mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
Beginnings of a test suite for the bignum code. The output of
testdata/bignum.py is twice the size of the rest of the PuTTY source put together, so I'm not checking it in. This reveals bugs in the new multiplication code, which I have yet to fix. [originally from svn r9097]
This commit is contained in:
parent
b22bdb2b0d
commit
01d365b626
181
sshbn.c
181
sshbn.c
@ -247,6 +247,9 @@ static void internal_mul(const BignumInt *a, const BignumInt *b,
|
||||
int midlen = botlen + 1;
|
||||
BignumInt *scratch;
|
||||
BignumDblInt carry;
|
||||
#ifdef KARA_DEBUG
|
||||
int i;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
|
||||
@ -254,11 +257,40 @@ static void internal_mul(const BignumInt *a, const BignumInt *b,
|
||||
* place.
|
||||
*/
|
||||
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1,a0 = 0x");
|
||||
for (i = 0; i < len; i++) {
|
||||
if (i == toplen) printf(", 0x");
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("b1,b0 = 0x");
|
||||
for (i = 0; i < len; i++) {
|
||||
if (i == toplen) printf(", 0x");
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/* a_1 b_1 */
|
||||
internal_mul(a, b, c, toplen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1b1 = 0x");
|
||||
for (i = 0; i < 2*toplen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/* a_0 b_0 */
|
||||
internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a0b0 = 0x");
|
||||
for (i = 0; i < 2*botlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We must allocate scratch space for the central coefficient,
|
||||
@ -281,14 +313,35 @@ static void internal_mul(const BignumInt *a, const BignumInt *b,
|
||||
|
||||
/* compute a_1 + a_0 */
|
||||
scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1plusa0 = 0x");
|
||||
for (i = 0; i < midlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
/* compute b_1 + b_0 */
|
||||
scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
|
||||
scratch+midlen+1, botlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("b1plusb0 = 0x");
|
||||
for (i = 0; i < midlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Now we can do the third multiplication.
|
||||
*/
|
||||
internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1plusa0timesb1plusb0 = 0x");
|
||||
for (i = 0; i < 2*midlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Now we can reuse the first half of 'scratch' to compute the
|
||||
@ -300,9 +353,23 @@ static void internal_mul(const BignumInt *a, const BignumInt *b,
|
||||
scratch[2*midlen - 2*toplen + j] = c[j];
|
||||
scratch[1] = internal_add(scratch+2, c + 2*toplen,
|
||||
scratch+2, 2*botlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1b1plusa0b0 = 0x");
|
||||
for (i = 0; i < 2*midlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
internal_sub(scratch + 2*midlen, scratch,
|
||||
scratch + 2*midlen, 2*midlen);
|
||||
#ifdef KARA_DEBUG
|
||||
printf("a1b0plusa0b1 = 0x");
|
||||
for (i = 0; i < 2*midlen; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/*
|
||||
* And now all we need to do is to add that middle coefficient
|
||||
@ -320,6 +387,13 @@ static void internal_mul(const BignumInt *a, const BignumInt *b,
|
||||
c[j] = (BignumInt)carry;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
}
|
||||
#ifdef KARA_DEBUG
|
||||
printf("ab = 0x");
|
||||
for (i = 0; i < 2*len; i++) {
|
||||
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
|
||||
/* Free scratch. */
|
||||
for (j = 0; j < 4 * midlen; j++)
|
||||
@ -1531,3 +1605,110 @@ char *bignum_decimal(Bignum x)
|
||||
sfree(workspace);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef TESTBN
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
* gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
|
||||
*/
|
||||
|
||||
void modalfatalbox(char *p, ...)
|
||||
{
|
||||
va_list ap;
|
||||
fprintf(stderr, "FATAL ERROR: ");
|
||||
va_start(ap, p);
|
||||
vfprintf(stderr, p, ap);
|
||||
va_end(ap);
|
||||
fputc('\n', stderr);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char *buf;
|
||||
int line = 0;
|
||||
int passes = 0, fails = 0;
|
||||
|
||||
while ((buf = fgetline(stdin)) != NULL) {
|
||||
int maxlen = strlen(buf);
|
||||
unsigned char *data = snewn(maxlen, unsigned char);
|
||||
unsigned char *ptrs[4], *q;
|
||||
int ptrnum;
|
||||
char *bufp = buf;
|
||||
|
||||
line++;
|
||||
|
||||
q = data;
|
||||
ptrnum = 0;
|
||||
|
||||
while (*bufp) {
|
||||
char *start, *end;
|
||||
int i;
|
||||
|
||||
while (*bufp && !isxdigit((unsigned char)*bufp))
|
||||
bufp++;
|
||||
start = bufp;
|
||||
|
||||
if (!*bufp)
|
||||
break;
|
||||
|
||||
while (*bufp && isxdigit((unsigned char)*bufp))
|
||||
bufp++;
|
||||
end = bufp;
|
||||
|
||||
if (ptrnum >= lenof(ptrs))
|
||||
break;
|
||||
ptrs[ptrnum++] = q;
|
||||
|
||||
for (i = -((end - start) & 1); i < end-start; i += 2) {
|
||||
unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
|
||||
val = val * 16 + fromxdigit(start[i+1]);
|
||||
*q++ = val;
|
||||
}
|
||||
|
||||
ptrs[ptrnum] = q;
|
||||
}
|
||||
|
||||
if (ptrnum == 3) {
|
||||
Bignum a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
|
||||
Bignum b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
|
||||
Bignum c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
|
||||
Bignum p = bigmul(a, b);
|
||||
|
||||
if (bignum_cmp(c, p) == 0) {
|
||||
passes++;
|
||||
} else {
|
||||
char *as = bignum_decimal(a);
|
||||
char *bs = bignum_decimal(b);
|
||||
char *cs = bignum_decimal(c);
|
||||
char *ps = bignum_decimal(p);
|
||||
|
||||
printf("%d: fail: %s * %s gave %s expected %s\n",
|
||||
line, as, bs, ps, cs);
|
||||
fails++;
|
||||
|
||||
sfree(as);
|
||||
sfree(bs);
|
||||
sfree(cs);
|
||||
sfree(ps);
|
||||
}
|
||||
freebn(a);
|
||||
freebn(b);
|
||||
freebn(c);
|
||||
freebn(p);
|
||||
}
|
||||
sfree(buf);
|
||||
sfree(data);
|
||||
}
|
||||
|
||||
printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
|
||||
return fails != 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
82
testdata/bignum.py
vendored
Normal file
82
testdata/bignum.py
vendored
Normal file
@ -0,0 +1,82 @@
|
||||
# Generate test cases for a bignum implementation.
|
||||
|
||||
import sys
|
||||
import mathlib
|
||||
|
||||
def findprod(target, dir = +1, ratio=(1,1)):
|
||||
# Return two numbers whose product is as close as we can get to
|
||||
# 'target', with any deviation having the sign of 'dir', and in
|
||||
# the same approximate ratio as 'ratio'.
|
||||
|
||||
r = mathlib.sqrt(target * ratio[0] * ratio[1])
|
||||
a = r / ratio[1]
|
||||
b = r / ratio[0]
|
||||
if a*b * dir < target * dir:
|
||||
a = a + 1
|
||||
b = b + 1
|
||||
assert a*b * dir >= target * dir
|
||||
|
||||
best = (a,b,a*b)
|
||||
|
||||
while 1:
|
||||
improved = 0
|
||||
a, b = best[:2]
|
||||
|
||||
terms = mathlib.confracr(a, b, output=None)
|
||||
coeffs = [(1,0),(0,1)]
|
||||
for t in terms:
|
||||
coeffs.append((coeffs[-2][0]-t*coeffs[-1][0],
|
||||
coeffs[-2][1]-t*coeffs[-1][1]))
|
||||
for c in coeffs:
|
||||
# a*c[0]+b*c[1] is as close as we can get it to zero. So
|
||||
# if we replace a and b with a+c[1] and b+c[0], then that
|
||||
# will be added to our product, along with c[0]*c[1].
|
||||
da, db = c[1], c[0]
|
||||
|
||||
# Flip signs as appropriate.
|
||||
if (a+da) * (b+db) * dir < target * dir:
|
||||
da, db = -da, -db
|
||||
|
||||
# Multiply up. We want to get as close as we can to a
|
||||
# solution of the quadratic equation in n
|
||||
#
|
||||
# (a + n da) (b + n db) = target
|
||||
# => n^2 da db + n (b da + a db) + (a b - target) = 0
|
||||
A,B,C = da*db, b*da+a*db, a*b-target
|
||||
discrim = B^2-4*A*C
|
||||
if discrim > 0 and A != 0:
|
||||
root = mathlib.sqrt(discrim)
|
||||
vals = []
|
||||
vals.append((-B + root) / (2*A))
|
||||
vals.append((-B - root) / (2*A))
|
||||
if root * root != discrim:
|
||||
root = root + 1
|
||||
vals.append((-B + root) / (2*A))
|
||||
vals.append((-B - root) / (2*A))
|
||||
|
||||
for n in vals:
|
||||
ap = a + da*n
|
||||
bp = b + db*n
|
||||
pp = ap*bp
|
||||
if pp * dir >= target * dir and pp * dir < best[2]*dir:
|
||||
best = (ap, bp, pp)
|
||||
improved = 1
|
||||
|
||||
if not improved:
|
||||
break
|
||||
|
||||
return best
|
||||
|
||||
def hexstr(n):
|
||||
s = hex(n)
|
||||
if s[:2] == "0x": s = s[2:]
|
||||
if s[-1:] == "L": s = s[:-1]
|
||||
return s
|
||||
|
||||
# Tests of multiplication which exercise the propagation of the last
|
||||
# carry to the very top of the number.
|
||||
for i in range(1,4200):
|
||||
a, b, p = findprod((1<<i)+1, +1, (i, i*i+1))
|
||||
print hexstr(a), hexstr(b), hexstr(p)
|
||||
a, b, p = findprod((1<<i)+1, +1, (i, i+1))
|
||||
print hexstr(a), hexstr(b), hexstr(p)
|
Loading…
Reference in New Issue
Block a user