mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
PrimeCandidateSource: add Sophie Germain filtering.
A Sophie Germain prime is a prime p such that 2p+1 is also prime. The larger prime of the pair 2p+1 is also known as a 'safe prime', and is the preferred kind of modulus for conventional Diffie-Hellman. Generating these is harder work than normal prime generation. There's not really much of a technique except to just keep generating candidate primes p and then testing 2p+1. But what you _can_ do to speed things up is to get the prime-candidate generator to help a bit: it's already enforcing that no small prime divides p, and it's easy to get it to also enforce that no small prime divides 2p+1. That check can filter out a lot of bad candidates early, before you waste time on the more expensive checks, so you have a better chance of success with each number that gets as far as Miller-Rabin. Here I add an extra setup function for PrimeCandidateSource which enables those extra checks. After you call pcs_try_sophie_germain(), the PCS will only deliver you numbers for which both p and 2p+1 are free of small factors.
This commit is contained in:
parent
18fd47b618
commit
6b1fbfe55c
@ -15,7 +15,7 @@ struct avoid {
|
|||||||
|
|
||||||
struct PrimeCandidateSource {
|
struct PrimeCandidateSource {
|
||||||
unsigned bits;
|
unsigned bits;
|
||||||
bool ready;
|
bool ready, try_sophie_germain;
|
||||||
|
|
||||||
/* We'll start by making up a random number strictly less than this ... */
|
/* We'll start by making up a random number strictly less than this ... */
|
||||||
mp_int *limit;
|
mp_int *limit;
|
||||||
@ -47,6 +47,7 @@ PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
|
|||||||
|
|
||||||
s->bits = bits;
|
s->bits = bits;
|
||||||
s->ready = false;
|
s->ready = false;
|
||||||
|
s->try_sophie_germain = false;
|
||||||
|
|
||||||
s->kps = NULL;
|
s->kps = NULL;
|
||||||
s->nkps = s->kpsize = 0;
|
s->nkps = s->kpsize = 0;
|
||||||
@ -97,6 +98,11 @@ void pcs_free(PrimeCandidateSource *s)
|
|||||||
sfree(s);
|
sfree(s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void pcs_try_sophie_germain(PrimeCandidateSource *s)
|
||||||
|
{
|
||||||
|
s->try_sophie_germain = true;
|
||||||
|
}
|
||||||
|
|
||||||
static void pcs_require_residue_inner(PrimeCandidateSource *s,
|
static void pcs_require_residue_inner(PrimeCandidateSource *s,
|
||||||
mp_int *mod, mp_int *res)
|
mp_int *mod, mp_int *res)
|
||||||
{
|
{
|
||||||
@ -270,6 +276,29 @@ void pcs_ready(PrimeCandidateSource *s)
|
|||||||
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
|
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
|
||||||
ADD_AVOID(smallprimes[i], 0);
|
ADD_AVOID(smallprimes[i], 0);
|
||||||
|
|
||||||
|
if (s->try_sophie_germain) {
|
||||||
|
/*
|
||||||
|
* If we're aiming to generate a Sophie Germain prime (i.e. p
|
||||||
|
* such that 2p+1 is also prime), then we also want to ensure
|
||||||
|
* 2p+1 is not congruent to 0 mod any small prime, because if
|
||||||
|
* it is, we'll waste a lot of time generating a p for which
|
||||||
|
* 2p+1 can't possibly work. So we have to avoid an extra
|
||||||
|
* residue mod each odd q.
|
||||||
|
*
|
||||||
|
* We can simplify: 2p+1 == 0 (mod q)
|
||||||
|
* => 2p == -1 (mod q)
|
||||||
|
* => p == -2^{-1} (mod q)
|
||||||
|
*
|
||||||
|
* There's no need to do Euclid's algorithm to compute those
|
||||||
|
* inverses, because for any odd q, the modular inverse of -2
|
||||||
|
* mod q is just (q-1)/2. (Proof: multiplying it by -2 gives
|
||||||
|
* 1-q, which is congruent to 1 mod q.)
|
||||||
|
*/
|
||||||
|
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
|
||||||
|
if (smallprimes[i] != 2)
|
||||||
|
ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2);
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Finally, if there's a particular modulus and residue we've been
|
* Finally, if there's a particular modulus and residue we've been
|
||||||
* told to avoid, put it on the list.
|
* told to avoid, put it on the list.
|
||||||
|
@ -51,6 +51,9 @@ void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod);
|
|||||||
void pcs_avoid_residue_small(PrimeCandidateSource *s,
|
void pcs_avoid_residue_small(PrimeCandidateSource *s,
|
||||||
unsigned mod, unsigned res);
|
unsigned mod, unsigned res);
|
||||||
|
|
||||||
|
/* Exclude any prime that has no chance of being a Sophie Germain prime. */
|
||||||
|
void pcs_try_sophie_germain(PrimeCandidateSource *s);
|
||||||
|
|
||||||
/* Prepare a PrimeCandidateSource to actually generate numbers. This
|
/* Prepare a PrimeCandidateSource to actually generate numbers. This
|
||||||
* function does last-minute computation that has to be delayed until
|
* function does last-minute computation that has to be delayed until
|
||||||
* all constraints have been input. */
|
* all constraints have been input. */
|
||||||
|
@ -276,6 +276,7 @@ FUNC3(void, pcs_require_residue, val_pcs, val_mpint, val_mpint)
|
|||||||
FUNC2(void, pcs_require_residue_1, val_pcs, val_mpint)
|
FUNC2(void, pcs_require_residue_1, val_pcs, val_mpint)
|
||||||
FUNC2(void, pcs_require_residue_1_mod_prime, val_pcs, val_mpint)
|
FUNC2(void, pcs_require_residue_1_mod_prime, val_pcs, val_mpint)
|
||||||
FUNC3(void, pcs_avoid_residue_small, val_pcs, uint, uint)
|
FUNC3(void, pcs_avoid_residue_small, val_pcs, uint, uint)
|
||||||
|
FUNC1(void, pcs_try_sophie_germain, val_pcs)
|
||||||
FUNC1(void, pcs_ready, val_pcs)
|
FUNC1(void, pcs_ready, val_pcs)
|
||||||
FUNC4(void, pcs_inspect, val_pcs, out_val_mpint, out_val_mpint, out_val_mpint)
|
FUNC4(void, pcs_inspect, val_pcs, out_val_mpint, out_val_mpint, out_val_mpint)
|
||||||
FUNC1(val_mpint, pcs_generate, val_pcs)
|
FUNC1(val_mpint, pcs_generate, val_pcs)
|
||||||
|
Loading…
Reference in New Issue
Block a user