mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
eccref.py: move support routines into a new file.
I'm about to want to expand the underlying number-theory code, so I'll start by moving it into a file where it has room to grow without swamping the main purpose of eccref.py.
This commit is contained in:
parent
c9a8fa639e
commit
122d785283
179
test/eccref.py
179
test/eccref.py
@ -1,184 +1,7 @@
|
||||
import numbers
|
||||
import itertools
|
||||
|
||||
def jacobi(n,m):
|
||||
"""Compute the Jacobi symbol.
|
||||
|
||||
The special case of this when m is prime is the Legendre symbol,
|
||||
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
|
||||
non-zero square number mod m; -1 if n is not congruent to any
|
||||
square mod m.
|
||||
|
||||
"""
|
||||
assert m & 1
|
||||
acc = 1
|
||||
while True:
|
||||
n %= m
|
||||
if n == 0:
|
||||
return 0
|
||||
while not (n & 1):
|
||||
n >>= 1
|
||||
if (m & 7) not in {1,7}:
|
||||
acc *= -1
|
||||
if n == 1:
|
||||
return acc
|
||||
if (n & 3) == 3 and (m & 3) == 3:
|
||||
acc *= -1
|
||||
n, m = m, n
|
||||
|
||||
class SqrtModP(object):
|
||||
"""Class for finding square roots of numbers mod p.
|
||||
|
||||
p must be an odd prime (but its primality is not checked)."""
|
||||
|
||||
def __init__(self, p):
|
||||
p = abs(p)
|
||||
assert p & 1
|
||||
self.p = p
|
||||
|
||||
# Decompose p as 2^e k + 1 for odd k.
|
||||
self.k = p-1
|
||||
self.e = 0
|
||||
while not (self.k & 1):
|
||||
self.k >>= 1
|
||||
self.e += 1
|
||||
|
||||
# Find a non-square mod p.
|
||||
for self.z in itertools.count(1):
|
||||
if jacobi(self.z, self.p) == -1:
|
||||
break
|
||||
self.zinv = ModP(self.p, self.z).invert()
|
||||
|
||||
def sqrt_recurse(self, a):
|
||||
ak = pow(a, self.k, self.p)
|
||||
for i in range(self.e, -1, -1):
|
||||
if ak == 1:
|
||||
break
|
||||
ak = ak*ak % self.p
|
||||
assert i > 0
|
||||
if i == self.e:
|
||||
return pow(a, (self.k+1) // 2, self.p)
|
||||
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
|
||||
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
|
||||
|
||||
def sqrt(self, a):
|
||||
j = jacobi(a, self.p)
|
||||
if j == 0:
|
||||
return 0
|
||||
if j < 0:
|
||||
raise ValueError("{} has no square root mod {}".format(a, self.p))
|
||||
a %= self.p
|
||||
r = self.sqrt_recurse(a)
|
||||
assert r*r % self.p == a
|
||||
# Normalise to the smaller (or 'positive') one of the two roots.
|
||||
return min(r, self.p - r)
|
||||
|
||||
def __str__(self):
|
||||
return "{}({})".format(type(self).__name__, self.p)
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
class ModP(object):
|
||||
"""Class that represents integers mod p as a field.
|
||||
|
||||
All the usual arithmetic operations are supported directly,
|
||||
including division, so you can write formulas in a natural way
|
||||
without having to keep saying '% p' everywhere or call a
|
||||
cumbersome modular_inverse() function.
|
||||
|
||||
"""
|
||||
def __init__(self, p, n=0):
|
||||
self.p = p
|
||||
if isinstance(n, type(self)):
|
||||
self.check(n)
|
||||
n = n.n
|
||||
self.n = n % p
|
||||
def check(self, other):
|
||||
assert isinstance(other, type(self))
|
||||
assert isinstance(self, type(other))
|
||||
assert self.p == other.p
|
||||
def coerce_to(self, other):
|
||||
if not isinstance(other, type(self)):
|
||||
other = type(self)(self.p, other)
|
||||
else:
|
||||
self.check(other)
|
||||
return other
|
||||
def invert(self):
|
||||
"Internal routine which returns the bare inverse."
|
||||
if self.n % self.p == 0:
|
||||
raise ZeroDivisionError("division by {!r}".format(self))
|
||||
a = self.n, 1, 0
|
||||
b = self.p, 0, 1
|
||||
while b[0]:
|
||||
q = a[0] // b[0]
|
||||
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
|
||||
b, a = a, b
|
||||
assert abs(a[0]) == 1
|
||||
return a[1]*a[0]
|
||||
def __int__(self):
|
||||
return self.n
|
||||
def __add__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
||||
def __neg__(self):
|
||||
return type(self)(self.p, -self.n % self.p)
|
||||
def __radd__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
||||
def __sub__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n - rhs.n) % self.p)
|
||||
def __rsub__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (rhs.n - self.n) % self.p)
|
||||
def __mul__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
||||
def __rmul__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
||||
def __div__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.invert()) % self.p)
|
||||
def __rdiv__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (rhs.n * self.invert()) % self.p)
|
||||
def __truediv__(self, rhs): return self.__div__(rhs)
|
||||
def __rtruediv__(self, rhs): return self.__rdiv__(rhs)
|
||||
def __pow__(self, exponent):
|
||||
assert exponent >= 0
|
||||
n, b_to_n = 1, self
|
||||
total = type(self)(self.p, 1)
|
||||
while True:
|
||||
if exponent & n:
|
||||
exponent -= n
|
||||
total *= b_to_n
|
||||
n *= 2
|
||||
if n > exponent:
|
||||
break
|
||||
b_to_n *= b_to_n
|
||||
return total
|
||||
def __cmp__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return cmp(self.n, rhs.n)
|
||||
def __eq__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return self.n == rhs.n
|
||||
def __ne__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return self.n != rhs.n
|
||||
def __lt__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __le__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __gt__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __ge__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __str__(self):
|
||||
return "0x{:x}".format(self.n)
|
||||
def __repr__(self):
|
||||
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
|
||||
from numbertheory import *
|
||||
|
||||
class AffinePoint(object):
|
||||
"""Base class for points on an elliptic curve."""
|
||||
|
181
test/numbertheory.py
Normal file
181
test/numbertheory.py
Normal file
@ -0,0 +1,181 @@
|
||||
import numbers
|
||||
import itertools
|
||||
|
||||
def jacobi(n,m):
|
||||
"""Compute the Jacobi symbol.
|
||||
|
||||
The special case of this when m is prime is the Legendre symbol,
|
||||
which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a
|
||||
non-zero square number mod m; -1 if n is not congruent to any
|
||||
square mod m.
|
||||
|
||||
"""
|
||||
assert m & 1
|
||||
acc = 1
|
||||
while True:
|
||||
n %= m
|
||||
if n == 0:
|
||||
return 0
|
||||
while not (n & 1):
|
||||
n >>= 1
|
||||
if (m & 7) not in {1,7}:
|
||||
acc *= -1
|
||||
if n == 1:
|
||||
return acc
|
||||
if (n & 3) == 3 and (m & 3) == 3:
|
||||
acc *= -1
|
||||
n, m = m, n
|
||||
|
||||
class SqrtModP(object):
|
||||
"""Class for finding square roots of numbers mod p.
|
||||
|
||||
p must be an odd prime (but its primality is not checked)."""
|
||||
|
||||
def __init__(self, p):
|
||||
p = abs(p)
|
||||
assert p & 1
|
||||
self.p = p
|
||||
|
||||
# Decompose p as 2^e k + 1 for odd k.
|
||||
self.k = p-1
|
||||
self.e = 0
|
||||
while not (self.k & 1):
|
||||
self.k >>= 1
|
||||
self.e += 1
|
||||
|
||||
# Find a non-square mod p.
|
||||
for self.z in itertools.count(1):
|
||||
if jacobi(self.z, self.p) == -1:
|
||||
break
|
||||
self.zinv = ModP(self.p, self.z).invert()
|
||||
|
||||
def sqrt_recurse(self, a):
|
||||
ak = pow(a, self.k, self.p)
|
||||
for i in range(self.e, -1, -1):
|
||||
if ak == 1:
|
||||
break
|
||||
ak = ak*ak % self.p
|
||||
assert i > 0
|
||||
if i == self.e:
|
||||
return pow(a, (self.k+1) // 2, self.p)
|
||||
r_prime = self.sqrt_recurse(a * pow(self.z, 2**i, self.p))
|
||||
return r_prime * pow(self.zinv, 2**(i-1), self.p) % self.p
|
||||
|
||||
def sqrt(self, a):
|
||||
j = jacobi(a, self.p)
|
||||
if j == 0:
|
||||
return 0
|
||||
if j < 0:
|
||||
raise ValueError("{} has no square root mod {}".format(a, self.p))
|
||||
a %= self.p
|
||||
r = self.sqrt_recurse(a)
|
||||
assert r*r % self.p == a
|
||||
# Normalise to the smaller (or 'positive') one of the two roots.
|
||||
return min(r, self.p - r)
|
||||
|
||||
def __str__(self):
|
||||
return "{}({})".format(type(self).__name__, self.p)
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
class ModP(object):
|
||||
"""Class that represents integers mod p as a field.
|
||||
|
||||
All the usual arithmetic operations are supported directly,
|
||||
including division, so you can write formulas in a natural way
|
||||
without having to keep saying '% p' everywhere or call a
|
||||
cumbersome modular_inverse() function.
|
||||
|
||||
"""
|
||||
def __init__(self, p, n=0):
|
||||
self.p = p
|
||||
if isinstance(n, type(self)):
|
||||
self.check(n)
|
||||
n = n.n
|
||||
self.n = n % p
|
||||
def check(self, other):
|
||||
assert isinstance(other, type(self))
|
||||
assert isinstance(self, type(other))
|
||||
assert self.p == other.p
|
||||
def coerce_to(self, other):
|
||||
if not isinstance(other, type(self)):
|
||||
other = type(self)(self.p, other)
|
||||
else:
|
||||
self.check(other)
|
||||
return other
|
||||
def invert(self):
|
||||
"Internal routine which returns the bare inverse."
|
||||
if self.n % self.p == 0:
|
||||
raise ZeroDivisionError("division by {!r}".format(self))
|
||||
a = self.n, 1, 0
|
||||
b = self.p, 0, 1
|
||||
while b[0]:
|
||||
q = a[0] // b[0]
|
||||
a = a[0] - q*b[0], a[1] - q*b[1], a[2] - q*b[2]
|
||||
b, a = a, b
|
||||
assert abs(a[0]) == 1
|
||||
return a[1]*a[0]
|
||||
def __int__(self):
|
||||
return self.n
|
||||
def __add__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
||||
def __neg__(self):
|
||||
return type(self)(self.p, -self.n % self.p)
|
||||
def __radd__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n + rhs.n) % self.p)
|
||||
def __sub__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n - rhs.n) % self.p)
|
||||
def __rsub__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (rhs.n - self.n) % self.p)
|
||||
def __mul__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
||||
def __rmul__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.n) % self.p)
|
||||
def __div__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (self.n * rhs.invert()) % self.p)
|
||||
def __rdiv__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return type(self)(self.p, (rhs.n * self.invert()) % self.p)
|
||||
def __truediv__(self, rhs): return self.__div__(rhs)
|
||||
def __rtruediv__(self, rhs): return self.__rdiv__(rhs)
|
||||
def __pow__(self, exponent):
|
||||
assert exponent >= 0
|
||||
n, b_to_n = 1, self
|
||||
total = type(self)(self.p, 1)
|
||||
while True:
|
||||
if exponent & n:
|
||||
exponent -= n
|
||||
total *= b_to_n
|
||||
n *= 2
|
||||
if n > exponent:
|
||||
break
|
||||
b_to_n *= b_to_n
|
||||
return total
|
||||
def __cmp__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return cmp(self.n, rhs.n)
|
||||
def __eq__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return self.n == rhs.n
|
||||
def __ne__(self, rhs):
|
||||
rhs = self.coerce_to(rhs)
|
||||
return self.n != rhs.n
|
||||
def __lt__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __le__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __gt__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __ge__(self, rhs):
|
||||
raise ValueError("Elements of a modular ring have no ordering")
|
||||
def __str__(self):
|
||||
return "0x{:x}".format(self.n)
|
||||
def __repr__(self):
|
||||
return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n)
|
Loading…
Reference in New Issue
Block a user