1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00

numbertheory.py: generalise SqrtModP to do other roots.

I'm about to want to solve quartics mod a prime, which means I'll need
to be able to take cube roots mod p as well as square roots.

This commit introduces a more general class which can take rth roots
for any prime r, and moreover, it can do it in a general cyclic group.
(You have to tell it the group's order and give it some primitives for
doing arithmetic, plus a way of iterating over the group elements that
it can use to look for a non-rth-power and roots of unity.)

That system makes it nicely easy to test, because you can give it a
cyclic group represented as the integers under _addition_, and then
you obviously know what all the right answers are. So I've also added
a unit test system checking that.
This commit is contained in:
Simon Tatham 2020-02-28 20:14:28 +00:00
parent 7be2e16023
commit 072d3c665a
2 changed files with 148 additions and 50 deletions

View File

@ -111,9 +111,9 @@ class WeierstrassCurve(CurveBase):
def cpoint(self, x, yparity=0): def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'): if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p) self.sqrtmodp = RootModP(2, self.p)
rhs = x**3 + self.a.n * x + self.b.n rhs = x**3 + self.a.n * x + self.b.n
y = self.sqrtmodp.sqrt(rhs) y = self.sqrtmodp.root(rhs)
if (y - yparity) % 2: if (y - yparity) % 2:
y = -y y = -y
return self.point(x, y) return self.point(x, y)
@ -157,9 +157,9 @@ class MontgomeryCurve(CurveBase):
def cpoint(self, x, yparity=0): def cpoint(self, x, yparity=0):
if not hasattr(self, 'sqrtmodp'): if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p) self.sqrtmodp = RootModP(2, self.p)
rhs = (x**3 + self.a.n * x**2 + x) / self.b rhs = (x**3 + self.a.n * x**2 + x) / self.b
y = self.sqrtmodp.sqrt(int(rhs)) y = self.sqrtmodp.root(int(rhs))
if (y - yparity) % 2: if (y - yparity) % 2:
y = -y y = -y
return self.point(x, y) return self.point(x, y)
@ -198,11 +198,11 @@ class TwistedEdwardsCurve(CurveBase):
def cpoint(self, y, xparity=0): def cpoint(self, y, xparity=0):
if not hasattr(self, 'sqrtmodp'): if not hasattr(self, 'sqrtmodp'):
self.sqrtmodp = SqrtModP(self.p) self.sqrtmodp = RootModP(self.p)
y = ModP(self.p, y) y = ModP(self.p, y)
y2 = y**2 y2 = y**2
radicand = (y2 - 1) / (self.d * y2 - self.a) radicand = (y2 - 1) / (self.d * y2 - self.a)
x = self.sqrtmodp.sqrt(radicand.n) x = self.sqrtmodp.root(radicand.n)
if (x - xparity) % 2: if (x - xparity) % 2:
x = -x x = -x
return self.point(x, y) return self.point(x, y)

View File

@ -1,5 +1,6 @@
import numbers import numbers
import itertools import itertools
import unittest
def invert(a, b): def invert(a, b):
"Multiplicative inverse of a mod b. a,b must be coprime." "Multiplicative inverse of a mod b. a,b must be coprime."
@ -36,57 +37,148 @@ def jacobi(n,m):
acc *= -1 acc *= -1
n, m = m, n n, m = m, n
class SqrtModP(object): class CyclicGroupRootFinder(object):
"""Class for finding square roots of numbers mod p. """Class for finding rth roots in a cyclic group. r must be prime."""
p must be an odd prime (but its primality is not checked).""" # Basic strategy:
#
# We write |G| = r^k u, with u coprime to r. This gives us a
# nested sequence of subgroups G = G_0 > G_1 > ... > G_k, each
# with index 3 in its predecessor. G_0 is the whole group, and the
# innermost G_k has order u.
#
# Within G_k, you can take an rth root by raising an element to
# the power of (r^{-1} mod u). If k=0 (so G = G_0 = G_k) then
# that's all that's needed: every element has a unique rth root.
# But if k>0, then things go differently.
#
# Define the 'rank' of an element g as the highest i such that
# g \in G_i. Elements of rank 0 are the non-rth-powers: they don't
# even _have_ an rth root. Elements of rank k are the easy ones to
# take rth roots of, as above.
#
# In between, you can follow an inductive process, as long as you
# know one element z of index 0. Suppose we're trying to take the
# rth root of some g with index i. Repeatedly multiply g by
# z^{r^i} until its index increases; then take the root of that
# (recursively), and divide off z^{r^{i-1}} once you're done.
def __init__(self, p): def __init__(self, r, order):
p = abs(p) self.order = order # order of G
assert p & 1 self.r = r
self.p = p self.k = next(k for k in itertools.count()
if self.order % (r**(k+1)) != 0)
self.u = self.order // (r**self.k)
self.z = next(z for z in self.iter_elements()
if self.index(z) == 0)
self.zinv = self.inverse(self.z)
self.root_power = invert(self.r, self.u) if self.u > 1 else 0
# Decompose p as 2^e k + 1 for odd k. self.roots_of_unity = {self.identity()}
self.k = p-1 if self.k > 0:
self.e = 0 exponent = self.order // self.r
while not (self.k & 1): for z in self.iter_elements():
self.k >>= 1 root_of_unity = self.pow(z, exponent)
self.e += 1 if root_of_unity not in self.roots_of_unity:
self.roots_of_unity.add(root_of_unity)
# Find a non-square mod p. if len(self.roots_of_unity) == r:
for self.z in itertools.count(1):
if jacobi(self.z, self.p) == -1:
break break
self.zinv = ModP(self.p, self.z).invert()
def sqrt_recurse(self, a): def index(self, g):
ak = pow(a, self.k, self.p) h = self.pow(g, self.u)
for i in range(self.e, -1, -1): for i in range(self.k+1):
if ak == 1: if h == self.identity():
break return self.k - i
ak = ak*ak % self.p h = self.pow(h, self.r)
assert i > 0 assert False, ("Not a cyclic group! Raising {} to u r^k should give e."
if i == self.e: .format(g))
return pow(a, (self.k+1) // 2, self.p)
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
def sqrt(self, a): def all_roots(self, g):
j = jacobi(a, self.p) try:
if j == 0: r = self.root(g)
except ValueError:
return []
return {r * rou for rou in self.roots_of_unity}
def root(self, g):
i = self.index(g)
if i == 0 and self.k > 0:
raise ValueError("{} has no {}th root".format(g, self.r))
out = self.root_recurse(g, i)
assert self.pow(out, self.r) == g
return out
def root_recurse(self, g, i):
if i == self.k:
return self.pow(g, self.root_power)
z_in = self.pow(self.z, self.r**i)
z_out = self.pow(self.zinv, self.r**(i-1))
adjust = self.identity()
while True:
g = self.mul(g, z_in)
adjust = self.mul(adjust, z_out)
i2 = self.index(g)
if i2 > i:
return self.mul(self.root_recurse(g, i2), adjust)
class AdditiveGroupRootFinder(CyclicGroupRootFinder):
"""Trivial test subclass for CyclicGroupRootFinder.
Represents a cyclic group of any order additively, as the integers
mod n under addition. This makes root-finding trivial without
having to use the complicated algorithm above, and therefore it's
a good way to test the complicated algorithm under conditions
where the right answers are obvious."""
def __init__(self, r, order):
super().__init__(r, order)
def mul(self, x, y):
return (x + y) % self.order
def pow(self, x, n):
return (x * n) % self.order
def inverse(self, x):
return (-x) % self.order
def identity(self):
return 0 return 0
if j < 0: def iter_elements(self):
raise ValueError("{} has no square root mod {}".format(a, self.p)) return range(self.order)
a %= self.p
r = self.sqrt_recurse(a)
assert r*r % self.p == a
# Normalise to the smaller (or 'positive') one of the two roots.
return min(r, self.p - r)
def __str__(self): class TestCyclicGroupRootFinder(unittest.TestCase):
return "{}({})".format(type(self).__name__, self.p) def testRootFinding(self):
def __repr__(self): for order in 10, 11, 12, 18:
return self.__str__() grf = AdditiveGroupRootFinder(3, order)
for i in range(order):
try:
r = grf.root(i)
except ValueError:
r = None
if order % 3 == 0 and i % 3 != 0:
self.assertEqual(r, None)
else:
self.assertEqual(r*3 % order, i)
class RootModP(CyclicGroupRootFinder):
"""The live class that can take rth roots mod a prime."""
def __init__(self, r, p):
self.modulus = p
super().__init__(r, p-1)
def mul(self, x, y):
return (x * y) % self.modulus
def pow(self, x, n):
return pow(x, n, self.modulus)
def inverse(self, x):
return invert(x, self.modulus)
def identity(self):
return 1
def iter_elements(self):
return range(1, self.modulus)
def root(self, g):
return 0 if g == 0 else super().root(g)
class ModP(object): class ModP(object):
"""Class that represents integers mod p as a field. """Class that represents integers mod p as a field.
@ -179,3 +271,9 @@ class ModP(object):
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n) return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
def __hash__(self): def __hash__(self):
return hash((type(self).__name__, self.p, self.n)) return hash((type(self).__name__, self.p, self.n))
if __name__ == "__main__":
import sys
if sys.argv[1:] == ["--test"]:
sys.argv[1:2] = []
unittest.main()