mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
Make bignum.py self-contained, by importing versions of the two
functions I was depending on from my personal Python maths utility module. [originally from svn r9104]
This commit is contained in:
parent
77180221bd
commit
9d4005e5c1
44
testdata/bignum.py
vendored
44
testdata/bignum.py
vendored
@ -1,14 +1,40 @@
|
||||
# Generate test cases for a bignum implementation.
|
||||
|
||||
import sys
|
||||
import mathlib
|
||||
|
||||
# integer square roots
|
||||
def sqrt(n):
|
||||
d = long(n)
|
||||
a = 0L
|
||||
# b must start off as a power of 4 at least as large as n
|
||||
ndigits = len(hex(long(n)))
|
||||
b = 1L << (ndigits*4)
|
||||
while 1:
|
||||
a = a >> 1
|
||||
di = 2*a + b
|
||||
if di <= d:
|
||||
d = d - di
|
||||
a = a + b
|
||||
b = b >> 2
|
||||
if b == 0: break
|
||||
return a
|
||||
|
||||
# continued fraction convergents of a rational
|
||||
def confrac(n, d):
|
||||
coeffs = [(1,0),(0,1)]
|
||||
while d != 0:
|
||||
i = n / d
|
||||
n, d = d, n % d
|
||||
coeffs.append((coeffs[-2][0]-i*coeffs[-1][0],
|
||||
coeffs[-2][1]-i*coeffs[-1][1]))
|
||||
return coeffs
|
||||
|
||||
def findprod(target, dir = +1, ratio=(1,1)):
|
||||
# Return two numbers whose product is as close as we can get to
|
||||
# 'target', with any deviation having the sign of 'dir', and in
|
||||
# the same approximate ratio as 'ratio'.
|
||||
|
||||
r = mathlib.sqrt(target * ratio[0] * ratio[1])
|
||||
r = sqrt(target * ratio[0] * ratio[1])
|
||||
a = r / ratio[1]
|
||||
b = r / ratio[0]
|
||||
if a*b * dir < target * dir:
|
||||
@ -22,11 +48,7 @@ def findprod(target, dir = +1, ratio=(1,1)):
|
||||
improved = 0
|
||||
a, b = best[:2]
|
||||
|
||||
terms = mathlib.confracr(a, b, output=None)
|
||||
coeffs = [(1,0),(0,1)]
|
||||
for t in terms:
|
||||
coeffs.append((coeffs[-2][0]-t*coeffs[-1][0],
|
||||
coeffs[-2][1]-t*coeffs[-1][1]))
|
||||
coeffs = confrac(a, b)
|
||||
for c in coeffs:
|
||||
# a*c[0]+b*c[1] is as close as we can get it to zero. So
|
||||
# if we replace a and b with a+c[1] and b+c[0], then that
|
||||
@ -45,7 +67,7 @@ def findprod(target, dir = +1, ratio=(1,1)):
|
||||
A,B,C = da*db, b*da+a*db, a*b-target
|
||||
discrim = B^2-4*A*C
|
||||
if discrim > 0 and A != 0:
|
||||
root = mathlib.sqrt(discrim)
|
||||
root = sqrt(discrim)
|
||||
vals = []
|
||||
vals.append((-B + root) / (2*A))
|
||||
vals.append((-B - root) / (2*A))
|
||||
@ -83,9 +105,9 @@ for i in range(1,4200):
|
||||
|
||||
# Simple tests of modpow.
|
||||
for i in range(64, 4097, 63):
|
||||
modulus = mathlib.sqrt(1<<(2*i-1)) | 1
|
||||
base = mathlib.sqrt(3*modulus*modulus) % modulus
|
||||
expt = mathlib.sqrt(modulus*modulus*2/5)
|
||||
modulus = sqrt(1<<(2*i-1)) | 1
|
||||
base = sqrt(3*modulus*modulus) % modulus
|
||||
expt = sqrt(modulus*modulus*2/5)
|
||||
print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus))
|
||||
if i <= 1024:
|
||||
# Test even moduli, which can't be done by Montgomery.
|
||||
|
Loading…
Reference in New Issue
Block a user