correspondingly adjusted. Future benefits: - having the candidate generation in a separate function makes it easy to reuse in alternative prime generation strategies - the available constraints support applications such as Maurer's algorithm for generating provable primes, or strong primes for RSA in which both p-1 and p+1 have a large factor. So those become things we could experiment with in future.
2020-02-23 14:30:03 +00:00
mp_add_into(toret, toret, s->addend);
mp_free(x);
return toret;
}
}
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out)
{
*limit_out = mp_copy(pcs->limit);
*factor_out = mp_copy(pcs->factor);
*addend_out = mp_copy(pcs->addend);
}
unsigned pcs_get_bits(PrimeCandidateSource *pcs)
{
return pcs->bits;
}
unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs)
{
return mp_get_nbits(pcs->limit);
}
mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs)
{
/* Compute (limit-1) * factor + addend */
mp_int *tmp = mp_mul(pcs->limit, pcs->factor);
mp_int *bound = mp_add(tmp, pcs->addend);
mp_free(tmp);
mp_sub_into(bound, bound, pcs->factor);
return bound;
}
mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout)
{
*nout = pcs->nkps;
return pcs->kps;
}