mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-08 08:58:00 +00:00
Factor out Miller-Rabin checking into its own file.
This further cleans up the prime-generation code, to the point where the main primegen() function has almost nothing in it. Also now I'll be able to reuse M-R as a primitive in more sophisticated alternatives to primegen().
This commit is contained in:
parent
79d3c1783b
commit
750f5222b2
2
Recipe
2
Recipe
@ -282,7 +282,7 @@ UXSSH = SSH uxnoise uxagentc uxgss uxshare
|
||||
SFTP = psftpcommon sftp sftpcommon logging cmdline
|
||||
|
||||
# Components of the prime-generation system.
|
||||
SSHPRIME = sshprime smallprimes primecandidate mpunsafe
|
||||
SSHPRIME = sshprime smallprimes primecandidate millerrabin mpunsafe
|
||||
|
||||
# Miscellaneous objects appearing in all the utilities, or all the
|
||||
# network ones, or the Unix or Windows subsets of those in turn.
|
||||
|
214
millerrabin.c
Normal file
214
millerrabin.c
Normal file
@ -0,0 +1,214 @@
|
||||
/*
|
||||
* millerrabin.c: Miller-Rabin probabilistic primality testing, as
|
||||
* declared in sshkeygen.h.
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include "ssh.h"
|
||||
#include "sshkeygen.h"
|
||||
#include "mpint.h"
|
||||
#include "mpunsafe.h"
|
||||
|
||||
/*
|
||||
* The Miller-Rabin primality test is an extension to the Fermat
|
||||
* test. The Fermat test just checks that a^(p-1) == 1 mod p; this
|
||||
* is vulnerable to Carmichael numbers. Miller-Rabin considers how
|
||||
* that 1 is derived as well.
|
||||
*
|
||||
* Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
|
||||
* or a == -1 (mod p).
|
||||
*
|
||||
* Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
|
||||
* since p is prime, either p divides (a+1) or p divides (a-1).
|
||||
* But this is the same as saying that either a is congruent to
|
||||
* -1 mod p or a is congruent to +1 mod p. []
|
||||
*
|
||||
* Comment: This fails when p is not prime. Consider p=mn, so
|
||||
* that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
|
||||
* and n dividing (a-1), without the whole of mn dividing either.
|
||||
* For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
|
||||
* 10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
|
||||
* without a having to be congruent to either 1 or -1.
|
||||
*
|
||||
* So the Miller-Rabin test, as well as considering a^(p-1),
|
||||
* considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
|
||||
* go. In other words. we write p-1 as q * 2^k, with k as large as
|
||||
* possible (i.e. q must be odd), and we consider the powers
|
||||
*
|
||||
* a^(q*2^0) a^(q*2^1) ... a^(q*2^(k-1)) a^(q*2^k)
|
||||
* i.e. a^((n-1)/2^k) a^((n-1)/2^(k-1)) ... a^((n-1)/2) a^(n-1)
|
||||
*
|
||||
* If p is to be prime, the last of these must be 1. Therefore, by
|
||||
* the above lemma, the one before it must be either 1 or -1. And
|
||||
* _if_ it's 1, then the one before that must be either 1 or -1,
|
||||
* and so on ... In other words, we expect to see a trailing chain
|
||||
* of 1s preceded by a -1. (If we're unlucky, our trailing chain of
|
||||
* 1s will be as long as the list so we'll never get to see what
|
||||
* lies before it. This doesn't count as a test failure because it
|
||||
* hasn't _proved_ that p is not prime.)
|
||||
*
|
||||
* For example, consider a=2 and p=1729. 1729 is a Carmichael
|
||||
* number: although it's not prime, it satisfies a^(p-1) == 1 mod p
|
||||
* for any a coprime to it. So the Fermat test wouldn't have a
|
||||
* problem with it at all, unless we happened to stumble on an a
|
||||
* which had a common factor.
|
||||
*
|
||||
* So. 1729 - 1 equals 27 * 2^6. So we look at
|
||||
*
|
||||
* 2^27 mod 1729 == 645
|
||||
* 2^108 mod 1729 == 1065
|
||||
* 2^216 mod 1729 == 1
|
||||
* 2^432 mod 1729 == 1
|
||||
* 2^864 mod 1729 == 1
|
||||
* 2^1728 mod 1729 == 1
|
||||
*
|
||||
* We do have a trailing string of 1s, so the Fermat test would
|
||||
* have been happy. But this trailing string of 1s is preceded by
|
||||
* 1065; whereas if 1729 were prime, we'd expect to see it preceded
|
||||
* by -1 (i.e. 1728.). Guards! Seize this impostor.
|
||||
*
|
||||
* (If we were unlucky, we might have tried a=16 instead of a=2;
|
||||
* now 16^27 mod 1729 == 1, so we would have seen a long string of
|
||||
* 1s and wouldn't have seen the thing _before_ the 1s. So, just
|
||||
* like the Fermat test, for a given p there may well exist values
|
||||
* of a which fail to show up its compositeness. So we try several,
|
||||
* just like the Fermat test. The difference is that Miller-Rabin
|
||||
* is not _in general_ fooled by Carmichael numbers.)
|
||||
*
|
||||
* Put simply, then, the Miller-Rabin test requires us to:
|
||||
*
|
||||
* 1. write p-1 as q * 2^k, with q odd
|
||||
* 2. compute z = (a^q) mod p.
|
||||
* 3. report success if z == 1 or z == -1.
|
||||
* 4. square z at most k-1 times, and report success if it becomes
|
||||
* -1 at any point.
|
||||
* 5. report failure otherwise.
|
||||
*
|
||||
* (We expect z to become -1 after at most k-1 squarings, because
|
||||
* if it became -1 after k squarings then a^(p-1) would fail to be
|
||||
* 1. And we don't need to investigate what happens after we see a
|
||||
* -1, because we _know_ that -1 squared is 1 modulo anything at
|
||||
* all, so after we've seen a -1 we can be sure of seeing nothing
|
||||
* but 1s.)
|
||||
*/
|
||||
|
||||
struct MillerRabin {
|
||||
MontyContext *mc;
|
||||
|
||||
size_t k;
|
||||
mp_int *q;
|
||||
|
||||
mp_int *two, *pm1, *m_pm1;
|
||||
};
|
||||
|
||||
MillerRabin *miller_rabin_new(mp_int *p)
|
||||
{
|
||||
MillerRabin *mr = snew(MillerRabin);
|
||||
|
||||
assert(mp_hs_integer(p, 2));
|
||||
assert(mp_get_bit(p, 0) == 1);
|
||||
|
||||
mr->k = 1;
|
||||
while (!mp_get_bit(p, mr->k))
|
||||
mr->k++;
|
||||
mr->q = mp_rshift_safe(p, mr->k);
|
||||
|
||||
mr->two = mp_from_integer(2);
|
||||
|
||||
mr->pm1 = mp_unsafe_copy(p);
|
||||
mp_sub_integer_into(mr->pm1, mr->pm1, 1);
|
||||
|
||||
mr->mc = monty_new(p);
|
||||
mr->m_pm1 = monty_import(mr->mc, mr->pm1);
|
||||
|
||||
return mr;
|
||||
}
|
||||
|
||||
void miller_rabin_free(MillerRabin *mr)
|
||||
{
|
||||
mp_free(mr->q);
|
||||
mp_free(mr->two);
|
||||
mp_free(mr->pm1);
|
||||
mp_free(mr->m_pm1);
|
||||
monty_free(mr->mc);
|
||||
smemclr(mr, sizeof(*mr));
|
||||
sfree(mr);
|
||||
}
|
||||
|
||||
struct mr_result {
|
||||
bool passed;
|
||||
bool potential_primitive_root;
|
||||
};
|
||||
|
||||
static struct mr_result miller_rabin_test_inner(MillerRabin *mr, mp_int *w)
|
||||
{
|
||||
/*
|
||||
* Compute w^q mod p.
|
||||
*/
|
||||
mp_int *wqp = monty_pow(mr->mc, w, mr->q);
|
||||
|
||||
/*
|
||||
* See if this is 1, or if it is -1, or if it becomes -1
|
||||
* when squared at most k-1 times.
|
||||
*/
|
||||
struct mr_result result;
|
||||
result.passed = false;
|
||||
result.potential_primitive_root = false;
|
||||
|
||||
if (mp_cmp_eq(wqp, monty_identity(mr->mc))) {
|
||||
result.passed = true;
|
||||
} else {
|
||||
for (size_t i = 0; i < mr->k; i++) {
|
||||
if (mp_cmp_eq(wqp, mr->m_pm1)) {
|
||||
result.passed = true;
|
||||
result.potential_primitive_root = (i == mr->k - 1);
|
||||
break;
|
||||
}
|
||||
if (i == mr->k - 1)
|
||||
break;
|
||||
monty_mul_into(mr->mc, wqp, wqp, wqp);
|
||||
}
|
||||
}
|
||||
|
||||
mp_free(wqp);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool miller_rabin_test_random(MillerRabin *mr)
|
||||
{
|
||||
mp_int *mw = mp_random_in_range(mr->two, mr->pm1);
|
||||
struct mr_result result = miller_rabin_test_inner(mr, mw);
|
||||
mp_free(mw);
|
||||
return result.passed;
|
||||
}
|
||||
|
||||
mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr)
|
||||
{
|
||||
while (true) {
|
||||
mp_int *mw = mp_unsafe_shrink(mp_random_in_range(mr->two, mr->pm1));
|
||||
struct mr_result result = miller_rabin_test_inner(mr, mw);
|
||||
|
||||
if (result.passed && result.potential_primitive_root) {
|
||||
mp_int *pr = monty_export(mr->mc, mw);
|
||||
mp_free(mw);
|
||||
return pr;
|
||||
}
|
||||
|
||||
mp_free(mw);
|
||||
|
||||
if (!result.passed) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned miller_rabin_checks_needed(unsigned bits)
|
||||
{
|
||||
/* Table 4.4 from Handbook of Applied Cryptography */
|
||||
return (bits >= 1300 ? 2 : bits >= 850 ? 3 : bits >= 650 ? 4 :
|
||||
bits >= 550 ? 5 : bits >= 450 ? 6 : bits >= 400 ? 7 :
|
||||
bits >= 350 ? 8 : bits >= 300 ? 9 : bits >= 250 ? 12 :
|
||||
bits >= 200 ? 15 : bits >= 150 ? 18 : 27);
|
||||
}
|
||||
|
25
sshkeygen.h
25
sshkeygen.h
@ -67,6 +67,31 @@ void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
|
||||
/* Query functions for primegen to use */
|
||||
unsigned pcs_get_bits(PrimeCandidateSource *pcs);
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* A system for doing Miller-Rabin probabilistic primality tests.
|
||||
* These benefit from having set up some context beforehand, if you're
|
||||
* going to do more than one of them on the same candidate prime, so
|
||||
* we declare an object type here to store that context.
|
||||
*/
|
||||
|
||||
typedef struct MillerRabin MillerRabin;
|
||||
|
||||
/* Make and free a Miller-Rabin context. */
|
||||
MillerRabin *miller_rabin_new(mp_int *p);
|
||||
void miller_rabin_free(MillerRabin *mr);
|
||||
|
||||
/* Perform a single Miller-Rabin test, using a random witness value. */
|
||||
bool miller_rabin_test_random(MillerRabin *mr);
|
||||
|
||||
/* Suggest how many tests are needed to make it sufficiently unlikely
|
||||
* that a composite number will pass them all */
|
||||
unsigned miller_rabin_checks_needed(unsigned bits);
|
||||
|
||||
/* An extension to the M-R test, which iterates until it either finds
|
||||
* a witness value that is potentially a primitive root, or one
|
||||
* that proves the number to be composite. */
|
||||
mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr);
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Callback API that allows key generation to report progress to its
|
||||
* caller.
|
||||
|
190
sshprime.c
190
sshprime.c
@ -28,98 +28,6 @@
|
||||
* - go back to square one if any M-R test fails.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The Miller-Rabin primality test is an extension to the Fermat
|
||||
* test. The Fermat test just checks that a^(p-1) == 1 mod p; this
|
||||
* is vulnerable to Carmichael numbers. Miller-Rabin considers how
|
||||
* that 1 is derived as well.
|
||||
*
|
||||
* Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
|
||||
* or a == -1 (mod p).
|
||||
*
|
||||
* Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
|
||||
* since p is prime, either p divides (a+1) or p divides (a-1).
|
||||
* But this is the same as saying that either a is congruent to
|
||||
* -1 mod p or a is congruent to +1 mod p. []
|
||||
*
|
||||
* Comment: This fails when p is not prime. Consider p=mn, so
|
||||
* that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
|
||||
* and n dividing (a-1), without the whole of mn dividing either.
|
||||
* For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
|
||||
* 10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
|
||||
* without a having to be congruent to either 1 or -1.
|
||||
*
|
||||
* So the Miller-Rabin test, as well as considering a^(p-1),
|
||||
* considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
|
||||
* go. In other words. we write p-1 as q * 2^k, with k as large as
|
||||
* possible (i.e. q must be odd), and we consider the powers
|
||||
*
|
||||
* a^(q*2^0) a^(q*2^1) ... a^(q*2^(k-1)) a^(q*2^k)
|
||||
* i.e. a^((n-1)/2^k) a^((n-1)/2^(k-1)) ... a^((n-1)/2) a^(n-1)
|
||||
*
|
||||
* If p is to be prime, the last of these must be 1. Therefore, by
|
||||
* the above lemma, the one before it must be either 1 or -1. And
|
||||
* _if_ it's 1, then the one before that must be either 1 or -1,
|
||||
* and so on ... In other words, we expect to see a trailing chain
|
||||
* of 1s preceded by a -1. (If we're unlucky, our trailing chain of
|
||||
* 1s will be as long as the list so we'll never get to see what
|
||||
* lies before it. This doesn't count as a test failure because it
|
||||
* hasn't _proved_ that p is not prime.)
|
||||
*
|
||||
* For example, consider a=2 and p=1729. 1729 is a Carmichael
|
||||
* number: although it's not prime, it satisfies a^(p-1) == 1 mod p
|
||||
* for any a coprime to it. So the Fermat test wouldn't have a
|
||||
* problem with it at all, unless we happened to stumble on an a
|
||||
* which had a common factor.
|
||||
*
|
||||
* So. 1729 - 1 equals 27 * 2^6. So we look at
|
||||
*
|
||||
* 2^27 mod 1729 == 645
|
||||
* 2^108 mod 1729 == 1065
|
||||
* 2^216 mod 1729 == 1
|
||||
* 2^432 mod 1729 == 1
|
||||
* 2^864 mod 1729 == 1
|
||||
* 2^1728 mod 1729 == 1
|
||||
*
|
||||
* We do have a trailing string of 1s, so the Fermat test would
|
||||
* have been happy. But this trailing string of 1s is preceded by
|
||||
* 1065; whereas if 1729 were prime, we'd expect to see it preceded
|
||||
* by -1 (i.e. 1728.). Guards! Seize this impostor.
|
||||
*
|
||||
* (If we were unlucky, we might have tried a=16 instead of a=2;
|
||||
* now 16^27 mod 1729 == 1, so we would have seen a long string of
|
||||
* 1s and wouldn't have seen the thing _before_ the 1s. So, just
|
||||
* like the Fermat test, for a given p there may well exist values
|
||||
* of a which fail to show up its compositeness. So we try several,
|
||||
* just like the Fermat test. The difference is that Miller-Rabin
|
||||
* is not _in general_ fooled by Carmichael numbers.)
|
||||
*
|
||||
* Put simply, then, the Miller-Rabin test requires us to:
|
||||
*
|
||||
* 1. write p-1 as q * 2^k, with q odd
|
||||
* 2. compute z = (a^q) mod p.
|
||||
* 3. report success if z == 1 or z == -1.
|
||||
* 4. square z at most k-1 times, and report success if it becomes
|
||||
* -1 at any point.
|
||||
* 5. report failure otherwise.
|
||||
*
|
||||
* (We expect z to become -1 after at most k-1 squarings, because
|
||||
* if it became -1 after k squarings then a^(p-1) would fail to be
|
||||
* 1. And we don't need to investigate what happens after we see a
|
||||
* -1, because we _know_ that -1 squared is 1 modulo anything at
|
||||
* all, so after we've seen a -1 we can be sure of seeing nothing
|
||||
* but 1s.)
|
||||
*/
|
||||
|
||||
static unsigned miller_rabin_checks_needed(unsigned bits)
|
||||
{
|
||||
/* Table 4.4 from Handbook of Applied Cryptography */
|
||||
return (bits >= 1300 ? 2 : bits >= 850 ? 3 : bits >= 650 ? 4 :
|
||||
bits >= 550 ? 5 : bits >= 450 ? 6 : bits >= 400 ? 7 :
|
||||
bits >= 350 ? 8 : bits >= 300 ? 9 : bits >= 250 ? 12 :
|
||||
bits >= 200 ? 15 : bits >= 150 ? 18 : 27);
|
||||
}
|
||||
|
||||
ProgressPhase primegen_add_progress_phase(ProgressReceiver *prog,
|
||||
unsigned bits)
|
||||
{
|
||||
@ -152,95 +60,35 @@ mp_int *primegen(PrimeCandidateSource *pcs, ProgressReceiver *prog)
|
||||
{
|
||||
pcs_ready(pcs);
|
||||
|
||||
STARTOVER:
|
||||
while (true) {
|
||||
progress_report_attempt(prog);
|
||||
|
||||
progress_report_attempt(prog);
|
||||
mp_int *p = pcs_generate(pcs);
|
||||
|
||||
mp_int *p = pcs_generate(pcs);
|
||||
|
||||
/*
|
||||
* Now apply the Miller-Rabin primality test a few times. First
|
||||
* work out how many checks are needed.
|
||||
*/
|
||||
unsigned checks = miller_rabin_checks_needed(pcs_get_bits(pcs));
|
||||
|
||||
/*
|
||||
* Next, write p-1 as q*2^k.
|
||||
*/
|
||||
size_t k;
|
||||
for (k = 0; mp_get_bit(p, k) == !k; k++)
|
||||
continue; /* find first 1 bit in p-1 */
|
||||
mp_int *q = mp_rshift_safe(p, k);
|
||||
|
||||
/*
|
||||
* Set up stuff for the Miller-Rabin checks.
|
||||
*/
|
||||
mp_int *two = mp_from_integer(2);
|
||||
mp_int *pm1 = mp_copy(p);
|
||||
mp_sub_integer_into(pm1, pm1, 1);
|
||||
MontyContext *mc = monty_new(p);
|
||||
mp_int *m_pm1 = monty_import(mc, pm1);
|
||||
|
||||
bool known_bad = false;
|
||||
|
||||
/*
|
||||
* Now, for each check ...
|
||||
*/
|
||||
for (unsigned check = 0; check < checks && !known_bad; check++) {
|
||||
/*
|
||||
* Invent a random number between 1 and p-1.
|
||||
*/
|
||||
mp_int *w = mp_random_in_range(two, pm1);
|
||||
monty_import_into(mc, w, w);
|
||||
|
||||
/*
|
||||
* Compute w^q mod p.
|
||||
*/
|
||||
mp_int *wqp = monty_pow(mc, w, q);
|
||||
mp_free(w);
|
||||
|
||||
/*
|
||||
* See if this is 1, or if it is -1, or if it becomes -1
|
||||
* when squared at most k-1 times.
|
||||
*/
|
||||
bool passed = false;
|
||||
|
||||
if (mp_cmp_eq(wqp, monty_identity(mc)) || mp_cmp_eq(wqp, m_pm1)) {
|
||||
passed = true;
|
||||
} else {
|
||||
for (size_t i = 0; i < k - 1; i++) {
|
||||
monty_mul_into(mc, wqp, wqp, wqp);
|
||||
if (mp_cmp_eq(wqp, m_pm1)) {
|
||||
passed = true;
|
||||
break;
|
||||
}
|
||||
MillerRabin *mr = miller_rabin_new(p);
|
||||
bool known_bad = false;
|
||||
unsigned nchecks = miller_rabin_checks_needed(mp_get_nbits(p));
|
||||
for (unsigned check = 0; check < nchecks; check++) {
|
||||
if (!miller_rabin_test_random(mr)) {
|
||||
known_bad = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
miller_rabin_free(mr);
|
||||
|
||||
if (!passed)
|
||||
known_bad = true;
|
||||
if (!known_bad) {
|
||||
/*
|
||||
* We have a prime!
|
||||
*/
|
||||
pcs_free(pcs);
|
||||
return p;
|
||||
}
|
||||
|
||||
mp_free(wqp);
|
||||
}
|
||||
|
||||
mp_free(q);
|
||||
mp_free(two);
|
||||
mp_free(pm1);
|
||||
monty_free(mc);
|
||||
mp_free(m_pm1);
|
||||
|
||||
if (known_bad) {
|
||||
mp_free(p);
|
||||
goto STARTOVER;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have a prime!
|
||||
*/
|
||||
pcs_free(pcs);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Reusable null implementation of the progress-reporting API.
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user